• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zircon U-Pb age, geochemical, and Sr-Nd isotopic constraints on the origin of Late Carboniferous mafic dykes of the North China Craton, Shanxi Province, China

    2014-04-10 01:23:14LIUShenFENGCaiXiaJAHNBoMingHURuiZhongZHAIMingGuoandLAIShaoCong
    巖石學(xué)報(bào) 2014年6期
    關(guān)鍵詞:巖石學(xué)克拉通巖石圈

    LIU Shen, FENG CaiXia, JAHN BoMing, HU RuiZhong, ZHAI MingGuo and LAI ShaoCong

    1. State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China2. Department of Geosciences, National Taiwan University, Taipei, China3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China1.

    1 Introduction

    NE-SW and NW-SE striking mafic dykes are widespread in the North China Craton (NCC; Liuetal., 2008a, b, 2009, 2012a, b, 2013), and are the product of lithospheric extension (Hall, 1982; Hall and Fahrig, 1987; Tarney and Weaver, 1987; Zhao and McCulloch, 1993). These rocks provide valuable information on the processes involved in extension, the nature of the mantle beneath this region, and the temporal and spatial evolution of this area, as well as enabling reconstructions of the agglomeration, extension, and rifting apart of continental blocks. Despite this, little research has been undertaken on mafic dykes within the NCC, and the majority of previous research has focused solely on Precambrian and Mesozoic mantle-crust interaction (e.g., Chen and Shi, 1983; Shao and Zhang, 2002; Zhang and Sun, 2002; Shaoetal., 2003; Zhaietal., 2003, 2004; Xu, 2004; Yangetal., 2004; Liuetal., 2005, 2006, 2008a, b, 2009, 2012b, 2013; Peng, 2010; Pengetal., 2005, 2007, 2008, 2010, 2011a, b; Houetal., 2006; Wangetal., 2007; Huetal., 2008; Linetal., 2008; Wuetal., 2008; Zhuetal., 2008; Johnetal., 2010; Lietal., 2010). In contrast, little research has been undertaken on Late Paleozoic (especially Devonian-Permian) mafic dykes of Shanxi Province, located in the northern NCC.

    This lack of research means that further studies on the geochronological, geochemical, and isotopic characteristics of Late Paleozoic mafic dykes of the northern NCC are required. Here, we present new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb geochronological, petrological, major, trace and rare-earth element geochemical, and Sr-Nd isotopic data for representative mafic dykes within the northern NCC. The aim of this work was to constrain the timing of emplacement and the petrogenesis of the magmas that formed these mafic dykes.

    2 Geological setting and petrography

    The NCC consists of an N-S striking mid-continental Proterozoic orogenic belt and Archean eastern and western blocks (Zhaoetal., 2001; Fig.1a). The study areas in the present paper are located in the Xituanbao and Tatong areas of northern Shanxi Province (samples XTB1 to XTB16), within the northern NCC. Mafic dolerite dykes from this area were sampled during this study (Table 1; Fig.1b). These dykes were intruded into gneisses and granite country rocks of unknown age; the other major country rock in this area is dolomite (Fig.1b). Individual mafic dykes are vertical, and strike NE-SW. These dykes are commonly 0.05~2.4km wide and 2.2~18.0km long (Fig.1b), and representative photomicrographs of mafic dykes in the Xituanbao area (samples XTB-2 and XTB-8) are provided in Fig.2. All of the mafic dykes are dolerites. They have typical doleritic/diabasic textures and consist of medium-grained clinopyroxene (2.5~4.5mm) and lath-shaped plagioclase (1.5~3.0mm) phenocrysts (32%~35% of the rock mass) in a groundmass (65%~68%) of clinopyroxene (0.03~0.05mm), plagioclase (0.04~0.05mm), minor magnetite (~0.05mm), and chlorite.

    Fig.1 Location of the sampling transect undertaken during this study (a) and map showing the geology, the distribution of the mafic dykes, and sampling locations within the study area (b)

    Fig.3 Zircon LA-ICP-MS U-Pb concordia diagrams for zircons separated from the mafic dykes within the study areaInset shows CL images of zircons analyzed during this study

    3 Analytical procedures

    3.1 LA-ICP-MS U-Pb dating

    Zircons were separated from one sample (XTB01) using conventional heavy liquid and magnetic techniques at Langfang Regional Geological Survey, Hebei Province, China. The internal and external structures of zircons were observed using transmitted and reflected light and cathodoluminescence (CL) petrography at State Key Laboratory of Continental Dynamics, Northwest University. Zircon U-Pb dating was perfromed by LA-ICP-MS (Table 1; Fig.3) using an Agilent 7500a ICP-MS instrument, equipped with a 193nm excimer laser at State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Wuhan, China. A 24(m laser spot diameter was used during analysis, a #91500 zircon standard was used for calibration, and a NIST 610 standard was used for optimization. Grain mount surfaces were washed in dilute HNO3and pure alcohol prior to analysis to remove any potential lead contamination. The analytical methodology followed Yuanetal. (2004) and Liuetal. (2010), and common Pb was corrected following Andersen (2002). The resulting data were processed using the GLITTER and ISOPLOT programs (Ludwig, 2003; Table 1; Fig.3), and uncertainties on individual LA-ICP-MS analyses are quoted at the 95% (1σ) confidence level.

    3.2 Whole-rock geochemistry

    The whole-rock and Sr-Nd isotope geochemistry of 16 mafic dyke samples was determined. Prior to analysis, samples were trimmed to remove altered surfaces, cleaned with de-ionized water, and crushed and powdered in an agate mill. Major element concentrations were determined using a PANalytical Axios-advance X-ray fluorescence spectrometer (XRF) at State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. Major element concentrations were determined on fused glass discs and these analyses have an analytical precision of <5%, as determined using the GSR-1 and GSR-3 Chinese National standards (Table 2). Losses on ignition values (LOI) were determined on 1g of powder that was heated to 1100℃ for 1 hour. Trace element concentrations were determined by ICP-optical emission spectrometry (OES) and ICP-MS at National Research Center of Geo-analysis, Chinese Academy of Geological

    Table 1Zircon LA-ICP-MS U-Pb isotopic data for the mafic dykes within the NCC.

    XTB01IsotopicratiosAge(Ma)SpotTh(×10-6)U(×10-6)Pb(×10-6)ThU207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σ1.126231819.20.820.05240.00200.33550.01290.04660.0005303682941029432.120225715.70.790.05170.00200.33380.01350.04670.0006273692921029443.163742630.11.500.05350.00170.34000.01110.04610.000535055297829034.115821713.20.730.05690.00270.36230.01660.04680.0006489773141229545.129530519.10.970.05040.00210.31720.01330.04620.0006211742801029146.152450333.21.040.05410.00170.34860.01090.04670.000637647304829447.133130719.81.080.05360.00200.34190.01320.04630.0005353662991029138.133336923.50.900.05340.00190.34850.01220.04720.000534758304929739.124425716.40.950.05610.00230.36030.01420.04720.00064586531211297410.121128917.60.730.05560.00210.35810.01360.04660.00054356631110294311.117528516.80.610.04930.00200.31330.01200.04650.0005162702779293312.127226517.11.020.05340.00210.34310.01310.04680.00063466430010295413.129134321.20.850.048330.00160.310810.01060.046550.0005115602758293314.156957136.41.000.052960.00150.33950.00930.046340.0004327442977292315.11081539.230.710.052560.00280.331760.01700.046620.000731089291132944

    Table 2Major element concentrations (wt%) for the mafic dykes from Shanxi Province, northern NCC, China

    SampleSiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2OP2O5LOITotalMg#XTB-151.352.2814.6612.580.165.238.133.751.120.320.61100.1948XTB-251.282.3114.5912.640.145.258.153.781.090.340.54100.1148XTB-351.322.2614.6712.560.145.238.123.631.040.310.4399.7146XTB-451.252.2914.5712.620.145.228.133.621.070.350.6799.9348XTB-551.162.2514.7512.650.135.318.253.731.080.330.56100.2147XTB-651.302.2115.0812.660.155.338.133.561.130.260.52100.3348XTB-751.312.2314.9712.650.135.358.093.581.080.240.53100.1648XTB-850.932.1914.9412.570.145.338.053.571.050.320.6999.7848XTB-951.242.3114.5812.610.165.238.143.641.060.360.6599.9848XTB-1050.782.1614.8712.580.145.338.023.551.030.310.7899.5547XTB-1151.312.2614.6512.530.145.218.113.571.140.310.5699.7948XTB-1251.232.3214.5812.550.155.198.123.581.060.350.6499.7748XTB-1351.332.2414.6312.510.135.188.083.581.120.290.5599.6448XTB-1451.252.3114.5612.530.145.168.133.541.030.330.6399.6148XTB-1551.232.3214.5312.480.135.148.123.521.050.350.6499.5148XTB-1650.882.1614.7112.420.155.187.933.521.010.250.3898.5944GSR-3(RV*)44.642.3713.8313.40.177.778.813.382.320.952.2499.88GSR-3(MV*)44.752.3614.1413.350.167.748.823.182.30.972.1299.89GSR-1(RV*)72.830.2913.42.140.060.421.553.135.010.090.799.62GSR-1(MV*)72.650.2913.522.180.060.461.563.155.030.110.6999.71

    Note: LOI=loss on ignition; Mg#=100(Mg/(Mg+Fe) atomic ratio; RV=recommended values; MV=measured values

    Sciences, Beijing, China, following Qietal. (2000). Triplicate analyses yielded a reproducibility of <5% for all elements, and analyses of OU-6 and GBPG-1 international standards were in agreement with recommended values(Table 3).

    3.3 Sr-Nd isotopic analyses

    Rb-Sr and Sm-Nd isotope analysis used sample powders spiked with mixed isotope tracers before dissolution in Teflon capsules with HF+HNO3acids, and separation using conventional cation-exchange techniques. Isotopic measurements were undertaken using a Finnigan Triton Ti thermal ionization mass spectrometer at State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China. Procedural blanks were <200pg for Sm and Nd, and <500pg for Rb and Sr. Mass fractionation corrections for Sr and Nd isotopic ratios used86Sr/88Sr and146Nd/144Nd values of 0.1194 and 0.7219, respectively, and analysis of the NBS987 and La Jolla standards yielded values of87Sr/86Sr=0.710246±16 (2σ) and143Nd/144Nd=0.511863±8 (2σ), respectively; the results of these analyses are given in Table 4.

    Table 3Trace element compositions (×10-6) of the mafic dyke from Shanxi Province, northern NCC

    SampleXTB-1XTB-2XTB-3XTB-4XTB-5XTB-6XTB-7XTB-8XTB-9XTB-10XTB-11V232236241246226233242235228243239Cr113116121125107116124119128126119Ni118121129131116121131118127133132Rb23.622.724.324.522.322.923.922.622.523.522.9Sr465458471475455469473453453475456Y26.425.627.427.625.326.327.625.325.427.325.4Zr197187209211178198206185175208189Nb29.428.531.531.627.629.631.628.627.431.328.3Ba298287306309276302308289278305283La23.923.524.324.223.224.124.223.223.124.123.2Ce47.346.948.548.646.446.748.645.446.248.247.3Pr5.855.825.935.965.755.845.975.855.735.945.85Nd25.625.226.326.224.325.326.525.324.225.225.3Sm6.166.136.276.255.966.156.286.165.956.136.16Eu2.172.182.262.192.142.192.252.192.162.182.19Gd5.535.485.635.715.515.555.615.465.535.565.51Tb0.980.960.970.950.930.960.950.960.940.970.95Dy5.145.165.235.194.985.175.215.174.975.485.12Ho1.131.151.251.191.091.161.221.161.061.191.13Er2.422.372.532.522.332.362.512.222.322.532.43Tm0.350.330.340.330.310.320.350.310.320.350.32Yb1.831.861.971.881.781.851.981.871.761.971.85Lu0.260.260.250.260.250.250.330.250.260.260.25Hf4.684.634.764.814.614.644.654.644.634.744.65Ta1.651.621.721.751.631.651.661.651.651.651.65Pb3.593.483.653.723.513.493.583.433.343.623.46Th2.622.652.752.762.562.642.732.642.552.742.63U0.750.760.830.860.750.760.760.760.760.750.75(La/Yb)N9.49.18.89.29.39.38.88.99.48.89δEu1.111.131.141.11.121.121.141.131.131.121.13SampleXTB-12XTB-13XTB-14XTB-15XTB-16OU-6(RV*)OU-6(MV*)GBPG-1(RV*)GBPG-1(MV*)V23522724625325612913196.5103Cr11410512913213570.873.5181187Ni11711813514113839.842.559.660.6Rb22.622.423.624.324.212012256.261.4Sr466457472483479131136364377Y26.125.127.528.228.527.426.21817.2Zr194175212223218174183232224Nb29.826.931.232.332.614.815.39.938.74Ba305278303312314477486908921La23.624.123.724.225.133335351Ce45.146.248.449.548.774.478103105Pr5.835.745.936.165.967.88.111.511.6Nd25.224.225.526.325.72930.643.342.4Sm6.125.936.126.286.175.925.996.796.63Eu2.182.132.152.252.231.361.351.791.69Gd5.585.545.615.725.665.275.54.744.47Tb0.960.940.980.960.950.850.830.60.59Dy5.154.955.525.615.564.995.063.263.17Ho1.131.061.221.331.321.011.020.690.66Er2.312.322.522.642.582.983.072.012.02Tm0.330.280.340.350.340.440.450.30.29Yb1.761.751.952.122.063.033.092.032.03Lu0.240.250.260.260.240.450.470.310.31Hf4.634.624.754.874.754.74.866.075.93Ta1.641.631.721.841.821.061.020.40.46Pb3.453.483.583.633.6228.232.714.114.5Th2.622.542.732.762.7511.513.911.211.4U0.730.760.730.780.761.962.190.910.99(La/Yb)N9.69.98.78.28.7δEu1.121.121.11.131.13

    Note: values for GBPG-1 are from Thompsonetal. (2000), and values for OU-6 are from Potts and Kane (2005)

    Fig.4 Classification of the mafic dykes within the NCC(a) TAS (all major element concentrations were recalculated to 100% anhydrous compositions; Middlemost, 1994; Le Maitre, 2002); (b) K2O vs. Na2O diagrams

    4 Results

    4.1 Zircon U-Pb dating

    Euhedral zircons separated from sample XTB01 are clean and prismatic, and contain magmatic oscillatory zoning (Fig.3). A total of 15 zircons from this sample yielded a weighted mean206Pb/238U age of 293.4±1.7Ma (2σ; 95% confidence interval; Table 1; Fig.3). This age is the best estimate of the crystallization ages of mafic dykes in the Xinfangzi and Shangxigou areas; no inherited zircon cores were identified during this study.

    4.2 Whole-rock geochemistry

    The whole-rock geochemical compositions of mafic dykes analyzed during this study area are given in Table 2 and Table 3.

    The mafic dykes have a narrow range of chemical compositions (SiO2=50.78%~51.35%, TiO2=2.16%~2.32%, Al2O3=14.53%~15.08%, Fe2O3=12.42%~12.66%, MnO=0.13%~0.16%, MgO=5.14%~5.35%, CaO=7.93%~8.25%, Na2O=3.52%~3.78%, K2O=1.01%~1.14%, and P2O5=0.24%~0.36%). All of these mafic dykes plot along the alkaline-sub-alkaline boundary in a total alkali-silica (TAS) diagram (Fig.4a); the dykes also plot within the calc-alkaline field in a Na2O vs. K2O diagram (oxide %; Fig.4b). The major element concentrations of the mafic dykes analyzed during this study do not correlate well with MgO concentrations(Fig.5). The mafic dykes are also characterized

    Fig.5 Variations in major element concentrations vs. MgO (%) for the mafic dykes within the study area, Shanxi Province, northern NCC, China

    by LREE enrichments and HREE depletions, with a wide range in (La/Yb)N(8.2~9.9) andδEu (1.10~1.13) values (Table 3; Fig.6a). Dykes within the study area are LILE (i.e., Ba, K and Sr) and Nb, Ta, and Zr enriched, and Th, Pb, Nd, P, and Ti depleted in primitive mantle-normalized trace element diagrams (Fig.6b).

    4.3 Sr-Nd isotopes

    The Sr-Nd isotopic compositions of eight representative mafic dykes were analyzed (Table 4), yielding uniform (87Sr/86Sr)ivalues (0.70422~0.70423) andεNd(t) values (5.8~6.1), suggesting that they formed from magmas derived from a depleted mantle source (Fig.7).

    5 Genesis of the mafic dyke magmas

    5.1 Mantle source

    Fig.6 Chondrite-normalized rare earth element diagram (a) and primitive mantle-normalized incompatible element distribution diagram (b) for the mafic dykes analyzed during this study (normalization values after Sun and McDonough, 1989)

    Fig.7 Initial 87Sr/86Sr vs. εNd(t) diagram for the mafic dykes from Shanxi Province, northern NCC, ChinaThe dykes plot within the depleted mantle source field

    Mafic dykes in the study area contain low SiO2concentrations (50.78%~51.35%) (Table 2), suggesting derivation from an ultramafic (i.e., mantle) source, and not from melting of crustal material. This hypothesis is supported by the relatively high concentrations of MgO (5.14%~5.35%), Ni (117×10-6~141×10-6), and Cr (105×10-6~135×10-6), and the elevated Mg#values (44~48) of the mafic dykes. Crustal rocks can be excluded as a potential source of the magmas that formed these dykes, as partial melting of any crustal rocks (e.g., Hirajimaetal., 1990; Zhangetal., 1995a; Katoetal., 1997) or lower crustal intermediate granulites within the deep crust (Gaoetal., 1998a, b) would produce high-Si, low-Mg melts (i.e., of granitoid composition). In addition, the mafic dykes have low initial87Sr/86Sr ratios (0.70422~0.70423) and uniformly positive uniformεNd(t) values (5.8~6.1; Table 4), consistent with derivation from a depleted lithospheric mantle source or from the asthenospheric mantle. It is generally accepted that the lithospheric mantle has enriched initial87Sr/86Sr ratios, and generally has lowεNd(t) values (Zhangetal., 2005), whereas asthenospheric mantle magma is likely to be isotopically depleted, with low (87Sr/86Sr)iand highεNd(t) values (Saundersetal., 1992). These data suggest that the magmas that formed the mafic dykes of the NCC studied here were sourced from the asthenospheric mantle.

    5.2 Crustal contamination

    Crustal contamination can cause significant enrichment in the Sr-Nd isotopic composition of basaltic rocks. The mafic dykes analyzed during this study have depleted Sr isotopic compositions (0.70422~0.70423) and positiveεNd(t) values (5.8~6.1), suggesting that the magmas that formed these dykes assimilated little or no crustal material prior to emplacement. Furthermore, crustal assimilation would cause significant variation in the Sr-Nd isotope composition of a magma, and would also result in a positive correlation between MgO andεNd(t) values (5.8~6.1), and a negative correlation between MgO and (87Sr/86Sr)iratios (0.70422~0.70423), yet these features are not observed in the dolerite samples analyzed here (figure not shown).

    Finally, the lack of inherited zircons in these dykes indicates that the magmas that formed these dykes underwent negligible crustal contamination. In summary, the geochemical and isotopic compositions of the dolerites analyzed during this study support their formation from magmas derived from a depleted asthenospheric mantle source that underwent little to no crustal contamination.

    5.3 Fractional crystallization

    Mafic dykes within the Xituanbao area have high Mg#values (44~48; Table 2), inconsistent with formation from magmas that underwent significant crystal fractionation. This lack of fractionation is further supported by the lack of correlation between MgO and other major elements (SiO2, TiO2, Fe2O3, Na2O+K2O, MnO, and P2O5(Fig.5). Nevertheless, it is generally thought that mafic magmas undergo fractionation of olivine, pyroxene, and Ti-bearing phases (rutile, ilmenite, titanite, etc.; Liuetal., 2005, 2006, 2008a, b, 2009, 2012b, 2013), as illustrated by the fact that the mafic dykes analyzed during this study plot along a visible fractionation trend on a La vs. La/Sm diagram (Fig.8). This is further supported by the low MgO (Mg#) and Ni contents (Table 2 and Table 3), as well as the Ti depletion (Fig.6b). However, the magmas that formed these dykes underwent some separation of plagioclase, and the presence of small number of feldspar cumulates, as evidenced by the presence of weak positive Eu anomalies in chondrite-normalized REE patterns (Fig.6a).

    Fig.8 La vs. La/Sm diagram for the mafic dykes analyzed during this study

    5.4 Genetic model and NCC destruction

    Mafic dykes in China are thought to have formed from magmas derived from partial melting of either the lithospheric or asthenospheric mantle (Liuetal., 2005, 2006, 2008a, b, 2009, 2012b, 2013). The data presented here suggest that the magmas that formed the mafic dykes within the study area were derived from partial melting of a depleted region of the asthenospheric mantle. In addition, the fact that the mafic dykes are LREE-enriched and HREE-depleted suggests that these magmas were generated during partial melting of a region of the mantle that contained residual garnet.

    However, a dynamic model is required to help further decipher the origin of these rocks; most importantly, we need to determine whether subduction of either the ancient Pacific Plate or the Yangtze lithosphere contributed in any way to the formation of these dykes, especially as these dykes provide key constraints on the petrogenesis of magmatism within both the NCC and eastern China. The timing and direction of collisional tectonics within the NCC (Engebretsonetal., 1985; Xuetal., 1993; Zhangetal., 1995b; Xu and Chen, 1997; Meng and Zhang, 1999; Huetal., 2004; Liuetal., 2005; Zhangetal., 2005) means that we can exclude the possibility of any contributions from these two plates.

    The tectonic evolution of the northern NCC, including the location and timing of collision between the northern NCC and the Siberian Block, is a controversial and important issue (Tang, 1990; Shao, 1991; Hongetal., 1995; Zhangetal., 2007; Zhangetal., 2008; Luoetal., 2009). However, it is generally agreed that collision took place before the Early Permian (i.e., Silurian or Devonian; Zhangetal., 2008). The study area underwent relaxation and extension after this collision, resulting in crustal thinning and decompression partial melting of the asthenospheric mantle, processes that ultimately resulted in the emplacement of mafic dykes within the study area. Nevertheless, the two plates were separated from each other; they could not collide in Carboniferous evidenced by plate reconstruction. As such, an alternative model that accounts for the formation of these mafic dykes is needed, and is presented below.

    Prior to carboniferous, the subduction of Paleo-Asian Ocean and the collision of Mongolia China Block occurred (Shao, 1991; Chenetal., 2000, 2001; Yanetal., 2000). Consequently, NCC lithosphere extension appeared. We therefore propose the following genetic model to account for the presence of mafic dykes within the northern NCC: (a) prior to subduction and collision, the NCC, Paleo-Asian Ocean and Mongolia China plates were three independent blocks; (b) subduction or collision between these blocks occurred before the Carboniferous, resulting in many slab windows and slab breakoff; and (c) lithosphere extension and some tectonic weak zone (e.g., slab window and breakoff) occurred. In this case, the extension led to partial melting of asthenospheric mantles beneath the NCC. These partial melts were the parental mafic magmas of the mafic dykes within the study area. These magmas underwent fractionation, but no crustal contamination, during ascent and emplacement of the mafic dykes within the study area.

    For NCC destruction, the carbonatites were derived from partial melting of asthenospheric mantle based on the above interpretation and discussion, implying the NCC destruction might occur in Carboniferous, which is important for the evolution of the NCC.

    6 Conclusions

    The geochronological, geochemical, and Sr-Nd isotopic data presented here have allowed the following conclusions to be drawn:

    (1) Zircon LA-ICP-MS U-Pb dating of the mafic dykes in Shanxi Province, China, indicates a Late Carboniferous (293.4±1.7Ma) age of crystallization.

    (2) These mafic dykes were derived from partial melting of a depleted asthenospheric mantle source, and the parental magmas of these dykes underwent fractionation of olivine, pyroxene, and Ti-bearing phases (rutile, ilmenite, and titanite) during ascent and emplacement. Emplacement of the dykes was associated with negligible crustal contamination.

    (3) The generation and emplacement of the mafic magmas in Shanxi province, the northern NCC can be attributed to post-subduction and collision (e.g., Paleo-Asian Ocean, Mongolia China Block) lithosphere extension.

    AcknowledgementsThe authors thank Lian Zhou, Yongsheng Liu and Zhaochu Hu for assistance during zircon U-Pb dating, Sr-Nd isotope, and Hf isotopic analyses.

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chemical Geology, 192(1-2): 59-79

    Chen B, Jahn BM and Wilde SA. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182

    Chen B, Zhao GC and Wilde SA. 2001. Subduction- and collision-related granitoids from southern Sonidzuoqi, Inner Mongolia: Isotopic ages and tectonic implications. Geological Review, 47(4): 361-367 (in Chinese with English abstract)

    Chen XD and Shi LB. 1983. Primary research on the diabase dyke swarms in Wutai-Taihang area. Chinese Science Bulletin, 16: 1002-1005

    Engebretson DC, Cox AV and Gordon RG. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Paper, 206: 1-59

    Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD and Hu YK. 1998a. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975

    Gao S, Zhang BR, Jin ZM, Kern H, Luo TC and Zhao ZD. 1998b. How mafic is the lower continental crust? Earth and Planetary Science Letters, 161(1-4): 101-117

    Hall HC. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic process. Geosciences Canada, 9: 145-154

    Hall HC and Fahrig WF. 1987. Mafic dyke swarms. Geol. Assoc. Can. Spec. Paper 34, 1-503

    Hirajima T, Ishiwatari A, Cong B, Zhan R, Banno S and Nozaka T. 1990. Coesite from Mengzhong eclogite at Donghai County, northeastern Jiangsu Province, China. Mineralogical Magazine, 54(377): 579-583

    Hong DW, Huang HZ, Xiao YJ, Xu HM and Jin MY. 1995. Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica, 8(1): 27-39

    Hou GT, Liu YL and Li JH. 2006. Evidence for 1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401

    Hu JM, Zhao GC, Ma GL, Zhang SQ and Gao DS. 2004. Paleozoic exensional tectonics of the Wudang block in the Qinling Orogen, China. Chinese Journal of Geology, 39(3): 305-319 (in Chinese with English abstract)

    Hu RZ, Bi XW, Zhou MF, Peng JT, Su WC, Liu S and Qi HW. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598

    John DAP, Zhang JS, Huang BC and Andrew PR. 2010. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The 1.8Ga LIP event and crustal consolidation in Late Palaeoproterozoic times. Journal of Asian Earth Sciences, 41(6): 504-524

    Kato T, Enami A and Zhai M. 1997. Ultrahigh-pressure (UHP) marble and eclogite in the Su-Lu terrane, eastern China. Journal of Metamorphic Geology, 15(2): 169-182

    Le Maitre RW. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2ndEdition. Cambridge: Cambridge University Press, 1-236

    Li TS, Zhai MG, Peng P, Chen L and Guo JH. 2010. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in Eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research, 180(3-4): 143-155

    Lin W, Faure M, Moniép P, Scharer U and Panis D. 2008. Mesozoic extensional tectonics in Eastern Asia: The SSouth Liaodong Peninsula metamorphic core complex (NE China). The Journal of Geology, 116(2): 134-154

    Liu S, Hu RZ, Zhao JH, Feng CX, Zhong H, Cao JJ and Shi DN. 2005. Geochemical characteristics and petrogenetic investigation of the Late Mesozoic lamprophyres of Jiaobei, Shandong Province. Acta Petrologica Sinica, 21(3): 947-958 (in Chinese with English abstract)

    Liu S, Zou HB, Hu RZ, Zhao JH and Feng CX. 2006. Mesozoic mafic dykes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications. Geochemical Journal, 40(2): 181-195

    Liu S, Hu RZ, Gao S, Feng CX, Qi L, Zhong H, Xiao TF, Qi YQ, Wang T and Coulson IM. 2008a. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, East China: Constrains on their petrogenesis and geodynamic significance. Chemical Geology, 255(3-4): 329-345

    Liu S, Hu RZ, Gao S, Feng CX, Qi YQ, Wang T, Feng GY and Coulson IM. 2008b. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dykes from Sulu orogenic belt, Eastern China. Lithos, 106(3-4): 365-379

    Liu S, Hu RZ, Gao S, Feng CX, Yu BB, Feng GY and Qi YQ, Wang T and Coulson IM. 2009. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos, 113(3-4): 621-639

    Liu S, Hu RZ, Gao S, Feng CX, Feng GY, Qi YQ, Coulson IM, Yang YH, Yang CG and Tang L. 2012a. Geochemical and isotopic constraints on the age and origin of mafic dykes from eastern Shandong Province, eastern North China Craton. International Geology Review, 54(12): 1389-1400

    Liu S, Hu RZ, Gao S, Feng CX, Coulson IM, Feng GY, Qi YQ, Yang YH, Yang CG and Tang L. 2012b. U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of the Precambrian mafic dyke swarms in the North China Craton (NCC). Lithos, 140-141: 38-52

    Liu S, Hu RZ, Gao S, Feng CX, Coulson IM, Feng GY, Qi YQ, Yang YH, Yang CG and Tang L. 2013. Zircon U-Pb age and Sr-Nd-Hf isotopic constraints on the age and origin of Triassic mafic dykes, Dalian area, Northeast China. International Geology Review, 55(2): 249-262

    Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546

    Ludwig KR. 2003. User’s manual for Isoplot/Ex, Version 3.00. A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication, 4: 1-70

    Lugmair GW and Harti K. 1978. Lunar initial143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357

    Luo HL, Wu TR, Zhao L, He YK and Jin X. 2009. Permian high Ba-Sr granitoids: Geochemistry, age and tectonic implications of Erlangshan pluton, Urad Zhongqi, Inner Mongolia. Acta Geologica Sinica, 83(3): 603-614

    Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123-126

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 74(3-4): 215-224

    Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Palaeoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dykes. International Geology Review, 47(5): 492-508

    Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1-2): 29-46

    Peng P, Zhai MG, Li Z, Wu FY and Hou QL. 2008. Neoproterozoic (~820Ma) mafic dyke swarms in the North China craton: Implication for a conjoint to the Rodinia supercontinent? Abstracts, 13thGondwana Conference, Dali, China, 160-161

    Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78Ga magmatism in the North China craton. Geological Society of London, Special Publication, 338: 163-178

    Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659

    Peng P, Bleeker W, Ernst RE, S?derlund U and McNicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221

    Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2011b. Neoproterozoic (900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the southeastern margin of the North China Craton. Gondwana Research, 20(1): 243-254

    Potts PJ and Kane JS. 2005. International association of geoanalysts certificate of analysis: Certified reference material OU-6 (Penrhyn slate). Geostandards and Geoanalytical Research, 29(2): 233-236

    Qi L, Hu J and Grégoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513

    Saunders AD, Storey M, Kent RW and Norry MJ. 1992. Consequences of plume-Lithosphere interactions. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and the Cause of Continental Breakup. Geological Society of London, Special Publication, 68: 41-60

    Shao JA. 1991. Middle Crust Evolution in North Margin of Sino-Korea Plate. Beijing: Peking University Press, 136 (in Chinese)

    Shao JA and Zhang LQ. 2002. Mesozoic dyke swarms in the north of North China. Acta Petrologica Sinica, 18(3): 312-318 (in Chinese with English abstract)

    Shao JA, Zhang YB, Zhang LQ, Mu BL, Wang PY and Guo F. 2003. Early Mesozoic dyke swarms of carbonatites and lamprophyres in Datong area. Acta Petrologica Sinica, 19(1): 93-104 (in Chinese with English abstract)

    Steiger RH and J?ger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 36: 359-362

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42(1): 313-345

    Tang KD. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260

    Tarney J and Weaver BL. 1987. Geochemistry and petrogenesis of Early Proterozoic dyke swarms. In: Halls HC and Fahrig WC (eds.). Mafic Dyke Swarms. Special Publication-Geological Association of Canada, 34: 81-93

    Thompson M, Potts PJ, Kane JS and Wilson S. 2000. An international proficiency test for analytical geochemistry laboratories-Report on Round 5 (August 1999). Geostandards and Geoanalytical Research, 24: E1-E28

    Wang T, Zheng YD, Zhang JJ, Wang XS, Zeng LS and Tong Y. 2007. Some problems in the study of Mesozoic extensional structure in the North China Craton and its significance for the study of lithospheric thinning. Geological Bulletin of China, 26(9): 1154-1166 (in Chinese with English abstract)

    Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract)

    Xu B and Chen B. 1997. The structure and evolution of orogenic belt between NCC and Siberian Block during Mesozoic and Paleozoic. Science in China (Series D), 27: 227-232

    Xu JW, Ma GF, Tong WX, Zhu G and Lin SF. 1993. Displacement of Tancheng-Lujiang wrench fault system and its geodynamic setting in the northwestern Circum-pacific. In: Xu JW (ed.). The Tancheng-Lujiang Wrench Fault System. Chichester: John Wiley & Sons, 51-74

    Xu YG. 2004. Lithospheric thinning beneath North China: A temporal and spatial perspective. Geological Journal of China Universities, 10(3): 324-331 (in Chinese with English abstract)

    Yan GH, Mou BL, Xu BL, He GQ, Tan LK, Zhao H, He ZF and Qiao GS. 2000. Chronology, Sr, Nd and Pb isotopic compositions of Triassic alkaline intrusion in the Yanliao-Yinshan and tectonic implications. Science in China (Series D), 30: 383-387

    Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dykes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160

    Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370

    Zhai MG, Zhu RX, Liu JM, Meng QR, Hou QL, Hu SB, Li Z, Zhang HF and Liu W. 2003. The critical time frame of turning pint of tectonic regime. Sciences in China (Series D), 33: 913-920

    Zhai MG, Fan HR, Yang JH and Miao LC. 2004. Large-scale cluster of cold deposits in East Shandong: Anorogenic metallogenesis. Earth Science Frontiers, 11(1): 85-98 (in Chinese with English abstract)

    Zhang GW, Meng QR and Lai SC. 1995. Tectonics and structure of Qinling orogenic belt. Science in China (Series B), 38(11): 1379-1394

    Zhang HF and Sun M. 2002. Geochemistry of Mesozoic basalts and mafic dykes, southeastern North China Carton, and tectonic implications. International Geology Review, 44(4): 370-382

    Zhang HF, Sun M, Zhou XH and Ying JF. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81(1-4): 297-317

    Zhang SH, Zhao Y, Song B, Yang ZY, Hu JM and Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a Late Paleozoic active continental margin. J. Geol. Soc. Lond., 164(2): 451-463

    Zhang XH, Zhang HF, Tang YJ, Wilde SA and Hu ZC. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural andP-Tpath constraints and tectonic evolution. Precambrian Research, 107: 45-73

    Zhao JX and McCulloch MT. 1993. Melting of a subduction-modified continental lithosphericmantle: Evidence fromlate Proterozoic mafic dyke swarms in central Australia. Geology, 21: 463-466

    Zhu G, Hu ZQ, Chen Y, Niu ML and Xie CL. 2008. Evolution of Early Cretaceous extensional basins in the eastern North China craton and its destruction of the craton. Geological Bulletin of China, 27(10): 1594-1604 (in Chinese with English abstract)

    附中文參考文獻(xiàn)

    陳斌, 趙國春, Wilde SA. 2001. 內(nèi)蒙古蘇尼特左旗南兩類花崗巖同位素年代學(xué)及其構(gòu)造意義. 地質(zhì)論評, 47(4): 361-367

    胡建民, 趙國春, 馬國良, 趙森琦, 高殿松. 2004. 秦嶺造山帶武當(dāng)?shù)貐^(qū)古生代伸展構(gòu)造. 地質(zhì)科學(xué), 39(3): 305-319

    劉燊, 胡瑞忠, 趙軍紅, 馮彩霞, 鐘宏, 曹建勁, 史丹妮. 2005. 膠北晚中生代煌斑巖的巖石地球化學(xué)特征及其成因研究. 巖石學(xué)報(bào), 21(3): 947-958

    邵濟(jì)安. 1991. 中朝板塊北緣中地殼演化. 北京: 北京大學(xué)出版社, 136

    邵濟(jì)安, 張履橋. 2002. 華北北部中生代巖墻群. 巖石學(xué)報(bào), 18(3): 312-318

    邵濟(jì)安, 張永北, 張履橋, 牟保磊, 王佩瑛, 郭鋒. 2003. 大同地區(qū)早中生代煌斑巖-碳酸巖巖墻群. 巖石學(xué)報(bào), 19(1): 93-104

    王濤, 鄭亞東, 張進(jìn)江, 王新社, 曾令森, 童英. 2007. 華北克拉通中生代伸展構(gòu)造研究的幾個(gè)問題及其在巖石圈減薄研究中的意義. 地質(zhì)通報(bào), 26(9): 1154-1166

    吳福元, 徐義剛, 高山, 鄭建平. 2008. 華北巖石圈減薄與克拉通破壞研究的主要學(xué)術(shù)爭論. 巖石學(xué)報(bào), 24(6): 1145-1174

    徐義剛. 2004. 華北巖石圈減薄的時(shí)空不均一特征. 高校地質(zhì)學(xué)報(bào), 10(3): 324-331

    翟明國, 范宏瑞, 楊進(jìn)輝, 苗來成. 2004. 非造山帶型金礦——膠東型金礦的陸內(nèi)成礦作用. 地學(xué)前緣, 11(1): 85-98

    朱光, 胡召齊, 陳印, 牛漫蘭, 謝成龍. 2008. 華北克拉通東部早白堊世伸展盆地的發(fā)育過程及其對克拉通的破壞. 地質(zhì)通報(bào), 27(10): 1594-1604

    猜你喜歡
    巖石學(xué)克拉通巖石圈
    巖石圈地幔分層性對克拉通穩(wěn)定性的影響
    第四章 堅(jiān)硬的巖石圈
    四川得榮新州輝長閃長巖體巖石學(xué)及地球化學(xué)特征
    有關(guān)克拉通破壞及其成因的綜述
    巖石圈磁場異常變化與巖石圈結(jié)構(gòu)的關(guān)系
    地震研究(2017年3期)2017-11-06 21:54:14
    2014年魯?shù)?—5級地震相關(guān)斷裂的巖石圈磁異常分析
    地震研究(2017年3期)2017-11-06 01:58:51
    華北克拉通重力剖面重力點(diǎn)位GPS測量精度分析
    拉張槽對四川盆地海相油氣分布的控制作用
    《沉積巖石學(xué)》獲批國家精品資源共享課建設(shè)項(xiàng)目
    鄂爾多斯盆地上古生界太原組儲層巖石學(xué)特征及其對物性的控制研究
    搡女人真爽免费视频火全软件| 精品少妇久久久久久888优播| 国产精品嫩草影院av在线观看| 久久久久久久国产电影| 国产一区二区激情短视频 | 一级片免费观看大全| 少妇猛男粗大的猛烈进出视频| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 国产在线视频一区二区| 99香蕉大伊视频| 国产高清国产精品国产三级| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 爱豆传媒免费全集在线观看| 咕卡用的链子| 国产亚洲av片在线观看秒播厂| 日本黄色日本黄色录像| 制服诱惑二区| 亚洲精品av麻豆狂野| 熟女人妻精品中文字幕| 日本91视频免费播放| 国产精品.久久久| 午夜av观看不卡| 狂野欧美激情性xxxx在线观看| 久久国内精品自在自线图片| 国产成人精品一,二区| 国产精品一区二区在线观看99| 一区在线观看完整版| 9色porny在线观看| 婷婷成人精品国产| 大香蕉久久网| 久久这里只有精品19| 91精品伊人久久大香线蕉| 国产成人欧美| 女性生殖器流出的白浆| 国产一区二区在线观看日韩| 嫩草影院入口| 丁香六月天网| 国产免费福利视频在线观看| 中国三级夫妇交换| 老司机亚洲免费影院| 免费少妇av软件| 中文字幕另类日韩欧美亚洲嫩草| 日韩三级伦理在线观看| 国产精品99久久99久久久不卡 | 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 欧美3d第一页| 高清视频免费观看一区二区| 欧美人与性动交α欧美精品济南到 | 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| 免费看av在线观看网站| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| av卡一久久| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 亚洲精品视频女| 夫妻午夜视频| 另类精品久久| 欧美+日韩+精品| 国产精品偷伦视频观看了| 久久久久人妻精品一区果冻| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 免费人妻精品一区二区三区视频| 看免费av毛片| 高清在线视频一区二区三区| 免费观看av网站的网址| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 成人午夜精彩视频在线观看| av播播在线观看一区| 观看美女的网站| 晚上一个人看的免费电影| 日本黄色日本黄色录像| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 美女大奶头黄色视频| 有码 亚洲区| 国产精品99久久99久久久不卡 | 亚洲第一av免费看| 国产精品 国内视频| 夫妻午夜视频| 香蕉精品网在线| 成年人免费黄色播放视频| 日本av免费视频播放| 国产国拍精品亚洲av在线观看| av国产久精品久网站免费入址| 侵犯人妻中文字幕一二三四区| av黄色大香蕉| 久久狼人影院| 深夜精品福利| 伊人亚洲综合成人网| 最新中文字幕久久久久| 亚洲成国产人片在线观看| 欧美另类一区| 日本欧美国产在线视频| 秋霞在线观看毛片| 日韩欧美精品免费久久| 亚洲人与动物交配视频| 国产精品蜜桃在线观看| 丝袜喷水一区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区综合在线观看 | 久久精品久久精品一区二区三区| 免费日韩欧美在线观看| 亚洲国产色片| 亚洲国产成人一精品久久久| 日韩精品免费视频一区二区三区 | 草草在线视频免费看| 久久 成人 亚洲| av线在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 制服丝袜香蕉在线| av一本久久久久| 久久久精品区二区三区| 国产精品久久久久久久电影| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 亚洲久久久国产精品| 国产一区二区三区av在线| 欧美最新免费一区二区三区| 国产成人免费观看mmmm| 欧美国产精品va在线观看不卡| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频| 亚洲熟女精品中文字幕| 18禁在线无遮挡免费观看视频| 久久久国产欧美日韩av| 蜜臀久久99精品久久宅男| 精品少妇久久久久久888优播| 亚洲av在线观看美女高潮| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 人妻系列 视频| 亚洲精品一二三| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 少妇的逼水好多| 制服诱惑二区| 中文乱码字字幕精品一区二区三区| 少妇被粗大的猛进出69影院 | 一级黄片播放器| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 免费黄色在线免费观看| 国产精品一区二区在线观看99| xxx大片免费视频| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 日日撸夜夜添| av卡一久久| 女人被躁到高潮嗷嗷叫费观| 欧美人与善性xxx| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂| 国产无遮挡羞羞视频在线观看| 午夜免费观看性视频| av网站免费在线观看视频| www.av在线官网国产| 大话2 男鬼变身卡| 亚洲综合色惰| 成人漫画全彩无遮挡| 午夜激情av网站| 久久久a久久爽久久v久久| 日韩,欧美,国产一区二区三区| 亚洲av欧美aⅴ国产| 草草在线视频免费看| 综合色丁香网| 黄网站色视频无遮挡免费观看| 亚洲国产看品久久| 久久精品人人爽人人爽视色| 黄片无遮挡物在线观看| 黑人猛操日本美女一级片| 国产精品久久久久久精品电影小说| 日韩欧美一区视频在线观看| av福利片在线| 9热在线视频观看99| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱| 成人国产av品久久久| 午夜久久久在线观看| 亚洲精品456在线播放app| 亚洲中文av在线| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 久久久久久久久久久免费av| 欧美另类一区| 丝袜喷水一区| 国产一区二区在线观看日韩| 久久久久国产精品人妻一区二区| 香蕉丝袜av| www.熟女人妻精品国产 | 亚洲内射少妇av| 成人二区视频| 纵有疾风起免费观看全集完整版| 美女内射精品一级片tv| 免费在线观看完整版高清| 成人国产av品久久久| 精品国产国语对白av| 亚洲人成网站在线观看播放| 黑人高潮一二区| 青春草国产在线视频| 九九在线视频观看精品| 天美传媒精品一区二区| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 欧美日韩综合久久久久久| 男女高潮啪啪啪动态图| 熟妇人妻不卡中文字幕| 久久99精品国语久久久| 在线 av 中文字幕| 欧美最新免费一区二区三区| 久久青草综合色| 在线观看免费视频网站a站| 中文字幕人妻熟女乱码| 一级黄片播放器| 色网站视频免费| 欧美少妇被猛烈插入视频| 男人舔女人的私密视频| 国产精品国产三级专区第一集| 精品国产国语对白av| 亚洲国产精品999| av又黄又爽大尺度在线免费看| 免费看av在线观看网站| 亚洲一码二码三码区别大吗| 亚洲高清免费不卡视频| 看免费成人av毛片| 黑人欧美特级aaaaaa片| 亚洲丝袜综合中文字幕| 国产一区亚洲一区在线观看| 久久精品国产亚洲av天美| 男女边摸边吃奶| 久久午夜福利片| 久久久欧美国产精品| 久久久久久伊人网av| 超碰97精品在线观看| 制服丝袜香蕉在线| 人妻人人澡人人爽人人| av有码第一页| 在线观看美女被高潮喷水网站| 亚洲国产看品久久| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 大香蕉97超碰在线| 夫妻性生交免费视频一级片| 中文字幕av电影在线播放| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 制服诱惑二区| 久久精品夜色国产| 高清黄色对白视频在线免费看| 日日摸夜夜添夜夜爱| 亚洲精品一二三| 国产男人的电影天堂91| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 一级黄片播放器| 寂寞人妻少妇视频99o| 草草在线视频免费看| 欧美日韩av久久| 99视频精品全部免费 在线| 久久青草综合色| 国产精品人妻久久久久久| 五月玫瑰六月丁香| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 日本免费在线观看一区| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 精品国产一区二区三区四区第35| 精品久久蜜臀av无| 国产精品麻豆人妻色哟哟久久| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 插逼视频在线观看| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区四区第35| 美女国产视频在线观看| 十八禁高潮呻吟视频| 国产精品一国产av| 国产乱来视频区| av网站免费在线观看视频| 亚洲欧美清纯卡通| 香蕉丝袜av| 丝袜美足系列| 国产一区二区激情短视频 | 免费黄色在线免费观看| 国产免费一级a男人的天堂| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 国产av国产精品国产| 国产精品人妻久久久久久| 九色成人免费人妻av| 精品人妻一区二区三区麻豆| 久久久久久伊人网av| 国产爽快片一区二区三区| 国产一区二区三区av在线| 少妇熟女欧美另类| a级毛片在线看网站| 免费大片黄手机在线观看| 99国产综合亚洲精品| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 亚洲国产精品一区三区| 免费看不卡的av| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线| av免费观看日本| 性色av一级| 91午夜精品亚洲一区二区三区| 久久国内精品自在自线图片| 国产成人精品久久久久久| av电影中文网址| 看十八女毛片水多多多| 99久久综合免费| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 高清不卡的av网站| 国产在线免费精品| 亚洲 欧美一区二区三区| 亚洲欧美成人精品一区二区| 伦理电影免费视频| 国产精品国产av在线观看| 日韩中文字幕视频在线看片| 在线观看人妻少妇| 亚洲国产av新网站| 久久精品国产鲁丝片午夜精品| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 国产精品一二三区在线看| freevideosex欧美| 在线免费观看不下载黄p国产| 男女下面插进去视频免费观看 | 在线看a的网站| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 丝袜美足系列| 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 嫩草影院入口| 全区人妻精品视频| 亚洲精品日本国产第一区| av.在线天堂| 精品久久久精品久久久| 永久网站在线| 国产片特级美女逼逼视频| 国产成人精品无人区| 国产精品久久久久成人av| 人体艺术视频欧美日本| 大片免费播放器 马上看| 亚洲成色77777| 美女内射精品一级片tv| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 黄色配什么色好看| 在线观看三级黄色| 美女视频免费永久观看网站| 永久免费av网站大全| 国产综合精华液| 男人舔女人的私密视频| 观看av在线不卡| 婷婷成人精品国产| 中文字幕人妻熟女乱码| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 国产精品麻豆人妻色哟哟久久| 中国三级夫妇交换| 日韩电影二区| 久久久精品94久久精品| 宅男免费午夜| 国产成人av激情在线播放| 人人妻人人爽人人添夜夜欢视频| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品av麻豆狂野| 男女边摸边吃奶| 亚洲欧美清纯卡通| 国产成人精品无人区| 丝袜脚勾引网站| 精品福利永久在线观看| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 美女国产视频在线观看| 日本欧美视频一区| 大片电影免费在线观看免费| 人妻 亚洲 视频| 男女高潮啪啪啪动态图| 精品少妇黑人巨大在线播放| 嫩草影院入口| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 寂寞人妻少妇视频99o| 下体分泌物呈黄色| 久久99蜜桃精品久久| 飞空精品影院首页| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 国产不卡av网站在线观看| 人人澡人人妻人| 国产成人精品福利久久| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| av播播在线观看一区| 晚上一个人看的免费电影| 日本wwww免费看| 精品亚洲成a人片在线观看| 成人国语在线视频| 久久婷婷青草| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| videossex国产| 寂寞人妻少妇视频99o| 51国产日韩欧美| 两性夫妻黄色片 | 捣出白浆h1v1| 女人精品久久久久毛片| 久久精品夜色国产| 只有这里有精品99| 免费看av在线观看网站| 亚洲伊人久久精品综合| 精品一区二区三卡| 亚洲内射少妇av| 国产又色又爽无遮挡免| 欧美成人精品欧美一级黄| 国产精品偷伦视频观看了| 久久精品夜色国产| 99香蕉大伊视频| 在线亚洲精品国产二区图片欧美| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 午夜免费观看性视频| 天堂8中文在线网| 大香蕉久久网| 精品国产国语对白av| 高清黄色对白视频在线免费看| 亚洲五月色婷婷综合| 视频区图区小说| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 国产精品蜜桃在线观看| 各种免费的搞黄视频| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 精品少妇黑人巨大在线播放| 美国免费a级毛片| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| 中文字幕人妻熟女乱码| 国产日韩欧美在线精品| 黑人欧美特级aaaaaa片| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 视频在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| av视频免费观看在线观看| 国产成人av激情在线播放| 久久久久久久久久人人人人人人| 曰老女人黄片| 亚洲色图 男人天堂 中文字幕 | 黄片无遮挡物在线观看| 亚洲少妇的诱惑av| 国产精品三级大全| 岛国毛片在线播放| 国内精品宾馆在线| 国产极品天堂在线| 九九爱精品视频在线观看| av片东京热男人的天堂| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 香蕉丝袜av| 欧美成人午夜精品| 少妇人妻久久综合中文| 热99久久久久精品小说推荐| 黄色毛片三级朝国网站| 永久免费av网站大全| 999精品在线视频| 国产成人91sexporn| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| 亚洲国产毛片av蜜桃av| 天堂8中文在线网| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 又大又黄又爽视频免费| 欧美97在线视频| 黑人欧美特级aaaaaa片| 全区人妻精品视频| 天堂俺去俺来也www色官网| 国产成人91sexporn| 少妇的逼水好多| 亚洲精品av麻豆狂野| 高清黄色对白视频在线免费看| 久久久精品区二区三区| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 99视频精品全部免费 在线| 少妇熟女欧美另类| 草草在线视频免费看| 久热这里只有精品99| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 欧美3d第一页| 大码成人一级视频| 欧美+日韩+精品| 人妻人人澡人人爽人人| 午夜日本视频在线| 高清毛片免费看| 国产精品免费大片| 看十八女毛片水多多多| 狂野欧美激情性bbbbbb| 成人国产麻豆网| 久久婷婷青草| av卡一久久| 视频在线观看一区二区三区| 欧美成人精品欧美一级黄| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线视频一区二区| 美女国产高潮福利片在线看| 欧美日韩精品成人综合77777| 天天影视国产精品| 国产成人av激情在线播放| 天堂中文最新版在线下载| 天堂俺去俺来也www色官网| 国产精品国产三级国产av玫瑰| 高清视频免费观看一区二区| 高清欧美精品videossex| 大香蕉久久成人网| 日本91视频免费播放| 在线观看国产h片| 99精国产麻豆久久婷婷| 三级国产精品片| 99久久中文字幕三级久久日本| a级片在线免费高清观看视频| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 极品少妇高潮喷水抽搐| 在线观看美女被高潮喷水网站| 亚洲国产精品一区二区三区在线| 国产成人欧美| 国产国拍精品亚洲av在线观看| 成年人免费黄色播放视频| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区| 美女中出高潮动态图| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 亚洲图色成人| 国产高清国产精品国产三级| 国产av码专区亚洲av| 性色av一级| 高清av免费在线| 亚洲中文av在线| 欧美成人午夜精品| 精品久久蜜臀av无| 亚洲国产日韩一区二区| 一二三四在线观看免费中文在 | 三上悠亚av全集在线观看| 国产精品免费大片| 成人亚洲欧美一区二区av| 超碰97精品在线观看| 欧美精品国产亚洲| 成人亚洲精品一区在线观看| 秋霞在线观看毛片| 日韩中文字幕视频在线看片| 少妇高潮的动态图| 一二三四在线观看免费中文在 | 九九爱精品视频在线观看| 久久午夜综合久久蜜桃| 国产成人精品久久久久久| 熟妇人妻不卡中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产极品粉嫩免费观看在线| 欧美精品高潮呻吟av久久| 啦啦啦视频在线资源免费观看| 丝袜人妻中文字幕| 国产xxxxx性猛交| 大片免费播放器 马上看| 欧美精品一区二区免费开放| 亚洲精品久久成人aⅴ小说| 最后的刺客免费高清国语| 国产极品天堂在线| 久久人人97超碰香蕉20202| 伦理电影免费视频| 香蕉丝袜av| 熟妇人妻不卡中文字幕|