• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent changes in ground surface thermal regimes in the context of air temperature warming over the Heihe River Basin, China

    2014-03-30 12:07:50QingFengWangTingJunZhangXiaoQingPengBinCao
    Sciences in Cold and Arid Regions 2014年4期

    QingFeng Wang, TingJun Zhang, XiaoQing Peng, Bin Cao

    1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    2. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China

    3. National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, 80309, USA

    Recent changes in ground surface thermal regimes in the context of air temperature warming over the Heihe River Basin, China

    QingFeng Wang1*, TingJun Zhang2,3, XiaoQing Peng2, Bin Cao2

    1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    2. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China

    3. National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, 80309, USA

    Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature (MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature (MAGST) and maximum annual ground surface temperature (MaxAGST) for 1972-2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature (MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index (RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of ?42.5 °C-day/decade, 85.4 °C-day/decade and ?0.018/decade, respectively.

    air temperature; ground surface temperature; freezing index; thawing index; tendency rate; Heihe River Basin

    1 Introduction

    Global warming is a non-controversial scientific fact (Qinet al., 2007). The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) points out that, the earth surface temperature has warmed by 0.74 °C in the last four decades (Solomonet al., 2007). Global surface temperature has generally warmed for the entire instrumental record, and the most significant and strongest warming occurred in the most recent 40 years (Cohenet al., 2012). Moreover, changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity (Frauenfeldet al., 2007), and global thermal, water and carbon budgets (Jinet al., 2009) as well as climate change. Numerous studies on climate warming in the Heihe River Basin, the Qilian Mountains region, andthe Hexi Corridor were published in the past decade. They mainly focused on the spatiotemporal distribution characteristics, especially the regional difference, and the catastrophe of climate change (e.g., Gong and Li, 2001; Lanet al., 2004; Jiaet al., 2008a,b), as well as the impacts of climate change on surface runoff (e.g., Dinget al., 2000; Lanet al., 2001; Wang and Li, 2005; Zhang, 2009). But the ground surface thermal regimes in the context of air temperature warming are still poorly understood over the Heihe River Basin.

    There are two main indices that could directly react to changes in ground surface thermal regimes, including ground surface temperature and freezing/thawing index. Soil temperature, especially ground surface temperature, is a sensitive climate indicator, which integrates meteorological elements and all processes occurring at/above the ground surface. Ground surface temperature is of great importance for monitoring of the surface-to-air energy budget by affecting sensible and latent heat fl uxes (Okuet al., 2006; Wuet al., 2013). In addition, it could influence the physical and biogeochemistry processes occurring in the soil. Generally speaking, the freezing/thawing index is defined as the cumulative number of degree days for air or surface temperatures which are below/above 0 °C (Associate Committee on Geotechnical Research, 1988; van Everdingen, 2005). Therefore, it is a measure of the duration and temperature in cold/warm season during a year (Johnson and Hartman, 1971). It can be used to predict and map permafrost and seasonally frozen ground distribution (Nelson and Outcalt, 1987), estimate active layer thickness (ALT) (Nelsonet al., 1997; Shiklomanov and Nelson, 1999, 2002; Zhanget al., 2005), depth of ground frost penetration (Zhanget al., 2001), provide information for engineering designs in cold regions (US Army/Air Force 1966; Lunardini, 1981; Steurer, 1996; Steurer and Crandell, 1995), as well as a possible useful indicator of climate change (Frauenfeldet al., 2007; Wuet al., 2011b). These indices can also be used to estimate the maximum thickness of sea, river, and lake ice (Johnson and Hartman, 1971).

    The main purpose of this study is to investigate the observed trends of air temperature warming and ground surface thermal regimes response to air temperature warming in recent years over the Heihe River Basin in Northwest China.

    2 Study area

    The Heihe River Basin is located in the central part of the Eurasian continent, far from the oceans and surrounded by high mountains. It is the second largest inland river basin in Northwest China, located in the central part of Hexi Corridor and roughy between 98°00'E-101°30'E, 38°N-42°N (Gao and Li, 1991). The basin originates in the watershed between the Zoulangnanshan and Tuolainanshan Mts. in Qilian Mts.. Geographically, the basin is divided into three parts from south to north, the upper reaches (from Yingluoxia valley upstream), the middle reaches (between Yingluoxia and Zhengyixia valleys), and the lower reaches (from Zhengyixia valley downstream) (Cheng, 2009) (Figure 1).

    The upper reaches, with elevation ranging from 2,000 m a. s. l. to 5,500 m a. s. l., belong to the cold semi-arid mountain zone dominated by shrubs and trees. The vegetation displays obviously altitudinal zonation from bottom upwards,i.e., desert steppe, alpine steppe, alpine frost-steppe, alpine shrub-meadow, alpine meadow, and alpine cushion vegetation zones. Mean annual air temperature (MAAT) in the area is lower than 2 °C, and mean annual precipitation (MAP) increases from about 250 mm in the low-mountain or hill zone to about 500 mm in the high-mountain zone (Chen and Qu, 1992). It is calculated that average decreasing rate of MAAT and increasing rate of annual precipitation with elevation from Yingluoxia valley to Yeniugou is 0.80 °C/(100m) and 15 mm/(100m), respectively (Chenget al., 2010). The middle reaches belong to the temperate zone controlled by crops like wheat and corn, with MAAT less than 6-8 °C. With the elevation in the middle reaches decreases from <2,000 m a. s. l. to 1,000 m a. s. l., the MAP decreases from 250 mm to <100 mm from south to north (Liet al., 2001). Mainly occupied by gobi with mean elevation of about 1,000 m a. s. l., the lower reaches pertain to the downstream warm temperate zone, with MAAT of 8-10 °C and MAP of <50 mm (Qi and Luo, 2005; Liet al., 2012).

    3 Data source and method

    In this study, we collected daily surface temperatures (including mean, maximum and minimum) and monthly air temperatures at 18 meteorological stations from the China Meteorological Administration (CMA) located over the Heihe River Basin and its adjacent area. There are 12 meteorological stations located over the Heihe River Basin (including Qilian, Yeniugou, Tuole, Shandan, Zhangye, Gaotai, Jiuquan, Jinta, Dingxin, Wutonggou, Jihede, and Ejinaqi) and 6 meteorological stations are located in the adjacent area of the basin (including Yongchang, Menyuan, Gangcha, Yumen, Mazongshan, and Guaizihu) (Figure 1).

    Mean annual ground surface temperature (MAGST) is the mean daily ground surface temperatures in a year. Maximum annual ground surface temperature (MaxAGST) and minimum annual ground surface temperature (MinAGST) are the maximum and minimum daily ground surface temperature in a year, respectively.

    Figure 1 The distribution map of the meteorological stations from CMA over the Heihe River Basin and its adjacent area. The black line is the river system of Heihe River

    Generally, when performing the calculation based on daily data we compute the annual freezing/thawing index as the sum of surface temperature for all days with below/above 0 °C during the freezing/thawing period. Moreover, the freezing index is computed over a period from Jul. 1 through to Jun. 30 of the following calendar year, while the thawing index is calculated from Jan. 1 through Dec. 31 of the same calendar year (Zhanget al., 1997; Frauenfeldet al., 2007; Wuet al., 2011b). The freezing/thawing index (FI/TI) is calculated by the following formulae:

    whereFIandTIare the surface freezing and thawing index, respectively;Tiis daily surface temperature;MFandMTrepresent to the ending date of freezing and thawing period, respectively.

    MAGST and surface freezing/thawing index time series at meteorological stations all contained continuous observation data over the 1972/1959-2006/2005 period except Yeniugou, Ejinaqi, Wutonggou, Jinta and Jihede. For data comparability in 1960/1959 -2006/2005, we recovered the missing data at these 5 stations through the linear regression method based on nearby station data at significant level of at leastp≤0.05. The missing data of air temperature at Wutonggou and Jihede was also recovered in a similar way.

    4 Results

    4.1 Air temperature warming

    The linear tendency rate for spring, summer, autumn and winter air temperatures as well as MAAT estimated by the linear least squares regression method at meteorological stations in 1960-2008 over the Heihe River Basin is presented in table 1. The tendency rate for summer air temperature at Shandan station is not significant at significant level ofp≤0.05. Significant increases in summer air temperature are observed at 11 other meteorological stations, with the linear tendency rate ranging from 0.18 °C/decade to 0.41 °C/decade. Winter air temperature in 1960-2008 is significantly increased except at Wutonggou and Dingxin, with the linear tendency rate of 0.44-0.85 °C/decade. Spring and autumn air temperatures as well as MAAT in 1960-2008 at the 12 meteorological stations reveal significant trends of 0.19-0.45 °C/decade, 0.20-0.55 °C/decade, and 0.26-0.52 °C/decade, respectively.

    Table 1 The linear tendency rate for spring, summer, autumn and winter air temperatures as well as MAAT (°C/decade) estimated by the linear least squares regression method at the 12 meteorological stations in 1960-2008 over the Heihe River Basin

    Based on monthly air temperature data of the 12 meteorological stations of CMA from 1960 through 2008, all the meteorological stations are composited in order to structure an integrated long-term time series over the Heihe River Basin. Estimating spring, summer, autumn and winter air temperatures from 1960 through 2008 reveals a statistically significant trend of 0.31 °C /decade, 0.28 °C/decade, 0.37 °C/decade and 0.50 °C /decade, and a net change of 1.5 °C, 1.4 °C, 1.8 °C, and 2.5 °C over the 49-year period, respectively (Figure 2). The linear tendency rate for winter air temperature is obviously bigger than others. The coefficients of determinationR2of the fitting trend line are 0.25, 0.30, 0.37 and 0.33, respectively, at significant level ofp<0.001. In a similar way, MAAT for 1960-2008 reveals a statistically significant trend of 0.37 °C /decade (R2=0.57,p<0.001) and a net change of 1.8 °C over the 49-year period (Figure 3).

    The aforementioned conclusion is consistent with the following studies in Northwest China and on the Qinghai-Tibet Plateau (QTP). For example, the linear tendency rate of MAAT was from ?0.34 to 0.88 °C /decade in 1951-2006 in Northwest China, and the mean value was 0.3 °C/decade (Zhai, 2008). Analyzing data at 72 meteorological stations on the QTP, Weiet al., (2003) thought that air temperature on the QTP was becoming warmer. The tendency rate of air temperature for most meteorological stations was between 0.2-0.3 °C/decade in winter and spring, and it was between 0.1-0.2 °C/decade from June through September. MAAT revealed a statistically significant trend of 0.28 °C/decade for 1961-2004 in Qinghai Province (Wanget al., 2007). The tendency rate for MAAT was 0.32 °C/decade for 1959-2008 in Northwest China (Zhaoet al., 2011).

    4.2 Ground surface temperature trend

    The MAGSTs for 1972-2006 at the 12 meteorological stations reveal significant trends of 0.44-0.90 °C/decade (shown in table 2). The tendency rate for MaxAGST at Qilian, Tuole, Wutonggou and Jihede is not significant at significant level ofp≤0.05. The MaxAGSTs for 1972-2006 at 8 other meteorological stations reveal significant trends of 0.59-2.05 °C/decade (Table 2). The averaged MAGST time series in the period between 1972 and 2006 indicates a statistically significant trend of 0.58 °C/decade (Figure 4). Estimating MaxAGSTs from 1972 through 2006 reveals a statistically significant trend of 1.27 °C/decade, and a net change of 5.2 °C over the 41-year period. The averaged MinAGST time series in the same period remains unchanged as a whole (Figure 5).

    Figure 2 Averaged time series of seasonal air temperature in 1960-2008 over the Heihe River Basin. Grey and dotted lines in bold present three years moving lines and the linear least squares regression lines, respectively (same in figures 3, 4, 5, 6)

    Figure 3 Averaged time series of MAAT in 1960-2008 over the Heihe River Basin

    Figure 4 Averaged time series of MAGST for 1972-2006 over the Heihe River Basin

    Figure 5 Averaged time series of (a) MaxAGST and (b) MinAGST for 1972-2006 over the Heihe River Basin

    4.3 Freezing/thawing index trend

    The surface freezing index time series in 1959-2005 show significant decreasing trends except at Wutonggou, Gaotai and Jihede, with the linear tendency rate ranging from -74.9 °C/decade to -20.6 °C/decade. The surface thawing index in 1960-2006 show significant increasing trends of 33.6-172.7 °C/decade except at Tuole. Significant trends in the ratio of freezing index to thawing index (RFT) are observed at 9 other meteorological stations except at Qilian, Wutonggou and Gaotai, with the linear tendency rate ranging from -0.05/decade to 0.00/decade (Table 2).

    In a similar way, the composite time series of freezing/thawing index and the RFT in 1959-2006 are structured. Estimating surface freezing/thawing index reveals a statistically significant trend of ?42.5 °C-day /decade and 85.4 °C-day/decade in 1959-2006, respectively. The RFT in 1960-2005 over the basin exhibits a statistically significant trend of ?0.018 per decade and a net change of ?0.083 over the 46-year period (Figure 6). And it is determined by the decreasing freezing index and the increasing thawing index trends.

    Similar results have been determined by other studies. Based on the analysis of ERA-40, CRU TS2.1 and CAI 1.02 datasets, Frauenfeldet al., (2007) reveals a similar trend for air freezing/thawing index in 1958-2002 in the seasonally frozen ground regions between 20°N and 50°N on the Northern Hemisphere. The air freezing/thawing index at 7 meteorological stations along the Qinghai-Tibet Railway has decreased by 16.7-59.1 °C-day/decade and increased by 19.8-45.6 °C-day/decade in 1966-2004, respectively (Jianget al., 2007). The surface freezing/thawing index is also undergoing a negative/positive trend in 1961-2001 on the QTP, albeit of different magnitude (Wuet al., 2008). The surface freezing index displays decreasing trends (-120 to -20 °C-day/decade) at 6 meteorological stations over the period 1987-2005 in Mongolia, while exhibiting increasing trends (10 to 390 °C-day/decade) at 14 other stations. However, the surface thawing index allshows a statistically significant increase with a rate of 16-37 °C-day/decade at a significance level of 0.05 except at Baruunturuu station (Wuet al., 2011b). The freezing/thawing index at 16 meteorological stations, which are located in or adjacent to permafrost regions on the central QTP, has decreased by 111.2 °C-day /decade and increased 125.0 °C-day/decade in 1980-2007, respectively (Wuet al., 2013).

    Table 2 The linear tendency rate for MAGST (°C/decade), MaxAGST (°C/decade), surface freezing/thawing index (°C-day/decade) and the RFT (/decade) estimated by the linear least squares regression method at the 12 meteorological stations in 1972/1959-2006/2005 over the Heihe River Basin

    Figure 6 Averaged time series of (a) surface freezing index, (b) thawing index and (c) the RFT in 1959-2006 over the Heihe River Basin

    5 Discussion

    The land surface and atmosphere could adjust the ground surface thermal regimes and air temperature changes to make their changing tendency accordant, through various thermodynamic processes of the land-atmosphere interaction, such as, radiative flux transfer, and sensible heat flux exchange.

    The MAGST, MaxAGST and RFT time series are significantly correlated with MAAT atR=0.96,R=0.61 andR=?0.80 at significant level ofp<0.01, indicating that a variance of 92% in MAGST, 37% in MaxAGST and 64% in RFT can be accounted for by changes in MAAT, respectively. Freezing index time series is correlated with winter air temperature atR=?0.82 (p<0.01), indicating that 67% of freezing index variability can be accounted for by winter air temperature. The correlation between thawing index and summer air temperature is statistically significant and strongR=0.85 (p<0.01), indicating that 72% of thawing index variability can be accounted for by summer air temperature.

    Undoubtedly, the increase in MAGST and the decline in freezing index will greatly weaken maximum seasonal freeze depth. It is calculated that maximum seasonal freeze depth in 1960-2007 exhibits a statistically significant trend of ?4.0 cm/decade and a net change of ?19.2 cm in the 48-year period over the Heihe River Basin (Wang, 2013).

    The increase in thawing index implies a profound influence on the southern/lower limit of permafrost, ALT, expansion of taliks, as well as permafrost temperature and depth. Since the 1980s, the lower limit of permafrost has risen about 50-80 m in the source area of the Yellow River on the QTP (Jinet al., 2009). ALT and ground temperatures at the bottom of the ALT for the 3 observation fields (China01, China02 and China04) have increased by 4 cm/a and 0.06 °C/a from 1999 through 2007/08 along the Qinghai-Tibet Highway (Zhaoet al., 2010). The increase in ALT has been observed at a rate of about 6.3 cm/a from 2006 through 2010 along the Qinghai-Tibet Railway. The mean rising rate of permafrost temperature at the depth of 6.0 m and the mean annual ground temperature (MAGT) at depth of zero amplitude is about 0.02 °C/a and 0.012 °C/a, respectively (Wuet al., 2011a).

    It is estimated that the total area of permafrost region occupies approximately 11% of the Heihe River Basin (Zhanget al., 2012). Both the significant decline in freezing index and increase in thawing index might be expected to accelerate the permafrost degradation in the upper reaches of the Heihe River Basin. The extensive permafrost degradation will exert profound influence on the surface energy and water exchanges, carbon budgets, ecosystem dynamics, hydrological processes, and engineering infrastructures (Cheng and Zhao, 2000; Nelsonet al., 2001; Zhanget al., 2005; Cheng and Wu, 2007; Jinet al., 2009; Zhaoet al., 2010; Wuet al., 2013).

    6 Conclusions

    Significant increases in summer and winter air temperatures are observed at meteorological stations over the Heihe River Basin, with the linear tendency rate of 0.18-0.41 °C/decade except at Shandan and 0.44-0.85 °C/decade except at Wutonggou as well as Dingxin, respectively. Spring and autumn air temperatures as well as MAAT in 1960-2008 at the 12 stations reveal significant trends of 0.19-0.45 °C/decade, 0.20-0.55 °C/decade, and 0.26-0.52 °C/decade, respectively. Estimating spring, summer, autumn and winter air temperatures and MAAT from 1960 through 2008 reveals a statistically significant trend of 0.31 °C /decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C /decade and 0.37 °C/decade, respectively. Due to the warming air temperature, MAGSTs, MaxAGSTs, and surface thawing index time series exhibit increasing trend for most or even all the meteorological stations over the basin, while the surface freezing index and the RFT time series reveal a decreasing trend.

    The MAGSTs for 1972-2006 at the 12 meteorological stations reveal significant trends of 0.44-0.90 °C/decade. The MaxAGSTs for 1972-2006 at eight other meteorological stations except at Qilian, Tuole, Wutonggou and Jihede reveal significant trends of 0.59-2.05 °C/decade. The averaged MAGST time series in the period between 1972 and 2006 indicates a statistically significant trend of 0.58 °C/decade. Estimating MaxAGST from 1972 through 2006 reveals a statistically significant trend of 1.27 °C/decade. The MinAGST time series remains unchanged as a whole.

    The surface freezing index time series in 1959-2005 show significant decreasing trends except at Wutonggou, Gaotai and Jihede, with the linear tendency rate ranging from ?74.9 °C/decade to?20.6 °C/decade. The surface thawing index in 1960-2006 show significant increasing trend of 33.6-172.7 °C/decade except at Tuole. Significant trends in RFT are observed at 9 other meteorological stations except at Qilian, Wutonggou and Gaotai, with the linear tendency rate ranging from ?0.05/decade to 0.00/decade. Estimating surface freezing/thawing index and RFT reveals a statistically significant trend of?42.5 °C-day/decade, 85.4 °C-day/decade and?0.018/decade in 1959-2006, respectively.

    Acknowledgments:

    This study is supported by the Chinese Academy of Sciences Key Research Program (No. KZZD-EW-13), the Natural Science Foundation of China (Nos. 91025013, 91325202), the State Key Laboratory ofFrozen Soil Engineering (No. SKLFSE-ZY-06), CAS, and the Major Research Plan of the National Natural Science Foundation of China (No. 2013CBA01802).

    Associate Committee on Geotechnical Research, 1988. Glossary of permafrost and related ground-ice terms. Technical Memorandum 142, National Research Council of Canada, Ottawa, Ontario.

    Chen LH, Qu YG, 1992. Rational Development and Utilization on Water and Soil Resources in Hexi Region. Science Press, Beijing, China, pp. 9-13.

    Cheng GD, 2009. Water-Ecology-Economic System in Heihe River Basin. Meteorological Press, Beijing, China, pp. 1-2.

    Cheng GD, Wu TH, 2007. Responses of climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112: FO2S03. DOI: 10.1029.2006JF000631, 2007.s.

    Cheng GD, Xiao HL, Chen YN, 2010. Ecological-hydrological Research in the Typical Inland River in West China. Meteorological Press, Beijing, China, pp. 28-29.

    Cheng GD, Zhao L, 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quaternary Science, 20(6): 521-531.

    Cohen JL, Furtado JC, Barlow MA,et al., 2012. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environment Research Letters, 7: 014007 (8pp). DOI: 10.1088/1748-9326/7/1/014007.

    Ding YJ, Ye BS, Liu SY, 2000. Impact of climate change on the alpine stream flow during the past 40a in the middle part of the Qilian Mountains, Northwest China. Journal of Glaciology and Geocryology, 22(3): 193-199.

    Frauenfeld OW, Zhang T, McCreight JL, 2007. Northern hemisphere freezing/thawing index variations over the twentieth century. International Journal of Climatology, 27: 47-63. DOI: 10.1002/joc.1372.

    Gao QZ, Li FX, 1991. Case Study of Rational Development and Utilization of Water Resources in the Heihe River Basin. Gansu Science and Technology Press, Lanzhou, China, pp. 1-5.

    Gong JD, Li XY, 2001. Spatial variation of climate for different landscape area in the Heihe River Basin. Journal of Glaciology and Geocryology, 23(4): 423-431.

    Jia WX, He YQ, Li ZX,et al., 2008a. Spatiotemporal distribution characteristics of climate change in Qilian Mountains and Hexi Corridor. Journal of Desert Research, 28(6): 1151-1155.

    Jia WX, He YQ, Li ZX,et al., 2008b. The regional difference and catastrophe of climate change in Qilian Mountains region. Acta Geographica Sinica, 63(3): 257-269.

    Jiang FQ, Hu RJ, Li Z, 2007. Variation trends of the freezing and thawing index along the Qinghai-Xizang Railway for the period 1966-2004. Acta Geographica Sinica, 62(9): 935-945.

    Jin HJ, He RX, Cheng GD,et al., 2009. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environment Research Letters, 4: 045206. DOI: 10.1088/1748-9326/4/4/045206.

    Johnson PR, Hartman CW, 1971. Environmental Atlas of Alaska, 2nd edition. College, Alaska, pp. 111.

    Lan YC, Ding YJ, Kang ES, 2004. Variations and trends of temperature and precipitation in the mountain drainage basin of the Heihe River in recent 50 years. Plateau Meteorology, 23(5): 723-727.

    Lan YC, Yu YQ, Kang ES,et al., 2001. Response of runoff on the northern slope of the Qilian Mountain to global climate change. Journal of Lanzhou University (Natural Sciences), 37(4): 125-132.

    Li X, Lu L, Cheng GD,et al., 2001. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. Journal of Arid Environments, 48: 521-535. DOI: 10.1006/jare.2000.0715.

    Li ZL, Li ZJ, Xu ZX,et al., 2012. Temporal variations of reference evapotranspiration in Heihe River Basin of China. Hydrology Research. DOI: 10.2166/nh.2012.125.

    Lunardini VJ, 1981. Heat Transfer in Cold Climates. CRREL: Van Nostrand Reinhold Company, New York, pp. 1-671.

    Nelson FE, Anisimov OE, Shiklomonov OI, 2001. Subsidence risk from thawing permafrost. Nature, 410: 889-890. DOI: 10.1038/35073746.

    Nelson FE, Outcalt SI, 1987. A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 19(3): 279-288.

    Nelson FE, Shiklomanov NI, Mueller GR,et al., 1997. Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, U.S.A.. Arctic Antarctic and Alpine Research, 29(4): 367-378.

    Oku Y, Ishikawa H, Haginoya S,et al., 2006. Recent trends in land surface temperature on the Tibetan Plateau. Journal of Climate, 19: 2995-3003. DOI: http://dx.doi.org/10.1175/JCLI3811.1.

    Qi SZ, Luo F, 2005. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environmental Monitoring and Assessment, 108: 205-215. DOI: 10.1007/s10661-005-3912-6.

    Qin DH, Chen ZL, Luo Y,et al., 2007. Updated understanding of climate change sciences. Advances in Climate Change Research, 3(2): 63-73.

    Shiklomanov NI, Nelson FE, 1999. Analytic representation of the active layer thickness filed, Kuparuk River Basin, Alaska. Ecological Modelling, 123: 105-125.

    Shiklomanov NI, Nelson FE, 2002. Active-layer mapping at regional scales: a 13-year spatial time series for the Kuparuk Region, North-Central Alaska. Permafrost and Periglacial Processes, 13: 219-230. DOI: 10.1002/ppp.425.

    Solomon S, Qin D, Manning M,et al.(eds.), 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK.

    Steurer PM, 1996. Comparison of probability distributions used in estimating the 100-year return period of the air-freezing index. Journal of Cold Regions Engineering, 10: 25-35.

    Steurer PM, Crandell JH, 1995. Comparison of methods used to create an estimate of the air-freezing index. Journal of Cold Regions Engineering, 9: 64-74.

    U.S. Army/Air Force. 1966. Arctic and subarctic construction: general provisions. U.S. Government Printing Office: Washington, DC., USA. Technical Manual TM-852-1/AFM 88-19, 48.

    van Everdingen R (ed.), 1998. (revised 2005). Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology. Boulder, CO.

    Wang J, Li S, 2005. Impact of climate change on snowmelt runoff in the mountainous regions of Northest China. Science in China (Series D), 35(7): 664-670.

    Wang QC, Qin NS, Tang HY,et al., 2007. Study on climatechange facts and their characteristics on Qinghai-Tibet Plateau in recent 44 years. Arid Zone Research, 24(3): 234-239.

    Wang QF, 2013. Study on the relationship of soil seasonal freezing/thawing processes and permafrost with climate over the Heihe River Basin. Doctoral Thesis, University of Chinese Academy of Sciences, pp. 74-76.

    Wei ZG, Huang RH, Dong WJ, 2003. Interannual and interdecadal variations of air temperature and precipitation on Qinghai-Tibet Plateau. Chinese Journal of Atmospheric Sciences, 27(2): 157-170.

    Wu QB, Zhang T, Liu YZ, 2011a. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010. The Cryosphere, 5: 2465-2481. DOI: 10.5194/tcd-5-2465-2011.

    Wu TH, Wang QX, Zhao L,et al., 2011b. Observed trends in surface freezing/thawing index over the period 1987-2005 in Mongolia. Cold Regions Science and Technology, 69: 105-111. DOI: 10.1016/j.coldregions.2011.07.003.

    Wu TH, Zhao L, Li R,et al., 2013. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology, 33(4): 920-930. DOI: 10.1002/joc.3479.

    Wu TH, Zhao L, Li SX,et al., 2008. Freezing/thawing index variations during the last 40 years over the Tibet Plateau. Proceedings: the Ninth International Conference of Permafrost, Fairbanks, University of Alaska, pp. 1969-1973.

    Zhai LX, 2008. Climate change and the analysis of its impact on hydrology in northwest China. Doctoral Thesis, Lanzhou University, pp. 29-34.

    Zhang H, 2009. Impact of climate change and human activity on water resources in the Heihe River Basinn. M.S. Thesis, Lanzhou University, pp. 12-29.

    Zhang T, Barry RG, Gilichinsky D,et al., 2001. An ampli fi ed signal of climatic change in soil temperatures during the last century at Irkutsk Russia. Climatic Change, 49: 41-76. DOI: 10.1023/A:1010790203146.

    Zhang T, Frauenfeld OW, Serreze MC,et al., 2005. Spatial and temporal variability in active layer thickness over the Russian arctic drainage basin. Journal of Geophysical Research-Atmospheres, 110: D16101. DOI: 10.1029/2004JD005642.

    Zhang T, Osterkamp TE, Stamnes K, 1997. Effect of climate on the active layer and permafrost on the North Slope of Alaska, U.S.A. Permafrost Periglacial Processes, 8: 45-47. DOI: 10.1002/(SICI)1099-1530(199701)8:1<45:AID-PPP240>3.0.CO;2-K.

    Zhang T, Wang QF, Wu JC,et al., 2012. Preliminary investigation on permafrost distribution over the upper reaches of Heihe River Basin in western China. Proceedings of the 10th International Conference on Permafrost. Volume 4: International Contributions, Salekhard, Russia, pp. 585-586.

    Zhao CC, Wang Y, Ding YJ,et al., 2011. Spatial-temporal variations of temperature and precipitation in northwestern China in recent 50 years. Plateau Meteorology, 30(2): 386-390.

    Zhao L, Wu QB, Marchenko SS,et al., 2010. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafrost and Periglacial Processes, 21: 198-207. DOI: 10.1002/ppp.688.

    : Wang QF, Zhang TJ, Peng XQ,et al., 2014. Recent changes in ground surface thermal regimes in the context of air temperature warming over the Heihe River Basin, China. Sciences in Cold and Arid Regions, 6(4): 0273-0281.

    10.3724/SP.J.1226.2014.00273.

    Received: March 24, 2014 Accepted: May 26, 2014

    *Correspondence to: Dr. QingFeng Wang, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

    E-mail: qf_w@lzb.ac.cn

    国产 精品1| av不卡在线播放| 亚洲成人一二三区av| 成人午夜精彩视频在线观看| 中文字幕人妻丝袜制服| 日韩不卡一区二区三区视频在线| 久久青草综合色| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线观看99| 男女啪啪激烈高潮av片| 有码 亚洲区| 亚洲欧美清纯卡通| 97在线人人人人妻| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 亚洲欧美一区二区三区国产| 国产又色又爽无遮挡免| 国产永久视频网站| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的| 成年女人在线观看亚洲视频| 我的老师免费观看完整版| 亚洲伊人久久精品综合| 午夜福利影视在线免费观看| 免费少妇av软件| 99精国产麻豆久久婷婷| 久久久久久伊人网av| 精品少妇内射三级| 涩涩av久久男人的天堂| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩一区二区三区精品不卡 | 国产av精品麻豆| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久| 下体分泌物呈黄色| 91成人精品电影| .国产精品久久| 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 黄色毛片三级朝国网站 | 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 特大巨黑吊av在线直播| 亚洲av二区三区四区| 国产极品粉嫩免费观看在线 | 亚洲精品国产av成人精品| 久久精品国产a三级三级三级| 女性生殖器流出的白浆| 18禁裸乳无遮挡动漫免费视频| 午夜老司机福利剧场| 黑人巨大精品欧美一区二区蜜桃 | 日日摸夜夜添夜夜添av毛片| av福利片在线| 精品卡一卡二卡四卡免费| 亚洲av在线观看美女高潮| 人人妻人人澡人人爽人人夜夜| 久久久久精品久久久久真实原创| 中文字幕av电影在线播放| 女的被弄到高潮叫床怎么办| 在线精品无人区一区二区三| 亚洲怡红院男人天堂| 99久久综合免费| 乱人伦中国视频| 黑丝袜美女国产一区| 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| av在线老鸭窝| 中文天堂在线官网| 成人漫画全彩无遮挡| 国产亚洲一区二区精品| 女人久久www免费人成看片| 免费播放大片免费观看视频在线观看| 美女cb高潮喷水在线观看| 久久久a久久爽久久v久久| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 三级国产精品片| 伦精品一区二区三区| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 极品教师在线视频| 全区人妻精品视频| 精品一区在线观看国产| 亚洲av不卡在线观看| h日本视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 日产精品乱码卡一卡2卡三| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| 亚洲成人一二三区av| 国产在线免费精品| 亚洲av男天堂| 久久精品夜色国产| 九草在线视频观看| 我的女老师完整版在线观看| 午夜激情福利司机影院| 国产精品.久久久| 亚洲综合色惰| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 乱码一卡2卡4卡精品| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡 | 少妇精品久久久久久久| 亚洲av中文av极速乱| 人人澡人人妻人| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说| 精品国产一区二区三区久久久樱花| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 嫩草影院入口| 国产深夜福利视频在线观看| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲av.av天堂| 2021少妇久久久久久久久久久| 午夜免费观看性视频| 国产极品天堂在线| 亚洲国产最新在线播放| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av | 99热这里只有是精品50| av天堂中文字幕网| 亚洲自偷自拍三级| 婷婷色av中文字幕| 精品熟女少妇av免费看| 人人澡人人妻人| 丝瓜视频免费看黄片| 亚洲电影在线观看av| 亚洲欧洲日产国产| 国产一级毛片在线| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av | 99re6热这里在线精品视频| 搡女人真爽免费视频火全软件| 国产亚洲精品久久久com| 国产伦精品一区二区三区四那| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 亚洲人与动物交配视频| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看 | 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 精品酒店卫生间| 日本vs欧美在线观看视频 | 日本色播在线视频| 婷婷色综合www| av视频免费观看在线观看| 免费观看a级毛片全部| 我要看黄色一级片免费的| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 国产在视频线精品| 99re6热这里在线精品视频| 久久久久久伊人网av| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 国产精品国产三级国产av玫瑰| 97精品久久久久久久久久精品| www.av在线官网国产| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| √禁漫天堂资源中文www| 香蕉精品网在线| 欧美xxⅹ黑人| 一级毛片久久久久久久久女| 精品视频人人做人人爽| 欧美bdsm另类| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 十分钟在线观看高清视频www | 寂寞人妻少妇视频99o| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 亚洲精品乱码久久久久久按摩| 国产高清有码在线观看视频| 午夜视频国产福利| 中国三级夫妇交换| 女的被弄到高潮叫床怎么办| 婷婷色麻豆天堂久久| 六月丁香七月| 欧美人与善性xxx| 成人国产av品久久久| 高清毛片免费看| 日韩欧美 国产精品| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 观看av在线不卡| 中文乱码字字幕精品一区二区三区| 国产成人一区二区在线| 有码 亚洲区| 欧美成人午夜免费资源| 国产 一区精品| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频 | 国产91av在线免费观看| 在线观看av片永久免费下载| 性色avwww在线观看| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 国产乱人偷精品视频| 亚洲真实伦在线观看| 插阴视频在线观看视频| 国产欧美亚洲国产| 成人漫画全彩无遮挡| av在线老鸭窝| 最新中文字幕久久久久| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 日本欧美国产在线视频| av天堂中文字幕网| 国产av国产精品国产| 国产淫语在线视频| 99热网站在线观看| 亚洲精品国产av蜜桃| 男女啪啪激烈高潮av片| 午夜老司机福利剧场| 亚洲,欧美,日韩| 又粗又硬又长又爽又黄的视频| 中文字幕制服av| 久久热精品热| av不卡在线播放| 九草在线视频观看| 国产精品女同一区二区软件| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 99热全是精品| av.在线天堂| 久久97久久精品| 成人午夜精彩视频在线观看| 久久久久久久久大av| 99热全是精品| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 国产在线免费精品| 色视频在线一区二区三区| 一级毛片aaaaaa免费看小| 一区二区av电影网| 久久精品国产亚洲网站| 日本免费在线观看一区| 亚洲成人手机| 女人久久www免费人成看片| 噜噜噜噜噜久久久久久91| 日本91视频免费播放| 国产男人的电影天堂91| 黑人巨大精品欧美一区二区蜜桃 | 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 国产在线免费精品| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 国产在线一区二区三区精| 在线观看免费日韩欧美大片 | 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 国产一区二区三区av在线| 水蜜桃什么品种好| 永久免费av网站大全| 精品国产国语对白av| 亚洲久久久国产精品| 午夜久久久在线观看| 极品教师在线视频| 免费av不卡在线播放| 久久久国产一区二区| 亚洲精品日本国产第一区| 国产成人freesex在线| av一本久久久久| 亚洲av成人精品一区久久| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 国产精品福利在线免费观看| 麻豆精品久久久久久蜜桃| 交换朋友夫妻互换小说| 国产淫片久久久久久久久| 欧美日韩综合久久久久久| av一本久久久久| 国产欧美日韩一区二区三区在线 | av天堂久久9| 久久久久久久大尺度免费视频| kizo精华| 亚洲av成人精品一二三区| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 在线观看免费视频网站a站| 日本与韩国留学比较| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 一区在线观看完整版| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 视频区图区小说| 精品一区二区三区视频在线| 99re6热这里在线精品视频| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 欧美日本中文国产一区发布| 大片电影免费在线观看免费| av线在线观看网站| 婷婷色麻豆天堂久久| 国模一区二区三区四区视频| 日韩欧美一区视频在线观看 | 99久久人妻综合| 免费人妻精品一区二区三区视频| av在线播放精品| 黄色欧美视频在线观看| 91aial.com中文字幕在线观看| 最后的刺客免费高清国语| 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 中文字幕人妻丝袜制服| 在线观看一区二区三区激情| 日本黄大片高清| 一级片'在线观看视频| 久久人人爽人人片av| 欧美激情极品国产一区二区三区 | 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 亚洲怡红院男人天堂| 精品人妻熟女av久视频| 久久久久久久久久成人| 桃花免费在线播放| 少妇熟女欧美另类| 麻豆成人av视频| av不卡在线播放| 日本91视频免费播放| 久久99精品国语久久久| videossex国产| 亚洲三级黄色毛片| 久久99精品国语久久久| 六月丁香七月| 国产在线男女| 日本午夜av视频| 春色校园在线视频观看| 久久婷婷青草| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区 | 午夜影院在线不卡| 一区二区三区精品91| 国模一区二区三区四区视频| a级片在线免费高清观看视频| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 久久婷婷青草| av天堂久久9| 尾随美女入室| 国产av国产精品国产| 九草在线视频观看| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜制服| 中文乱码字字幕精品一区二区三区| 三级国产精品欧美在线观看| 欧美精品亚洲一区二区| 亚洲真实伦在线观看| 丰满饥渴人妻一区二区三| av播播在线观看一区| 建设人人有责人人尽责人人享有的| 久久99精品国语久久久| 香蕉精品网在线| 欧美bdsm另类| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻 视频| 午夜精品国产一区二区电影| 久久精品国产自在天天线| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 亚洲av不卡在线观看| 两个人的视频大全免费| 久久人人爽av亚洲精品天堂| 涩涩av久久男人的天堂| 日本与韩国留学比较| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 在线看a的网站| 久久久久久久精品精品| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 51国产日韩欧美| 国产高清不卡午夜福利| 中国国产av一级| 国产日韩欧美亚洲二区| 一区二区三区精品91| 99久久精品国产国产毛片| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 欧美成人午夜免费资源| 午夜av观看不卡| 丝袜脚勾引网站| 波野结衣二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品专区欧美| 三级国产精品片| 亚洲欧美精品自产自拍| 日本爱情动作片www.在线观看| 美女中出高潮动态图| 九九久久精品国产亚洲av麻豆| 国产乱来视频区| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站 | 日韩中文字幕视频在线看片| 亚洲国产欧美日韩在线播放 | 国产在视频线精品| 亚洲欧美日韩东京热| 精品久久久久久久久av| 老熟女久久久| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 激情五月婷婷亚洲| 欧美人与善性xxx| 国产av国产精品国产| 色94色欧美一区二区| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 精品国产国语对白av| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 人人妻人人澡人人看| tube8黄色片| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 精品酒店卫生间| 久久97久久精品| 免费看光身美女| 9色porny在线观看| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 国产熟女午夜一区二区三区 | 亚洲av电影在线观看一区二区三区| 精品一区二区三卡| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 最黄视频免费看| 国产精品久久久久久精品古装| 免费高清在线观看视频在线观看| 人妻少妇偷人精品九色| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 大陆偷拍与自拍| 亚洲婷婷狠狠爱综合网| 性高湖久久久久久久久免费观看| 亚洲,一卡二卡三卡| 伊人久久精品亚洲午夜| 视频中文字幕在线观看| 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| 色5月婷婷丁香| 最近中文字幕高清免费大全6| 成人免费观看视频高清| 性色avwww在线观看| 亚洲国产精品一区二区三区在线| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 国产精品成人在线| 美女视频免费永久观看网站| 久久久久精品久久久久真实原创| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 久久婷婷青草| 中国国产av一级| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 国产成人免费观看mmmm| 夜夜爽夜夜爽视频| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 久久久久国产精品人妻一区二区| 亚洲欧美精品专区久久| 国产精品伦人一区二区| 69精品国产乱码久久久| 中文字幕制服av| 最新中文字幕久久久久| 中文字幕免费在线视频6| 深夜a级毛片| 热re99久久精品国产66热6| 中文欧美无线码| 日本黄色片子视频| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 3wmmmm亚洲av在线观看| av黄色大香蕉| 各种免费的搞黄视频| 免费少妇av软件| 国产精品免费大片| 国产午夜精品一二区理论片| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 成人影院久久| 亚洲久久久国产精品| 国产av国产精品国产| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜制服| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 美女视频免费永久观看网站| 亚洲欧美成人综合另类久久久| 老熟女久久久| 久久久久久久久大av| 少妇精品久久久久久久| 精品午夜福利在线看| 精品一品国产午夜福利视频| a级毛片免费高清观看在线播放| 午夜视频国产福利| 久久影院123| 国产精品99久久久久久久久| 高清不卡的av网站| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 天天操日日干夜夜撸| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区 | 丰满人妻一区二区三区视频av| 夜夜爽夜夜爽视频| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 在线观看美女被高潮喷水网站| av福利片在线观看| 丰满饥渴人妻一区二区三| 亚洲自偷自拍三级| 黄色一级大片看看| 久久精品夜色国产| 成人国产av品久久久| 中文字幕人妻丝袜制服| 国产一级毛片在线| 亚洲内射少妇av| 波野结衣二区三区在线| 国产精品一二三区在线看| 最近最新中文字幕免费大全7| 99re6热这里在线精品视频| 麻豆成人午夜福利视频| 99久久精品热视频| 高清视频免费观看一区二区| 国产片特级美女逼逼视频| 精品国产一区二区久久| 国产精品人妻久久久久久| 高清欧美精品videossex| 3wmmmm亚洲av在线观看| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 69精品国产乱码久久久| 少妇被粗大的猛进出69影院 | 国产一区二区在线观看日韩| av在线app专区| 九色成人免费人妻av| 国产精品国产av在线观看| 9色porny在线观看| 欧美激情极品国产一区二区三区 | 国产成人精品无人区| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 91成人精品电影| √禁漫天堂资源中文www| 欧美+日韩+精品| 午夜91福利影院| 成人毛片a级毛片在线播放| 99热这里只有是精品在线观看| 免费播放大片免费观看视频在线观看| 国产一区有黄有色的免费视频| 久久久精品94久久精品| 免费大片黄手机在线观看| 免费观看的影片在线观看|