• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Repair and regeneration properties of Ginkgo biloba after ischemic brain injury

    2014-03-27 01:17:39AparnaRaghavan,ZahoorA.Shah

    Repair and regeneration properties of Ginkgo biloba after ischemic brain injury

    The irretrievable fate of neurons dominated the neuroscience rhetoric for the first half of this century, a position that was fiercely contested and recently debunked by extensive studies carried out in the field of neuroregeneration research. The turning point came in the year 1928, when Ramon Y. Cajal’s (Lobato, 2008) work suggested that the regenerative capacity of neurons, though limited, could exist beyond their physical being and depended on the environment surrounding them. That the manipulation of the restrictive environment surrounding the neuron could aid the regenerative process was conclusively established by Aguayo and colleagues (Richardson et al., 1980). Since then, various strategies have been employed to target the different phases of regeneration which include: cell-replacement and augmenting endogenous neurogenesis, the use of trophic factors, reversal of the inhibitory cues, and induction of signaling pathways that stimulate axon growth and guidance (Horner and Gage, 2000).

    Replacement of damaged tissue with cell-grafts or pluripotent stem cells that could differentiate into neural and glial cell populations has been widely studied (Modo et al., 2002; Jiang et al., 2011). In light of the practical and ethical issues restraining the fi eld of stem cell research, alternative modes of stimulating neurogenesis are highly sought after. We now know that neurogenesis is not only an ongoing process in adults, but it can also be induced by pathological conditions like traumatic brain injury and ischemic stroke (Greenberg, 2007; Yu et al., 2008). This fi eld of research views the nervous system as a plastic entity that can respond to deleterious cues by triggering repair mechanisms (Okano et al., 2007). Neurogenesis is thus a valuable avenue for therapeutic efforts aimed at reducing disability and cognitive decline following ischemic stroke.

    Neurogenesis in the adult brain involves the proliferation of precursor cells known as stem cells/neural progenitor cells (NSCs). The repositories for these NSCs are the sub-ventricular zone (SVZ), the sub-granular zone (SGZ) of the dentate gyrus (DG), and to a lesser extent, the posterior periventricular area (PPv) (Gage, 2000; Wiltrout et al., 2007). The NSCs of the SVZ are pluripotent and migrate as a chain of neuroblasts, forming the rostral migratory stream (RMS) that leads to the olfactory bulb, wherein they eventually differentiate to form interneurons (Alvarez-Buylla and Garcia-Verdugo, 2002). This property is retained even in the absence of the olfactory bulb, suggesting that it is not target-oriented (Kirschenbaum et al., 1999) and could thus be routed to serve other purposes. In the case of ischemia, the NSCs are not only known to proliferate but also to defy the RMS and move laterally toward the site of injury (Zhang et al., 2008). The SGZ of the dentate gyrus is the next important site of neurogenesis. Whether its stem cells are truly self-renewing or more lineage-restricted is a matter of contention (Gage et al., 1998), due to which they are referred to as progenitor cells. Both global and focal ischemia induce neurogenesis in the SVZ and the DG, with the focal mode thought to engage neurogenesis in the cortex as well (Wiltrout et al., 2007). The migration of these proliferating NSCs needs to be substantiated with suf fi cient neuronal differentiation and functional integration into the neural network in order to have a signi fi cant impact on the improvement of stroke outcomes. Though ischemia is a potent inducer of proliferation and migration of NSCs, it does not provide an environment conducive to their survival, differentiation and integration (Wiltrout et al., 2007; Niv et al., 2012). However, neurogenesis is a dynamic process and is sensitive to external cues like radiation and fatty diet that shut off the process, whereas exercise and caloric restriction upregulate or enhance it. This is bene fi cial from the therapeutic standpoint and has been utilized in several drug discovery efforts.

    Natural products have been investigated for their ability to induce the proliferation, differentiation, migration and, finally, functional integration of neural stem cells in the hope of discovering a successful regenerative therapy for stroke. The polyvalent mode of action of most natural product-based drugs is particularly bene fi cial in a complex pathology like ischemia, wherein multiple destructive mechanisms need to be targeted simultaneously for an effective intervention (Wu et al., 2010). In addition to their diverse molecular targets, natural products also enjoy better absorption pro fi les when compared to purely synthetic leads. Recent advances in bioactivity-guided screening assays and reliable characterization techniques have improved the productivity of natural products tremendously, making them the most likely potential source of drug leads (Harvey, 2008). Many traditional herbs have been tested in experimental stroke models, some showing huge potential. Components of Salviae Miltiorrhizae Radix (Zhong et al., 2007), Cornus officinalis (Yao et al., 2009), Ginkgo biloba (G. biloba, Tchantchou et al., 2007; Nada et al., 2014), and some herbal combinations like NeuroAid (Heurteaux et al., 2010) are known to promote neurogenesis in conditions of ischemic and other pathological stress. Most of these natural products function by augmenting physiological repair mechanisms by increasing the synthesis of growth factors and stress-response elements.

    G. biloba is a widely studied herb for the treatment of neurological disorders (Di Renzo, 2000); the neurogenesis-enhancing effects of G. biloba form the focus of this perspective. Its cellular mechanisms of action and the consequential regenerative effects outlined here would provide valuable insight into its therapeutic potential for stroke and various related disorders. The standardized extract of this herb, EGb 761, is prescribed as a dietary supplement and is touted to have neuroprotective and neurorestorative properties that have been consistently reproduced in many animal models of CNS disorders (Kehr et al., 2012; Diamond and Bailey, 2013; Tulsulkar and Shah, 2013; Wang et al., 2013a). Its use as a symptomatic treatment for dementia has been established in many preclinical studies (Tchantchou et al., 2007; Wang et al., 2013b) and clinical trials (Oken et al., 1998; Schneider et al., 2005; Mazza et al., 2006; Weinmann et al., 2010). A number of clinical studies conducted in Europe and the US have demonstrated the potential therapeutic effects of G. biloba in multi-infarct dementia, early or mild cognitive decline, and severe types of senile dementias (Weinmann et al., 2010; Amieva et al., 2013). However, “Ginkgo Evaluation of Memory (GEM),”showed no effect of EGb 761 (240 mg daily dose for 7 years) on delaying or preventing Alzheimer’s-related dementia among the population aged 75 or older (DeKosky et al., 2006).

    Figure 1 Possible signaling of G. biloba (EGb 761) induced neuroprotection and neurogenesis.We propose that neuroprotective mechanism(s) of EGb 761 are mediated via multiple pathways: 1) EGb 761 activates hemeoxygenase 1 (HO1), which cleaves heme to form biliverdin and carbon monoxide (CO). CO increases intracellular cyclic guanosine monophosphate (cGMP) production, which mediates axon branching by activating chemoattractive semaphorin 3A (SEMA3A) and also by inhibiting glycogen synthase kinase 3 (GSK-3). GSK-3 inhibition increases the activity of collapsing response mediator protein-2 (CRMP-2), leading to cell survival and cell neuroplasticity; 2) EGb 761 activates the vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway that leads to chemoattractant SEMA3A activation and angiogenesis; 3) EGb 761 increases Wnt and activates Wnt/β-catenin pathway and, by inhibiting GSK-3, leads to neurogenesis, proliferation and migration; 4) EGb 761 directly activates brain derived neurotrophic factor (BDNF) and increases cell survival and neuroplasticity; and 5) EGb 761 activates netrin 1 and its receptors deleted in colorectal cancer (DCC) and uncoordinated gene 5B (UNC5B), leading to increased neurogenesis, proliferation and migration. Activation (), inhibition (), mutual activation( ).(Figure modi fi ed from Nada et al. Molecular Neurobiology. 2014;49:945-956.)

    EGb 761 is standardized to contain 24% fl avone glycosides and 6% terpenoids. Most of the neuroprotective effects of EGb 761 stem from its antioxidant effects, although its ability to increase cerebral blood fl ow and modulate neurotransmitter activity are also thought to be contributory (Diamond et al., 2000). Recent studies on the mechanisms of action of this extract have unraveled a host of other effects, many of which are not related to its anti-oxidant effects. This has broadened the scope of EGb 761 beyond the traditional realm of neuroprotection to the restorative and recovery potential for stroke therapy. An important, recently established example is the discovery of the multifaceted actions of EGb 761-mediated upregulation of hemeoxygenase 1 (HO1) (Shah et al., 2011; Nada and Shah, 2012; Nada et al., 2014). HO1 is a stress-inducible anti-oxidant enzyme respon-sible for catabolizing pro-oxidant heme into carbon monoxide, bilirubin and biliverdin. HO1 is crucial for anti-oxidant defense and is, more importantly, a viable target for stroke therapy. HO1 not only breaks down heme, but also most of its byproducts have neuroprotective properties (Ahmad et al., 2006), thus creating a milieu for HO1 upregulation to affect diverse signaling cascades.

    We and others have unequivocally proven HO1 to be one of the prime targets of EGb 761-mediated protection, as observed in animal models of stroke and other conditions of oxidative stress (Chen et al., 2001; Zhuang et al., 2002; Saleem et al., 2008; Shah et al., 2011; Nada and Shah, 2012). EGb 761 enhances neurogenesis, and the crosstalk between HO1-induction and enhanced neurogenesis has only been recently discovered (Vanella et al., 2013; Nada et al., 2014). Our group demonstrated that EGb 761-treated mice not only showed an increase in the number of NSCs post-stroke, but also the majority of these NSCs were found in the proximity of the injury site or penumbra area. This was further evidenced by the upregulation of netrin-1 and its receptors, DCC and UNC5B, which mediate axonal attraction and repulsion. It is known that attractive and repulsive guidance cues dictate post-stroke axonal sprouting as well as migration of neuroblasts towards the site of the injury (Carmichael, 2008). Netrin-1 overexpression promotes neuronal migration and aids cell survival (Tang et al., 2008). Thus, EGb 761-mediated overexpression of netrin-1 signi fi es its ability to promote a suitable environment for the migration of neuroblasts. As previously discussed, the migration of newly formed NSCs alone would be less beneficial if not followed by neuronal differentiation and the survival of the NSCs upon reaching the target or injury site. We found that EGb 761 also enhanced the expression of Wnt, the ligand that is responsible for triggering the canonical Wnt pathway or the Wnt/β-catenin pathway, which constitutes one of the primary signaling mechanisms crucial for endogenous neurogenesis. Potentiation of the Wnt cascade is known to improve functional outcomes after stroke by increasing neuronal differentiation and survival of the newly formed neurons (Shruster et al., 2012). EGb 761-treated mice also showed upregulated expression of brain derived growth factor (BDNF) in NSCs, which is a speci fi c marker for neuronal cells and enhances proliferation and differentiation of NSPCs (Nada et al., 2013) (Figure 1).

    Quite interestingly, our group also found that neurogenesis was signi fi cantly diminished in HO1 knockout mice seven days post-surgery. This fi nding corroborates with our earlier studies that HO1 knockout mice were not protected by ischemic preconditioning (Zeynalov et al., 2009) and suffered from higher infarct volume and severe neurologic deficits after seven days of permanent ischemia (Shah et al., 2011). Since HO1 is an essential target of EGb 761’s action, we were curious to learn whether EGb 761-mediated HO1 induction had a role to play in its neurogenesis-enhancing properties. We have highly plausible explanations to establish the link between the two. For example, it is well known that HO1 is an inducer of vascular endothelial growth factor (VEGF) (Cisowski et al., 2005; Lin et al., 2011), which is not only a promoter of angiogenesis but also has neurogenic properties (Sun et al., 2003). Thus HO1 seems to act on the neurovascular niche that supports the newly formed neurons as well as the vasculature surrounding the network. We have previously demonstrated that EGb 761 upregulates the expression of VEGF concomitant with that of HO1 (Shah et al., 2011). In addition, we have established the link between HO1 and collapsin response mediator protein 2 (CRMP2) in a study examining its neuritogenic potential (Nada and Shah, 2012). CRMP2 is a protein involved in neuronal development and neurite outgrowth, the inactivation of which is known to cause growth cone collapse (Crews et al., 2011; Higurashi et al., 2012). The positive correlation between HO1 and CRMP2 expression further substantiates the involvement of HO1 in neurogenesis. Lastly, the discovery that HO1 acts upstream of the Wnt signaling pathway (Vanella et al., 2013) strongly ties the augmented neurogenesis seen in our study to HO1 upregulation and also highlights how a single protein could perturb multiple signaling mechanisms (Figure 1). To support our preclinical studies, a recent double-blind, placebo-controlled and randomized clinical study for the fi rst time recommended the use of G. biloba in stroke recovery. G. biloba (120 mg daily) treatment for 4 months following an ischemic stroke signi fi cantly reduced NIHSS in stroke patients compared to the placebo group (Oskouei et al., 2013). In order to promote the wide and safe use of G. biloba, further high quality and largescale randomized controlled trials are warranted to test its ef fi cacy in acute ischemic stroke recovery.

    Stroke is a leading cause of long-term disability and poses excruciating economic and societal burdens (Go et al., 2014). Therapies aimed at post-stroke recovery may help curb the rising cost of healthcare and are therefore highly sought after. To treat complex neurodegenerative diseases, polypharmacology is a well sought strategy, and natural products, particularly extracts, can offer a treasure of potential drug leads that could someday change the way we think of neuro-regeneration and the use of medicinal plants.

    Aparna Raghavan, Zahoor A. Shah

    Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo,

    Toledo, OH, USA

    Ahmad AS, Zhuang H, Dore S (2006) Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 141:1703-1708.

    Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629-634.

    Amieva H, Meillon C, Helmer C, Barberger-Gateau P, Dartigues JF (2013) Ginkgo biloba extract and long-term cognitive decline: a 20-year follow-up population-based study. PLoS One 8:e52755.

    Carmichael ST (2008) Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke 39:1380-1388.

    Chen JX, Zeng H, Chen X, Su CY, Lai CC (2001) Induction of heme oxygenase-1 by Ginkgo biloba extract but not its terpenoids partially mediated its protective effect against lysophosphatidylcholine-induced damage. Pharmacol Res 43:63-69.

    Cisowski J, Loboda A, Jozkowicz A, Chen S, Agarwal A, Dulak J (2005) Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout. Biochem Biophys Res Commun 326:670-676.

    Crews L, Ruf R, Patrick C, Dumaop W, Trejo-Morales M, Achim CL, Rockenstein E, Masliah E (2011) Phosphorylation of collapsin response mediator protein-2 disrupts neuronal maturation in a model of adult neurogenesis: Implications for neurodegenerative disorders. Mol Neurodegener 6:67.

    DeKosky ST, Fitzpatrick A, Ives DG, Saxton J, Williamson J, Lopez OL, Burke G, Fried L, Kuller LH, Robbins J, Tracy R, Woolard N, Dunn L, Kronmal R, Nahin R, Furberg C, Investigators G (2006) The Ginkgo Evaluation of Memory (GEM) study: design and baseline data of a randomized trial of Ginkgo biloba extract in prevention of dementia. Contemp Clin Trials 27:238-253.

    Di Renzo G (2000) Ginkgo biloba and the central nervous system. Fitoterapia 71 Suppl 1:S43-47.

    Diamond BJ, Bailey MR (2013) Ginkgo biloba: indications, mechanisms, and safety. Psychiatr Clin North Am 36:73-83.

    Diamond BJ, Shiflett SC, Feiwel N, Matheis RJ, Noskin O, Richards JA, Schoenberger NE (2000) Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil 81:668-678.

    Gage FH (2000) Mammalian neural stem cells. Science 287:1433-1438.

    Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249-266.

    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Tow fi ghi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129:e28-292.

    Greenberg DA (2007) Neurogenesis and stroke. CNS Neurol Disord Drug Targets 6:321-325.

    Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894-901.

    Heurteaux C, Gandin C, Borsotto M, Widmann C, Brau F, Lhuillier M, Onteniente B, Lazdunski M (2010) Neuroprotective and neuroproliferative activities of NeuroAid (MLC601, MLC901), a Chinese medicine, in vitro and in vivo. Neuropharmacology 58:987-1001.

    Higurashi M, Iketani M, Takei K, Yamashita N, Aoki R, Kawahara N, Goshima Y (2012) Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Dev Neurobiol 72:1528-1540.

    Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963-970.

    Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, Gu X, Chai C, Huang S, Sun J, Dong Q (2011) Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem 354:67-75.

    Kehr J, Yoshitake S, Ijiri S, Koch E, Noldner M, Yoshitake T (2012) Ginkgo biloba leaf extract (EGb 761(R)) and its speci fi c acylated fl avonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possible implications for the cognitive enhancing properties of EGb 761(R). Int Psychogeriatr Suppl 1:S25-34.

    Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19:2171-2180.

    Lin HH, Lai SC, Chau LY (2011) Heme oxygenase-1/carbon monoxide induces vascular endothelial growth factor expression via p38 kinase-dependent activation of Sp1. J Biol Chem 286:3829-3838.

    Lobato RD (2008) Historical vignette of Cajal’s work “Degeneration and regeneration of the nervous system” with a re fl ection of the author. Neurocirugia (Astur) 19:456-468.

    Mazza M, Capuano A, Bria P, Mazza S (2006) Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 13:981-985.

    Modo M, Stroemer RP, Tang E, Patel S, Hodges H (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270-2278.

    Nada SE, Shah ZA (2012) Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 46:180-189.

    Nada SE, Tulsulkar J, Shah ZA (2014) Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol Neurobiol 49:945-956.

    Niv F, Keiner S, Krishna, Witte OW, Lie DC, Redecker C (2012) Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke 43:2468-2475.

    Okano H, Sakaguchi M, Ohki K, Suzuki N, Sawamoto K (2007) Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem 102:1459-1465.

    Oken BS, Storzbach DM, Kaye JA (1998) The ef fi cacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 55:1409-1415.

    Oskouei DS, Rikhtegar R, Hashemilar M, Sadeghi-Bazargani H, Sharifi-Bonab M, Sadeghi-Hokmabadi E, Zarrintan S, Sharifipour E (2013) The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: a double-blind, placebo-controlled, randomized clinical trial. J Stroke Cerebrovasc Dis 22:e557-563.

    Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264-265.

    Saleem S, Zhuang H, Biswal S, Christen Y, Dore S (2008) Ginkgo biloba extract neuroprotective action is dependent on heme oxygenase 1 in ischemic reperfusion brain injury. Stroke 39:3389-3396.

    Schneider LS, DeKosky ST, Farlow MR, Tariot PN, Hoerr R, Kieser M (2005) A randomized, double-blind, placebo-controlled trial of two doses of Ginkgo biloba extract in dementia of the Alzheimer’s type. Curr Alzheimer Res 2:541-551.

    Shah ZA, Nada SE, Dore S (2011) Heme oxygenase 1, bene fi cial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience 180:248-255.

    Shruster A, Ben-Zur T, Melamed E, Offen D (2012) Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS One 7:e40843.

    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843-1851.

    Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, Luo SW, Hong Y, Rama N, Xiong WC, Mehlen P, Ye K (2008) Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol 10:698-706.

    Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y (2007) EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J 21:2400-2408.

    Tulsulkar J, Shah ZA (2013) Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-in fl ammatory mechanism. Neurochem Int 62:189-197.

    Vanella L, Sodhi K, Kim DH, Puri N, Maheshwari M, Hinds TD, Jr., Bellner L, Goldstein D, Peterson SJ, Shapiro JI, Abraham NG (2013) Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther 4:28.

    Wang JW, Chen W, Wang YL (2013a) A ginkgo biloba extract promotes proliferation of endogenous neural stem cells in vascular dementia rats. Neural Regen Res 8:1655-1662.

    Wang N, Chen X, Geng D, Huang H, Zhou H (2013b) Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia. J Biomed Res 27:29-36.

    Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN (2010) Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC geriatrics 10:14.

    Wiltrout C, Lang B, Yan Y, Dempsey RJ, Vemuganti R (2007) Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int 50:1028-1041.

    Wu PF, Zhang Z, Wang F, Chen JG (2010) Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin 31:1523-1531.

    Yao RQ, Zhang L, Wang W, Li L (2009) Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull 79:69-76.

    Yu TS, Zhang G, Liebl DJ, Kernie SG (2008) Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J Neurosci 28:12901-12912.

    Zeynalov E, Shah ZA, Li RC, Dore S (2009) Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiol Dis 35:264-269.

    Zhang RL, Zhang ZG, Chopp M (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55:345-352.

    Zhong J, Tang MK, Zhang Y, Xu QP, Zhang JT (2007) Effect of salvianolic acid B on neural cells damage and neurogenesis after brain ischemia-reperfusion in rats. Yao xue xue bao 42:716-721.

    Zhuang H, Pin S, Christen Y, Dore S (2002) Induction of heme oxygenase 1 by Ginkgo biloba in neuronal cultures and potential implications in ischemia. Cell Mol Biol 48:647-653.

    Zahoor A. Shah, Ph.D., Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA, zahoor.shah@utoledo.edu.

    10.4103/1673-5374.135308 http://www.nrronline.org/

    Acknowledgments: This work was supported by a grant from the National Institutes of Health—National Center for Complementary and Alternative Medicine (R00AT004197) and Start-up Funds from The University of Toledo to Shah ZA.

    Con fl icts of interest: None declared.

    Accepted: 2014-05-16

    Raghavan A, Shah ZA. Repair and regeneration properties of Ginkgo biloba after ischemic brain injury. Neural Regen Res. 2014;9(11):1104-1107.

    国产成人精品久久二区二区免费| 国内少妇人妻偷人精品xxx网站 | 欧美日韩乱码在线| 白带黄色成豆腐渣| 欧美人与性动交α欧美精品济南到| 一进一出好大好爽视频| 久久国产精品影院| www.精华液| 夜夜夜夜夜久久久久| 中文字幕人成人乱码亚洲影| 天堂av国产一区二区熟女人妻 | 叶爱在线成人免费视频播放| 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 国产av一区二区精品久久| 午夜免费成人在线视频| 欧美日本视频| 很黄的视频免费| a级毛片在线看网站| 欧美性猛交黑人性爽| 在线免费观看的www视频| 国产成+人综合+亚洲专区| 国产区一区二久久| 99国产精品一区二区蜜桃av| 免费av毛片视频| 一区二区三区高清视频在线| 美女扒开内裤让男人捅视频| 免费看十八禁软件| 变态另类丝袜制服| 欧美又色又爽又黄视频| 欧美乱色亚洲激情| 久久国产精品人妻蜜桃| 亚洲黑人精品在线| 欧美午夜高清在线| 国产亚洲精品av在线| 精品久久蜜臀av无| 免费高清视频大片| av天堂在线播放| 国产v大片淫在线免费观看| 性色av乱码一区二区三区2| 久久精品国产亚洲av香蕉五月| 国产视频一区二区在线看| 成人欧美大片| 51午夜福利影视在线观看| 久久精品aⅴ一区二区三区四区| 我的老师免费观看完整版| www.精华液| 欧美性猛交╳xxx乱大交人| 国产高清激情床上av| 伊人久久大香线蕉亚洲五| 亚洲专区字幕在线| 国产激情偷乱视频一区二区| 99热这里只有是精品50| 久久午夜亚洲精品久久| 亚洲成人国产一区在线观看| 欧美又色又爽又黄视频| 欧美性长视频在线观看| 麻豆国产97在线/欧美 | 黄色毛片三级朝国网站| xxxwww97欧美| 国产三级黄色录像| 国产爱豆传媒在线观看 | 国产私拍福利视频在线观看| 午夜免费成人在线视频| 国产精品一区二区三区四区免费观看 | 超碰成人久久| 久久午夜综合久久蜜桃| 最新在线观看一区二区三区| 欧美黑人巨大hd| 精品乱码久久久久久99久播| 欧美日本亚洲视频在线播放| 一区二区三区激情视频| 黑人操中国人逼视频| 久久久久精品国产欧美久久久| 两性夫妻黄色片| 波多野结衣高清无吗| 可以在线观看毛片的网站| 欧美日韩亚洲国产一区二区在线观看| 久久久国产成人精品二区| 99在线视频只有这里精品首页| 床上黄色一级片| 亚洲精品久久成人aⅴ小说| 午夜视频精品福利| 国产三级在线视频| 久久久久亚洲av毛片大全| 亚洲片人在线观看| 亚洲av美国av| 亚洲中文字幕一区二区三区有码在线看 | 村上凉子中文字幕在线| 不卡av一区二区三区| 国产av麻豆久久久久久久| 免费在线观看日本一区| 91麻豆av在线| 久9热在线精品视频| 日韩高清综合在线| 欧美性猛交╳xxx乱大交人| 免费电影在线观看免费观看| 亚洲国产精品sss在线观看| 神马国产精品三级电影在线观看 | 美女黄网站色视频| netflix在线观看网站| 久久草成人影院| 国产成人一区二区三区免费视频网站| bbb黄色大片| 国产成人一区二区三区免费视频网站| aaaaa片日本免费| 国产黄a三级三级三级人| 日韩欧美一区二区三区在线观看| 国产精品1区2区在线观看.| xxx96com| 在线播放国产精品三级| 国产精品永久免费网站| 在线观看日韩欧美| 最近在线观看免费完整版| 午夜福利视频1000在线观看| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 久久精品91蜜桃| 老司机靠b影院| 亚洲成人免费电影在线观看| 国产一级毛片七仙女欲春2| 国产三级中文精品| 亚洲国产高清在线一区二区三| 黑人操中国人逼视频| 中文字幕久久专区| 高潮久久久久久久久久久不卡| 欧美大码av| 国产片内射在线| 久久久久国产一级毛片高清牌| 中文字幕精品亚洲无线码一区| 99在线视频只有这里精品首页| 一本一本综合久久| 久9热在线精品视频| 麻豆av在线久日| 99riav亚洲国产免费| 麻豆成人午夜福利视频| 国产亚洲欧美98| 国产97色在线日韩免费| 欧美丝袜亚洲另类 | 精品不卡国产一区二区三区| 免费无遮挡裸体视频| 日韩中文字幕欧美一区二区| 人人妻人人澡欧美一区二区| 亚洲自偷自拍图片 自拍| 50天的宝宝边吃奶边哭怎么回事| 国产探花在线观看一区二区| 在线十欧美十亚洲十日本专区| 欧美高清成人免费视频www| 久久精品亚洲精品国产色婷小说| 三级国产精品欧美在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉精品热| 日韩免费av在线播放| 午夜影院日韩av| 搡老岳熟女国产| 丰满人妻一区二区三区视频av | 国产成人一区二区三区免费视频网站| 欧美中文日本在线观看视频| 国产片内射在线| 欧美最黄视频在线播放免费| 日日夜夜操网爽| 国产精品一区二区三区四区免费观看 | 真人做人爱边吃奶动态| 夜夜夜夜夜久久久久| 午夜精品在线福利| 成人av在线播放网站| 非洲黑人性xxxx精品又粗又长| 少妇的丰满在线观看| 99久久精品国产亚洲精品| 国产精品亚洲av一区麻豆| 伦理电影免费视频| 欧美最黄视频在线播放免费| 欧美大码av| 国产成人欧美在线观看| 日韩有码中文字幕| 欧美成狂野欧美在线观看| 成人午夜高清在线视频| 少妇裸体淫交视频免费看高清 | 在线观看免费日韩欧美大片| 亚洲一卡2卡3卡4卡5卡精品中文| 嫁个100分男人电影在线观看| 一本久久中文字幕| 性欧美人与动物交配| 久久久国产成人精品二区| 丝袜人妻中文字幕| 亚洲五月婷婷丁香| 午夜精品久久久久久毛片777| 久久这里只有精品19| 狂野欧美激情性xxxx| 观看免费一级毛片| 一本大道久久a久久精品| 欧美日韩国产亚洲二区| 久久精品亚洲精品国产色婷小说| 日本三级黄在线观看| 亚洲欧美精品综合久久99| 久久久久久久久免费视频了| 国产成人精品久久二区二区免费| 女人被狂操c到高潮| bbb黄色大片| 欧美日韩亚洲国产一区二区在线观看| 精品久久蜜臀av无| 亚洲欧美日韩高清在线视频| 日韩欧美在线乱码| 成人高潮视频无遮挡免费网站| 男男h啪啪无遮挡| 99热这里只有是精品50| 久久热在线av| 欧美最黄视频在线播放免费| 欧美中文综合在线视频| 高清在线国产一区| 色av中文字幕| 中文字幕精品亚洲无线码一区| 99久久无色码亚洲精品果冻| 嫁个100分男人电影在线观看| 操出白浆在线播放| 欧美中文综合在线视频| 日本一本二区三区精品| 一本大道久久a久久精品| 国语自产精品视频在线第100页| 又黄又粗又硬又大视频| 天天一区二区日本电影三级| 欧美日韩瑟瑟在线播放| 又紧又爽又黄一区二区| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 神马国产精品三级电影在线观看 | 国产av不卡久久| 精品国产乱码久久久久久男人| 啪啪无遮挡十八禁网站| 亚洲国产欧美一区二区综合| 欧美黑人巨大hd| 美女 人体艺术 gogo| 18禁黄网站禁片午夜丰满| 久久久精品国产亚洲av高清涩受| 久久久久国产一级毛片高清牌| 黄色丝袜av网址大全| 亚洲国产中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 国产aⅴ精品一区二区三区波| 久久午夜综合久久蜜桃| 天天一区二区日本电影三级| 人妻夜夜爽99麻豆av| 亚洲精品久久成人aⅴ小说| 九色成人免费人妻av| 成在线人永久免费视频| 亚洲av熟女| 一本久久中文字幕| 欧美人与性动交α欧美精品济南到| 桃色一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 韩国av一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品第一综合不卡| 久久久水蜜桃国产精品网| 久久人妻福利社区极品人妻图片| 男人的好看免费观看在线视频 | 可以免费在线观看a视频的电影网站| 国内久久婷婷六月综合欲色啪| 黄色丝袜av网址大全| 国产1区2区3区精品| 国产精品国产高清国产av| 国内少妇人妻偷人精品xxx网站 | 精华霜和精华液先用哪个| 99国产综合亚洲精品| 99热6这里只有精品| 亚洲免费av在线视频| 国内精品久久久久精免费| 欧美激情久久久久久爽电影| 亚洲自拍偷在线| 久久久久久久久久黄片| 久久精品国产亚洲av高清一级| 国产视频内射| 精品无人区乱码1区二区| 最近最新免费中文字幕在线| 琪琪午夜伦伦电影理论片6080| 波多野结衣高清作品| 国产欧美日韩精品亚洲av| 一夜夜www| 欧美日韩福利视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 女人爽到高潮嗷嗷叫在线视频| 国产爱豆传媒在线观看 | 日本a在线网址| 香蕉国产在线看| 日本一本二区三区精品| 国产精品一区二区精品视频观看| 一级a爱片免费观看的视频| 母亲3免费完整高清在线观看| cao死你这个sao货| 操出白浆在线播放| 首页视频小说图片口味搜索| 亚洲av成人精品一区久久| 99国产精品一区二区三区| 999精品在线视频| 99精品欧美一区二区三区四区| av视频在线观看入口| 欧美在线一区亚洲| 午夜福利在线在线| 久久久国产精品麻豆| 国产麻豆成人av免费视频| 精品午夜福利视频在线观看一区| 脱女人内裤的视频| 在线观看免费视频日本深夜| 欧美在线黄色| 午夜福利免费观看在线| 国产成人影院久久av| 久久草成人影院| 国产精品野战在线观看| 国产一级毛片七仙女欲春2| 国产私拍福利视频在线观看| av在线天堂中文字幕| 国产视频内射| 99精品在免费线老司机午夜| 亚洲专区中文字幕在线| 一级黄色大片毛片| 精品电影一区二区在线| 一级a爱片免费观看的视频| 长腿黑丝高跟| 人成视频在线观看免费观看| 三级毛片av免费| 在线国产一区二区在线| 国产一区二区三区视频了| www.999成人在线观看| 欧美成狂野欧美在线观看| 91大片在线观看| 一本综合久久免费| 久久精品91蜜桃| 黄色女人牲交| 精品免费久久久久久久清纯| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 无限看片的www在线观看| 亚洲国产精品sss在线观看| 免费人成视频x8x8入口观看| 欧美一级毛片孕妇| 在线观看舔阴道视频| av国产免费在线观看| 亚洲熟妇中文字幕五十中出| 真人一进一出gif抽搐免费| 50天的宝宝边吃奶边哭怎么回事| 制服诱惑二区| 婷婷丁香在线五月| 欧美性长视频在线观看| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影 | 日韩大码丰满熟妇| 国内精品久久久久精免费| 久久欧美精品欧美久久欧美| 国产蜜桃级精品一区二区三区| 亚洲欧美一区二区三区黑人| 最新在线观看一区二区三区| 91九色精品人成在线观看| 亚洲真实伦在线观看| 露出奶头的视频| 桃红色精品国产亚洲av| 亚洲第一电影网av| 欧美日韩精品网址| 亚洲美女视频黄频| 最近最新中文字幕大全免费视频| 热99re8久久精品国产| 日日夜夜操网爽| 又粗又爽又猛毛片免费看| 亚洲成人国产一区在线观看| 久久午夜亚洲精品久久| 国产又黄又爽又无遮挡在线| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 欧美成人免费av一区二区三区| av福利片在线观看| 宅男免费午夜| 两个人视频免费观看高清| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| 精品人妻1区二区| 大型av网站在线播放| 一卡2卡三卡四卡精品乱码亚洲| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文字幕一区二区三区有码在线看 | 亚洲男人的天堂狠狠| 精品不卡国产一区二区三区| 色综合站精品国产| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 丰满的人妻完整版| 视频区欧美日本亚洲| 男人的好看免费观看在线视频 | 午夜视频精品福利| 国产精品一及| 亚洲黑人精品在线| 国产精品 欧美亚洲| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩 | 成人三级做爰电影| 精品久久蜜臀av无| 色av中文字幕| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站 | 99国产精品一区二区蜜桃av| 精品免费久久久久久久清纯| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 国产爱豆传媒在线观看 | 麻豆国产av国片精品| 婷婷丁香在线五月| 国产精品免费视频内射| 丰满的人妻完整版| 久久精品成人免费网站| 欧美久久黑人一区二区| 无遮挡黄片免费观看| 青草久久国产| 国产激情欧美一区二区| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 看免费av毛片| 2021天堂中文幕一二区在线观| 99国产精品一区二区蜜桃av| 精品日产1卡2卡| 午夜两性在线视频| 亚洲中文av在线| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 亚洲精品色激情综合| 日本一区二区免费在线视频| 久久精品亚洲精品国产色婷小说| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 国产熟女xx| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 国产真人三级小视频在线观看| 18禁美女被吸乳视频| 一本精品99久久精品77| 人妻夜夜爽99麻豆av| 性色av乱码一区二区三区2| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕在线视频| 91成年电影在线观看| 成人三级做爰电影| 全区人妻精品视频| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区| 国产熟女xx| 丰满的人妻完整版| 亚洲欧美激情综合另类| 国产精品一区二区精品视频观看| av在线天堂中文字幕| 小说图片视频综合网站| 天堂√8在线中文| 女警被强在线播放| 欧美精品亚洲一区二区| 女生性感内裤真人,穿戴方法视频| www国产在线视频色| 黄色 视频免费看| 精品国产乱码久久久久久男人| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| 免费观看人在逋| 久久热在线av| 亚洲乱码一区二区免费版| 亚洲五月婷婷丁香| 正在播放国产对白刺激| 少妇粗大呻吟视频| 亚洲国产精品成人综合色| 韩国av一区二区三区四区| 波多野结衣高清作品| 成人18禁在线播放| 日韩欧美国产一区二区入口| 亚洲色图 男人天堂 中文字幕| 在线观看66精品国产| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 中文字幕人成人乱码亚洲影| 亚洲欧美激情综合另类| 12—13女人毛片做爰片一| 人成视频在线观看免费观看| 日本一本二区三区精品| 国产av在哪里看| 精品熟女少妇八av免费久了| 在线观看66精品国产| 欧美在线一区亚洲| 国产成人精品久久二区二区免费| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 亚洲 国产 在线| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 国产午夜精品论理片| 久久精品影院6| 国产高清videossex| 啦啦啦免费观看视频1| 国产视频内射| 日韩免费av在线播放| 免费看十八禁软件| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| 欧美大码av| 亚洲精品久久成人aⅴ小说| 夜夜夜夜夜久久久久| 久久久久久免费高清国产稀缺| 一夜夜www| 可以在线观看毛片的网站| 国产私拍福利视频在线观看| 狂野欧美激情性xxxx| 亚洲精品在线观看二区| 欧美成狂野欧美在线观看| 国语自产精品视频在线第100页| 91av网站免费观看| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| svipshipincom国产片| 草草在线视频免费看| 老司机福利观看| 人人妻人人澡欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 小说图片视频综合网站| 国产成人精品久久二区二区91| 欧美日韩国产亚洲二区| 亚洲九九香蕉| 色综合婷婷激情| 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 人妻夜夜爽99麻豆av| 日韩高清综合在线| 特级一级黄色大片| 国产三级黄色录像| 亚洲av成人精品一区久久| 午夜福利欧美成人| 99在线视频只有这里精品首页| 一二三四在线观看免费中文在| 在线观看美女被高潮喷水网站 | 久久精品影院6| 久久久久精品国产欧美久久久| 在线视频色国产色| 美女 人体艺术 gogo| 999精品在线视频| 18禁裸乳无遮挡免费网站照片| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 成人欧美大片| 99热只有精品国产| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 亚洲人成伊人成综合网2020| 黄色 视频免费看| 久久久久九九精品影院| 亚洲av五月六月丁香网| 91av网站免费观看| 中文字幕av在线有码专区| 哪里可以看免费的av片| 观看免费一级毛片| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 一边摸一边做爽爽视频免费| 岛国在线免费视频观看| 亚洲专区字幕在线| 舔av片在线| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 精品久久蜜臀av无| 国产成人系列免费观看| 免费看日本二区| 人人妻人人澡欧美一区二区| 最近在线观看免费完整版| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人国产一区在线观看| 精品第一国产精品| 久久国产乱子伦精品免费另类| 久久香蕉精品热| 精品久久久久久久末码| 在线观看66精品国产| 亚洲五月天丁香| av免费在线观看网站| 亚洲国产欧美一区二区综合| 成年版毛片免费区| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 日韩高清综合在线| 精品不卡国产一区二区三区| 又大又爽又粗| 全区人妻精品视频| 午夜福利视频1000在线观看| 国产视频一区二区在线看| 俺也久久电影网| 身体一侧抽搐| 午夜激情福利司机影院| 亚洲真实伦在线观看| 99久久精品国产亚洲精品| 亚洲美女黄片视频| 久久久国产成人精品二区| 成人三级黄色视频| 国产av一区在线观看免费| 欧美黑人欧美精品刺激| 一级毛片高清免费大全| 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 老鸭窝网址在线观看| 在线观看66精品国产| 高清毛片免费观看视频网站| 在线观看www视频免费| 午夜精品在线福利|