• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution

    2014-03-30 12:07:54AlekseyMalyshevAnatolyTimofeev
    Sciences in Cold and Arid Regions 2014年4期

    Aleksey V. Malyshev, Anatoly M. Timofeev

    Institute of Physical-Technical Problems of the North. V.P. Larionov, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677000, Russia

    Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution

    Aleksey V. Malyshev*, Anatoly M. Timofeev

    Institute of Physical-Technical Problems of the North. V.P. Larionov, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677000, Russia

    We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.

    sandy soil; heat conductivity; heat capacity; heat resistance; pollution; oil product; unfrozen water; volume concentration; coordination number

    1 Introduction

    The knowledge of thermophysical properties of sandy soils subject to oil pollution and similar contamination is essential in applied geoecology, specifically to predict the temperature regime for containment of contaminated sites and further recovery. Thermophysical properties of soils are determined experimentally. However, the experimental determination of thermophysical properties such as thermal conductivity of, for example, coarse rocks containing large inclusions is more difficult. The only viable solution is to calculate heat conductivity based on the generalized conductivity theory. The heat conductivity of oil-contaminated sandy soils can be determined by analysis of multicomponent dispersion systems calculations (Stepanov and Timofeev, 1994; 2003), with varying degrees of contamination and humidity.

    In this paper we calculate the heat conductivity of river sand contaminated with oil products according to the model of polydispersive systems (Stepanov and Timofeev, 1994), using data of particle size distribution, coordination number (which indicates the number of contacts per particle), porosity, density, volume concentrations of gas-air mixture, oil, water, ice and sand particles. The heat capacity of the contaminated sandy soil was estimated by the formula proposed by Malyshev and Timofeev (2006) utilizing experimental data on the specific heat and density of the components comprising the contaminated soil, such as oil, water, ice, the mixture of air and gas hydrocarbons and the skeleton of the soil. Earlier, we had calculated thethermophysical properties of river sand contaminated with oil in two scenarios of pollution, depending on concentration and order of soil contamination with oil (Malyshev and Timofeev, 2008). In this paper we continue our studies within the framework of the presented calculation models, but now take into account the temperature dependence of the amount of unfrozen water.

    2 The objects of study

    River sand with a bulk density of 1,560 kg/m3was taken as our object of modeling thermophysical properties of contaminated sandy soil. Distilled water with a density of 998.9 kg/m3and diesel fuel of 813 kg/m3was selected as the liquid phase. The sand moisture content was determined by the ratio of the water mass to the mass of dry sand,W=Pw/P. The concentration of oil product in the sand was set with a ratio by analogy with humidity,z=Po/P. The moisture content in the sand was taken as equal to 7.5%, and the concentration of the diesel fuel was 10.5%. To calculate the thermal conductivity of such a multicomponent dispersion system, it was necessary to know the thermophysical properties of the components; some of the data were taken from reference materials (Table 1).

    Table 1 Thermophysical properties of polluted sand components

    The calculation of the thermophysical properties of the contaminated sand was performed by taking into account the phase transition of pore moisture in two different pollution scenarios: in the first case (Figure 1a), an oil product was introduced into wet sand, and in the second case (Figure 1b), dry sand was polluted by the oil product and then moistened with water.

    The location of water and oil in the second pollution scenario can be presented as follows. First, oil was introduced into dry river sand, the sand particles were moistened with it, and then the water was introduced into the polluted sand. The water was mostly adsorbed into areas that were not affected by oil product, that is, into the pores that were free from oil products. In some areas, water with better moisturizing ability could partially occupy space in the pores which was previously occupied by the oil product. It was assumed that the oil product did not completely soak the mineral particles, but only stayed in the vicinity. At temperatures below 0 °C all the water except unfrozen water freezes thus turns into ice. In the second scenario, pollution, despite the fact that the particle is soaked with oil in some places the water is still in contact with mineral particle, so at temperature below 0 °C during ice formation relations and a certain amount of unfrozen water, this fact, as we will see below confirmed by experiment.

    Figure 1 Model location of components in the dispersion medium in both pollution scenarios

    3 Research methods

    To calculate the porosity of sand, upon which the coordination number depends, it was necessary to know the density of the mineral particles. By use of a densimeter, this was found to be 2,750 kg/m3. Porosity, defined by the ratioΠ=1?γ/ρ, amounted to 0.43. We used a method of continuous heat input (Efimov, 1986) to determine the composition of the pore moisture phase. The obtained results are given in table 2 and figure 2.

    Table 2 Temperature dependence of the amount of unfrozen water amount in the sand

    Figure 2 Amount of unfrozen water in the sand

    4 Heat capacity

    The heat capacity of the moistened sand at low temperatures was an effective value, since it was characterized by the heat of the water-ice phase transition. To determine the volumetric heat capacity of the sand polluted in the two scenarios, we used the concept that each component of a dispersion system is additive and contributes to the total heat capacity of that system (Gavriliev, 1970). In our case, the value of the volumetric heat capacity was determined by the expression:

    wherecsc,co,cw, andciare the specific heat capacities of the soil skeleton, oil, water, and ice, respectively (units: J/(kg·K));Lis the heat of the phase transition (units: J/kg); andWufis the amount of unfrozen water (units: kg/kg).Cγis a volumetric heat capacity of polluted soil (units: J/(m3·K));Wis a total moisture of soil (units: kg/kg);zis a weight concentration of impurities (units: kg/kg);Tis an independent variable temperature of soil (units: K);γis a volumetric weight of the skeleton (units: kg/m3).

    The specific heat capacity of the sand included in expression(1)was determined by the method of continuous heat input (Efimov, 1986), and its value was 782 J/(kg·K). The heat of the phase transition was taken as equal to the heat of crystallization of the free water, which was 334,000 J/kg.

    5 The model for calculating the heat conductivity of polluted soil

    In the first stage of the calculation, the multicomponent system containing water, ice, air, oil, and mineral particles was reduced a two-component mixture with different values of the volume concentration. The volumetric concentrations of air and oil werema+mo=1.

    The volumetric concentration of the oil product in the air-oil product system was:

    whereΠ,ρ,ρo,ρw,z, andWare, respectively, porosity, density of particles, oil, water, weight concentration of impurities, and moisture content of the sand.

    The air in this case was considered as a matrix, and the oil product as an inclusion. Therefore, to calculate the effective conductivity of the mixtures with closed inclusions, this formula (Odelevsky, 1951) was applied:

    whereλaois the air-oil product system coefficient of heat conductivity, andλa,λoare the values of the heat conductivity of air and oil, respectively,mais a volume fraction of air (units: dimensionless),vaois a ratio heat conduct of oil product to heat conduct of air (units: dimensionless).

    In the second step, heat conductivity of a rigid particle-water film-ice-adjacent binary mixture (air-oil product) system was calculated according to the known model of a granular system. Figure 3 shows the averaged element of the soil particles with a film of unfrozen water, ice, and the mixture (air-oil product). The averaged element was divided into adiabatic rings, and there were thermal resistances in each section of the element. In the case of frozen sandy soil, the derivation of the expressions for thermal resistances of the averaged element’s sections (taking into account the variable thickness of water cuffs and ice) was taken from Malyshev and Timofeev (2008).

    Figure 3 Averaged element of the soil particles and its equivalent electrical circuit corresponding to thermal resistances of the averaged element’s sections

    In wet dispersed material, calculation of thermal conductivity is done by taking into account the thickness of a water film:

    wherеNkis the coordination number indicating the number of contacts per one particle, this depends on the porosity;ris the radius of the particle (units: m); ?ris the thickness of the layer of water;W0is the moisture content of the soil in a thawed state, in a frozen state it is equal to the amount of unfrozen water.

    In the case of the frozen state, we used the thermal conductivity of iceλi, instead of the thermal conductivity of waterλw; also, the thickness of the water film was set equal to the thickness of the ice, that is, the difference between the thickness of the water film of the melt sample atW0=W?W1moisture and the unfrozen water film thickness of corresponding moisture atW0=Wuf+W1, whereW1is the ice content (units: kg/kg). It was necessary to consider the expansion of water in the process of freezing:

    where ?riis the thickness of the ice layer (units: m);?rmis the thickness of the cuff water (units: m);ρiis a density of the ice (units: kg/m3).

    The heat resistances of the discrete sections were defined by integrals:

    whereR1is the thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines and part of the part water cuff (units: (m·K)/W);λcis a heat conduct of the particle (units: W/(m·K));ymis the dimensionless value equal to ratio of the radius of the water cuff to the radius of the particle (units: dimensionless);υwis the dimensionless value equal to the ratio of the heat conductivity of the water (λw) to heat conductivity of the particle (λc) (units: dimensionless);yis a dimensionless variable of integration coordinate (units: dimensionless).

    whereR2is a thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines, part water cuff and part ice layer (units: (m·K)/W);yiis the dimensionless value is equal to ratio of the radius of the ice layer to the radius of the particle (units: dimensionless);υiis the dimensionless value equal to the ratio of the heat conductivity of the ice (λi) to heat conductivity of the particle(λc) (units: dimensionless).

    whereR3is a thermal resistance of the particles to the horizontal dotted lines in figure 3 (units: (m·K)/W).

    whereR4is a thermal resistance of the mixture of air and oil product (units: (m·K)/W); the value ofAis introduced for the compactness of the expression(10).υaois a ratio heat conduct of oil product to heat conduct of air (units: dimensionless).

    whereR5is the thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines, part water cuff, part ice layer and part mixture air-oil product (units: (m·K)/W).

    whereR6is a thermal resistance adjacent to the particle part of the water cuff (units: (m·K)/W);λwis a heat conduct of the water cuff (units: W/(m·K)).

    whereR7is a thermal resistance adjacent to the water cuff part of the ice layer (units: (m·K)/W);λiis a heat conduct of the ice layer (units: W/(m·K)).

    whereR8is a thermal resistance part of the water cuff, part of the ice layer and part of the mixture air-oil product (units: (m·K)/W).

    whereR9is a thermal resistance part of ice layer and part of the mixture air-oil product (units: (m·K)/W).

    The total resistance of the circuit, and thus the thermal conductivity of the whole system, was found on the basis of the equivalent electric circuit shown in figure 3:

    whereRis a total thermal resistance of the multicomponents dispersion system (units: (m·K)/W).

    The calculation of the heat conductivity in the second pollution scenario took into account the temperature dependence of unfrozen water (Figure 1). In the first stage of the calculation, the heat conductivity of a binary mixture of interlinked components (unfrozen water and air) was determined. The volume fraction of water and air was determined from the ratiosmw′=mw/(mw+ma) andma′=1?mw′, wheremaandmware volume fraction of air and unfrozen water, respectively, defined asma=Π?mw?zγ/ρoandmw=W0γ/ρw. Calculations were made for models with penetrating components of the air and water, and the heat conductivity was equal to (Dulnev and Zarichnak, 1974):

    Cwwas determined by the solution of the cubic equation:

    The dimensionless parameterCwis equal to the ratio of the rod thickness to its length. The rod stands for the unfrozen water. In a frozen condition,Cwis variable and depends on the temperature.

    In the second stage of the calculation, the conductivity of a binary mixture of interlinked components (ice and system air-unfrozen water) was determined. The calculation was similar according to the formula(17).

    whereλiis a heat conductivity of the ice (units: W/(m·K));λawis a heat conductivity of the mixture air-unfrozen water system (units: W/(m·K));mawis a relative volume fraction air-unfrozen water system (units: dimensionless);miis a volume fraction ice;mi′is a relative volume fraction ice;υawiis a ratio heat conductivity of the mixture air-unfrozen water system to heat conductivity of ice (units: dimensionless);Wis a total moisture content of the soil (units: kg/kg);Wufis the amount of unfrozen water (units: kg/kg);γis a volumetric weight of the sceleton (units: kg/m3);ρiis a density of ice.

    In the third stage, the heat conductivity of the binary mixturesλawiand heat conductivityλowas calculated according to formula(3).

    whereλois a heat conductivity of the oil product (units: W/(m·K));λawiis a heat conductivity of the mixture air-unfrozen water-ice system (units: W/(m·K));mawiis a relative volume fraction air-unfrozen water-ice system (units: dimensionless);υawiois a ratio heat conductivity of the mixture air-unfrozen water-ice system to heat conductivity of oil product (units: dimensionless).

    Finally, in the fourth and final stage, the calculation was made according to formula(3)and a air-unfrozen water-ice-oil product system with a heat conductivity ofλawiowas considered as a matrix, and an particle with a heat conductivity ofλcwas an inclusion.

    whereλcis a heat conductivity of the particle (units: W/(m·K));λawiois a heat conductivity of the mixture air-unfrozen water-ice-oil product system (units: W/(m·K));mawiois a volume fraction air-unfrozen water-ice-oil product system equal a porosity (units: dimensionless);υawiocis a ratio heat conductivity of the mixture air-unfrozen water-ice-oil product system to heat conductivity of particle (units: dimensionless).

    The results of the temperature dependence calculation of the contaminated sand thermal properties are given in table 3.

    Table 3 Temperature dependence of thermal properties sand in both pollution scenarios

    6 Conclusion

    The calculation of heat conductivity in the first scenario of diesel pollution showed that this characteristic was increased by 5% in the frozen state and by 9% in the thawed state, compared to the uncontaminated sand. In contrast, in the second pollution scenario the heat conductivity was decreased by 11% in the frozen state and by 17% in the thawed state compared to uncontaminated sand. Thus, the overall impact of pollution on volumetric heat capacity of sandy soil appeared to increase this characteristic, and this increase was apparently proportional to the increase of pollution. At pollution concentration of about 10% and humidity of 7.7% the increase in volumetric heat capacity amounted to 18%. However, the increase of volumetric heat capacity was not dependent on the pollution scenario (the different methods by which pollution was introduced). This indicates that the most significant impact of oil pollution on the thermophysical properties of sandy soil was to change the heat conductivity and volumetric heat capacity of the sandy soil. By determining these characteristics of the temperature dependencies, we can predict the temperature field of contaminated sandy soil with various structures and densities.

    Dulnev GN, Zarichnak P, 1974. Heat Conductivity of Mixtures and Composite Materials. Energiya, Leningrad, pp. 263.

    Efimov SS, 1986. Moisture Absorbent Materials. Nauka, Novosibirsk, pp. 160.

    Gavriliev RI, 1970. Determination of the effective heat capacity temperature dependence of freezing-thawing soils and the unfrozen water content in one experiment. In: Methods of Rocks Thermal Properties Determination. Nauka, Moscow, pp. 16-24.

    Malyshev AV, Timofeev AM, 2006. Calculation of heat conductivity of damp sand contaminated by oil products in frozen and thawed state. In: Proceedings of the III EURASTRENCOLD Symposium on Problems of Materials Strength and Machines for Regions of Cold Climate. Part V. Heat and Mass Transfer, Thermomechanic Dispersive IPTPN SB RAS 2006, Yakutsk (CD-ROM), State registration No. 0320601278, pp. 55-62.

    Malyshev AV, Timofeev AM, 2008. Calculation of the temperature dependence of heat conductivity of wet sandy ground contaminated with oil products, pore moisture in the phase transition. In: Proceedings of the IV EURASTRENCOLD Symposium on Problems of Materials Strength and Machines for Regions of Cold Climate. Part IV. Heat and Mass Transfer, Thermomechanic Dispersive IPTPN SB RAS 2008, Yakutsk (CD-ROM), State registration No. 0320900128, pp. 144-149.

    Odelevsky VI, 1951. Calculation of the generalized conductivity of heterogeneous systems. Journal of Technical Physics, 21(1): 667-685.

    Stepanov AV, Timofeev AM, 1994. Thermophysical Properties of Dispersed Materials. YSC SB RAS, Yakutsk, Russia, pp. 123.

    Stepanov AV, Timofeev AM, 2003. Determination of thermophysical properties wet dispersed materials in the temperatures of phase transitions of water. Izvestiya Vuzov. J. Instrumentation, 46(1): 60-65.

    : Malyshev AV, Timofeev AM, 2014. Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution. Sciences in Cold and Arid Regions, 6(4): 0302-0308.

    10.3724/SP.J.1226.2014.00302.

    Received: April 25, 2014 Accepted: May 12, 2014

    *Correspondence to: Aleksey V. Malyshev, Institute of Physical-Technical Problems of the North. V.P. Larionov, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677000, Russia. E-mail: a.v.malyshev@iptpn.ysn.ru

    亚洲成人久久性| 在线观看免费视频日本深夜| 免费看a级黄色片| 国产精品一及| 日日干狠狠操夜夜爽| 简卡轻食公司| 观看免费一级毛片| 色哟哟哟哟哟哟| 久久久久久久久大av| 国产黄色小视频在线观看| 国产精品嫩草影院av在线观看| 内地一区二区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片免费观看直播| 最近视频中文字幕2019在线8| 免费观看的影片在线观看| 久久精品国产亚洲av天美| 欧美人与善性xxx| 亚洲av中文av极速乱| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人手机在线| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 人人妻,人人澡人人爽秒播| 国产亚洲91精品色在线| 成人av在线播放网站| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 国产高清视频在线观看网站| 一进一出抽搐动态| 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 99热6这里只有精品| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 天天躁日日操中文字幕| 久久久久久久久久久丰满| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 欧美zozozo另类| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 听说在线观看完整版免费高清| 久99久视频精品免费| 欧美最黄视频在线播放免费| 国产三级中文精品| 美女xxoo啪啪120秒动态图| 中文字幕精品亚洲无线码一区| 亚洲丝袜综合中文字幕| av天堂在线播放| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色| av在线亚洲专区| av在线观看视频网站免费| 色综合站精品国产| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 深夜a级毛片| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 欧美日本视频| 欧美日韩在线观看h| 俄罗斯特黄特色一大片| 中文字幕免费在线视频6| 亚洲最大成人中文| 欧美bdsm另类| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 成年版毛片免费区| 99热网站在线观看| 99在线视频只有这里精品首页| 久久精品夜色国产| 不卡视频在线观看欧美| 色综合亚洲欧美另类图片| videossex国产| 日本在线视频免费播放| 黄色配什么色好看| 日韩制服骚丝袜av| 精品欧美国产一区二区三| 99精品在免费线老司机午夜| 免费看a级黄色片| 免费大片18禁| 在线播放国产精品三级| 身体一侧抽搐| 听说在线观看完整版免费高清| 亚洲一区高清亚洲精品| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 天堂网av新在线| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 51国产日韩欧美| 日韩欧美在线乱码| 色噜噜av男人的天堂激情| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 国产精品亚洲一级av第二区| 久久久久久国产a免费观看| 99热全是精品| 免费av不卡在线播放| 一区福利在线观看| 日韩强制内射视频| 欧美激情在线99| 一区二区三区免费毛片| 亚洲国产欧美人成| 亚洲国产精品成人综合色| 国产日本99.免费观看| 啦啦啦啦在线视频资源| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| 乱系列少妇在线播放| 日本一本二区三区精品| 99视频精品全部免费 在线| 国产一区二区在线观看日韩| 免费看美女性在线毛片视频| 乱系列少妇在线播放| 精品人妻一区二区三区麻豆 | 联通29元200g的流量卡| 女同久久另类99精品国产91| 精品国产三级普通话版| 日韩av在线大香蕉| 亚洲成a人片在线一区二区| 欧美高清成人免费视频www| 身体一侧抽搐| 色综合亚洲欧美另类图片| 毛片一级片免费看久久久久| 精品免费久久久久久久清纯| 女人十人毛片免费观看3o分钟| 韩国av在线不卡| 国产精品一二三区在线看| 天堂网av新在线| 人人妻人人澡人人爽人人夜夜 | 国产极品精品免费视频能看的| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 亚洲av.av天堂| 狠狠狠狠99中文字幕| 亚洲成人久久爱视频| 国产精品久久久久久久久免| 亚洲丝袜综合中文字幕| 亚洲人成网站在线观看播放| 日韩av在线大香蕉| 亚洲一区高清亚洲精品| av在线亚洲专区| 日韩欧美 国产精品| eeuss影院久久| 超碰av人人做人人爽久久| 在线看三级毛片| 午夜免费男女啪啪视频观看 | а√天堂www在线а√下载| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 九九在线视频观看精品| 日韩精品有码人妻一区| 亚洲av熟女| 国产69精品久久久久777片| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站 | 成年女人毛片免费观看观看9| 99精品在免费线老司机午夜| 欧美区成人在线视频| 日本色播在线视频| 国产精品爽爽va在线观看网站| 午夜免费激情av| 色尼玛亚洲综合影院| 国产伦在线观看视频一区| 不卡一级毛片| 日本 av在线| 亚洲av第一区精品v没综合| 午夜激情欧美在线| 亚洲欧美日韩高清在线视频| 亚洲精华国产精华液的使用体验 | 看免费成人av毛片| 91久久精品电影网| 久久99热这里只有精品18| 99九九线精品视频在线观看视频| 高清毛片免费观看视频网站| 性欧美人与动物交配| 亚洲无线观看免费| 亚洲精品一区av在线观看| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 成人美女网站在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 村上凉子中文字幕在线| 综合色av麻豆| 国产精品人妻久久久久久| 夜夜看夜夜爽夜夜摸| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 久久精品夜色国产| 免费一级毛片在线播放高清视频| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 免费不卡的大黄色大毛片视频在线观看 | 可以在线观看毛片的网站| 熟女电影av网| 长腿黑丝高跟| 男插女下体视频免费在线播放| 精品久久久久久成人av| 男女那种视频在线观看| 免费av观看视频| 一区二区三区高清视频在线| 床上黄色一级片| 能在线免费观看的黄片| 啦啦啦韩国在线观看视频| 22中文网久久字幕| 亚洲av免费在线观看| 春色校园在线视频观看| 99在线视频只有这里精品首页| 99久久中文字幕三级久久日本| 国产成人福利小说| 禁无遮挡网站| 韩国av在线不卡| av视频在线观看入口| 欧美另类亚洲清纯唯美| 99久久九九国产精品国产免费| 亚洲成人中文字幕在线播放| 一级毛片电影观看 | 91精品国产九色| 中国美白少妇内射xxxbb| 男女啪啪激烈高潮av片| 国产国拍精品亚洲av在线观看| 嫩草影院入口| 亚洲不卡免费看| 欧美激情久久久久久爽电影| 日产精品乱码卡一卡2卡三| 国产精品日韩av在线免费观看| 春色校园在线视频观看| 国产av一区在线观看免费| 波野结衣二区三区在线| 免费电影在线观看免费观看| 国产片特级美女逼逼视频| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美人成| 麻豆国产av国片精品| 久久久精品大字幕| 日本黄色视频三级网站网址| 一进一出好大好爽视频| 成人午夜高清在线视频| 欧美中文日本在线观看视频| 久久久欧美国产精品| 亚洲电影在线观看av| 国产高潮美女av| 欧美日韩精品成人综合77777| 久久精品国产清高在天天线| 久久久久久大精品| 欧美激情久久久久久爽电影| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| 久久久久久国产a免费观看| 人妻少妇偷人精品九色| 国产在线男女| 午夜福利高清视频| 亚洲熟妇熟女久久| 美女 人体艺术 gogo| 国产av麻豆久久久久久久| 全区人妻精品视频| 99热只有精品国产| 在现免费观看毛片| 最近最新中文字幕大全电影3| 日韩精品中文字幕看吧| 欧美日韩精品成人综合77777| 一区二区三区免费毛片| 成人一区二区视频在线观看| 国产精品无大码| 夜夜爽天天搞| 精品久久久噜噜| 日本与韩国留学比较| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女搞黄在线观看 | 日韩av在线大香蕉| 国产91av在线免费观看| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 此物有八面人人有两片| 噜噜噜噜噜久久久久久91| 乱系列少妇在线播放| 啦啦啦韩国在线观看视频| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| 熟女电影av网| 有码 亚洲区| 欧美国产日韩亚洲一区| 亚洲成人精品中文字幕电影| 一级毛片我不卡| 美女被艹到高潮喷水动态| 国产 一区精品| 校园人妻丝袜中文字幕| 欧美性猛交╳xxx乱大交人| 综合色丁香网| 亚洲人成网站在线播| 欧美区成人在线视频| 久久中文看片网| 国产片特级美女逼逼视频| 成人精品一区二区免费| 国产午夜精品久久久久久一区二区三区 | 一进一出好大好爽视频| av女优亚洲男人天堂| 色5月婷婷丁香| 国产精品免费一区二区三区在线| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 美女大奶头视频| 综合色av麻豆| 国产精品三级大全| 啦啦啦啦在线视频资源| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久成人| 久久这里只有精品中国| 99久久精品国产国产毛片| 亚洲丝袜综合中文字幕| 欧美日本亚洲视频在线播放| 18禁在线无遮挡免费观看视频 | 日本五十路高清| 欧美激情在线99| 99热精品在线国产| 少妇丰满av| 久久久色成人| av在线亚洲专区| www日本黄色视频网| 给我免费播放毛片高清在线观看| 中文字幕av在线有码专区| 国产精品久久久久久精品电影| 日本爱情动作片www.在线观看 | 国产高潮美女av| 十八禁网站免费在线| 最近视频中文字幕2019在线8| 俄罗斯特黄特色一大片| 国产免费男女视频| 国产精品久久久久久久电影| 高清日韩中文字幕在线| 美女内射精品一级片tv| 日韩 亚洲 欧美在线| 成人精品一区二区免费| 3wmmmm亚洲av在线观看| 午夜免费激情av| 国产在线男女| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 老熟妇仑乱视频hdxx| 嫩草影院新地址| 国产色婷婷99| 深夜a级毛片| 日本欧美国产在线视频| 欧美日韩国产亚洲二区| 91麻豆精品激情在线观看国产| 国产精品一二三区在线看| 国产精品一区二区性色av| 99久国产av精品国产电影| 全区人妻精品视频| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 久久精品夜色国产| 欧美又色又爽又黄视频| 99热全是精品| 精品人妻视频免费看| 女人被狂操c到高潮| 亚洲真实伦在线观看| 国产视频内射| 18禁黄网站禁片免费观看直播| 99久国产av精品| 搡老岳熟女国产| 欧美成人精品欧美一级黄| 91av网一区二区| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 午夜精品国产一区二区电影 | 国产午夜精品久久久久久一区二区三区 | 好男人在线观看高清免费视频| 国产伦在线观看视频一区| www.色视频.com| 51国产日韩欧美| 不卡视频在线观看欧美| 久久久久久久久大av| 久久久久国内视频| 亚洲人成网站在线观看播放| 日本 av在线| 精品一区二区三区视频在线| 免费av观看视频| 亚洲精品日韩av片在线观看| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 深夜a级毛片| 男插女下体视频免费在线播放| 老司机福利观看| 国产精品1区2区在线观看.| 国产国拍精品亚洲av在线观看| 成年免费大片在线观看| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 国产极品精品免费视频能看的| 亚洲av一区综合| 国产高清三级在线| 精华霜和精华液先用哪个| 久久久国产成人免费| 婷婷精品国产亚洲av| 最近视频中文字幕2019在线8| 丝袜喷水一区| 在线观看一区二区三区| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 国产乱人偷精品视频| 人人妻,人人澡人人爽秒播| 天天躁日日操中文字幕| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 18禁在线无遮挡免费观看视频 | 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 在线观看一区二区三区| 99久国产av精品| 成人毛片a级毛片在线播放| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 国产亚洲91精品色在线| 日本黄色片子视频| 精品一区二区三区视频在线观看免费| 99九九线精品视频在线观看视频| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕 | 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| .国产精品久久| 国内精品宾馆在线| aaaaa片日本免费| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看| 国产亚洲精品久久久com| 国产成人a区在线观看| 欧美bdsm另类| 最近2019中文字幕mv第一页| 国产视频一区二区在线看| 亚洲av一区综合| 亚洲中文日韩欧美视频| 欧美精品国产亚洲| 欧美中文日本在线观看视频| 日本免费一区二区三区高清不卡| videossex国产| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 免费观看在线日韩| 免费观看人在逋| 如何舔出高潮| 99久久久亚洲精品蜜臀av| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久 | 日本成人三级电影网站| 俄罗斯特黄特色一大片| 国产色婷婷99| 美女免费视频网站| 好男人在线观看高清免费视频| 国产老妇女一区| 91久久精品国产一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区高清视频在线| 国产精品久久视频播放| 欧美日韩国产亚洲二区| 色综合站精品国产| 成年女人毛片免费观看观看9| 午夜福利在线观看免费完整高清在 | 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 久久久久国产网址| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 欧美一区二区亚洲| 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 国产中年淑女户外野战色| 色哟哟哟哟哟哟| 亚洲婷婷狠狠爱综合网| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线 | 最好的美女福利视频网| 午夜福利在线观看吧| 亚洲性久久影院| 国国产精品蜜臀av免费| 久久人妻av系列| 草草在线视频免费看| 最近2019中文字幕mv第一页| 黄色日韩在线| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 日本一本二区三区精品| 亚洲av美国av| 观看免费一级毛片| 国产精品久久久久久精品电影| 欧美国产日韩亚洲一区| av在线观看视频网站免费| 成人av在线播放网站| 成人亚洲欧美一区二区av| 亚洲精品影视一区二区三区av| 国内精品一区二区在线观看| 噜噜噜噜噜久久久久久91| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 久久久久精品国产欧美久久久| 国产真实伦视频高清在线观看| 午夜爱爱视频在线播放| 欧美三级亚洲精品| 一区二区三区四区激情视频 | 欧美高清性xxxxhd video| 久久精品人妻少妇| 一本一本综合久久| 欧美日韩综合久久久久久| 听说在线观看完整版免费高清| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件 | 在线观看66精品国产| 97热精品久久久久久| 精品熟女少妇av免费看| 亚洲四区av| 中文字幕av成人在线电影| 99热这里只有是精品在线观看| 日本五十路高清| 乱系列少妇在线播放| 一级黄色大片毛片| 国产一区二区在线av高清观看| 精品99又大又爽又粗少妇毛片| 大型黄色视频在线免费观看| 一本一本综合久久| 精品一区二区三区人妻视频| 日本免费a在线| 欧美日本视频| 久久久久久久午夜电影| 中文字幕av在线有码专区| 黄色视频,在线免费观看| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 色综合色国产| 一级毛片我不卡| 婷婷精品国产亚洲av| 日韩高清综合在线| 欧美日韩综合久久久久久| 一边摸一边抽搐一进一小说| 亚洲成人av在线免费| 一级黄色大片毛片| 99久久精品热视频| 午夜精品国产一区二区电影 | 日韩高清综合在线| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 日本一本二区三区精品| 日日撸夜夜添| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 可以在线观看的亚洲视频| 在线观看免费视频日本深夜| 一个人观看的视频www高清免费观看| 国产伦在线观看视频一区| 久久久精品94久久精品| 中文字幕久久专区| 国产高清视频在线观看网站| av黄色大香蕉| 99热网站在线观看| 国产综合懂色| 99热网站在线观看| 久久人妻av系列| 亚洲精品色激情综合| 精品国内亚洲2022精品成人| 亚洲无线在线观看| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 亚洲精华国产精华液的使用体验 | 99久久久亚洲精品蜜臀av| 毛片女人毛片| 国产高清视频在线播放一区| 久久精品夜色国产| 美女免费视频网站| 久久久久久久久久久丰满| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 欧美性猛交黑人性爽| 国内精品一区二区在线观看| videossex国产| 国产免费一级a男人的天堂| 午夜激情福利司机影院| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 精品国产三级普通话版| 中文在线观看免费www的网站| 日韩三级伦理在线观看| 少妇的逼水好多|