• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

    2014-03-27 01:17:42YangWangZhouyanFengJingWangXiaojingZheng

    Yang Wang, Zhouyan Feng, Jing Wang, Xiaojing Zheng

    Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, Zhejiang Province, China

    Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

    Yang Wang, Zhouyan Feng, Jing Wang, Xiaojing Zheng

    Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, Zhejiang Province, China

    Zhouyan Feng, Ph.D., Key Laboratory

    of Biomedical Engineering of Education

    Ministry, College of Biomedical

    Engineering and Instrumentation Science, Zhejiang University, Hangzhou 310027, Zhejiang Province, China,

    fengzhouyan@139.com.

    nerve regeneration; somatosensory stimulation; tail clamping; hippocampal CA1 region; local field potential; unit spike; population spike; excitability; 973 Program; neural regeneration

    Funding: This work was supported by Major State Basic Research Development Program of China (973 Program), No. 2011CB504400.

    Wang Y, Feng ZY, Wang J, Zheng XJ. Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats. Neural Regen Res. 2014;9(11):1138-1144.

    Introduction

    The hippocampal region of the brain is known to play important roles in learning and memory formation. Understanding the behavior of individual neurons in the hippocampus is crucial for elucidating the mechanisms of memory formation. Currently, it is not clear how hippocampal neurons respond to inputs from the sensory nervous system (Pereira et al., 2007). Previous investigations have shown that sensory stimulation, such as strokes on the foot or whiskers, evoke different patterns of action potential firing in hippocampal neurons, which can be detected as a change in multiple unit activity (Miller and Groves, 1977; Vinogradova et al., 1993; Pereira et al., 2007). In addition, in response to somatosensory stimulation, the fi ring of pyramidal cells in the CA1 region decreases, while the firing of interneurons changes intricately-increasing, decreasing or without significant change (Miller and Groves, 1977; Vinogradova et al., 1993; Bellistri et al., 2013). However, the mechanisms responsible for the activity change in pyramidal cells (i.e., the principal cells in the hippocampus) remain unclear. Considering that these cells are modulated by local inhibitory circuits comprised of interneurons (Zheng and Khanna, 2001; Bellistri et al., 2013), the decrease in pyramidal cell fi ring could be caused by an increase in interneuron-mediated inhibition, or by a decrease in pyramidal cell excitability. In addition, a decrease in afferent input could also affect pyramidal cell activity (Bellistri et al., 2013).

    To investigate how pyramidal cells and interneurons respond to somatosensory input in the hippocampal CA1 region, we recorded and analyzed changes in local field potentials and fi ring rates of individual neurons during tail clamping in urethane-anesthetized rats. We also investigated the mechanisms underlying the neuronal responses.

    The urethane anesthetized preparation can avoid the infl uence of animal’s behavior and other unnecessary sensory input (Deadwyler et al., 1981; Itskov et al., 2011) without signi fi cant anesthetic effects on somatosensory inputs, because the urethane has minimum inhibition on sensory-evoked responses in nervous systems (Sceniak and Maciver, 2006).

    Materials and Methods

    Electrode placement and signal recording

    A total of 12 clean, healthy, adult, male, Sprague-Dawley rats weighing 250-350 g were provided by the Experimental Animal Center, Zhejiang Academy of Medical Science, China. All procedures used in this study were carried out in accordance with the Guide for the Care and Use of Laboratory Animals (Ministry of Health, China), and the protocol was approved by the Institutional Animal Care Committee of Zhejiang University in China. The rats were intraperitoneal-ly anesthetized with urethane 1.25-1.50 g/kg, and placed in a stereotaxic apparatus (Stoelting Co., Wood Dale, IL, USA). Part of the skull was removed for placement of electrodes. The recording electrode was a 16-channel microelectrode array (NeuroNexus Technologies, Ann Arbor, MI, USA) that was inserted into the hippocampal CA1 region (anteroposterior, -3.0 mm; mediolateral, 2.6 mm; dorsoventral, 2.5 mm) (George and Charles, 2007) to make extracellular recordings of local fi eld potentials and to record unit spikes. The stimulating electrode was a bundled pair of polyimide insulated tungsten electrodes (A-M Systems Inc., Carlsborg, WA, USA) with a vertical tip separation of about 0.5 mm, and was inserted into the Schaffer collaterals (anteroposterior, -2.0 mm; mediolateral, 2.3 mm; dorsoventral, 2.8 mm) for orthodromic stimulation of CA1 neurons. Two stainless steel screws were fi xed in the nasal bone and served as reference and ground. The accuracy of electrode placement was confi rmed by the unique waveforms of the orthodromic-evoked potentials in the CA1 region recorded by the electrode array (Kloosterman et al., 2001). Saline was poured over the exposed cortex to maintain moisture.

    Stimulus pulses with constant currents were produced by a Model 2300 Stimulus Isolator (A-M Systems Inc.), with a duration of 0.1 ms and a current intensity in the range of 0.25-0.35 mA, that induced orthodromic-evoked population spikes of about 80% maximal amplitude in the CA1 stratum pyramidale. The population spike amplitude was measured as the average of the two potential differences of the negative spike peak to the preceding and following positive peaks.

    Signals were first amplified 100-fold by a 16-channel ampli fi er (Model 3600, A-M Systems Inc.) with a fi lter frequency range of 0.3-5,000 Hz. Signals were then sampled at 20,000 Hz with a data-acquisition system PowerLab ML880 (AD Instruments Inc., Castle Hill, NSW, Australia) and were stored onto hard disk for of fl ine analysis (Feng et al., 2013).

    Signal processing and spike sorting

    Using the LabChart software in the PowerLab ML880 suite, the local fi eld potentials were extracted from the raw recording signals by a 0.5-80 Hz digital band-pass fi lter, then the power spectrum of a 30-second long local field potential signal was estimated using Welch’s method (Welch, 1967), i.e., the spectrum was calculated by fast Fourier transformation with a length of 217sampling data (about 6.55 seconds) in successive 50% overlapping Hanning windows. The frequency resolution of the estimated spectrum was about 0.15 Hz. Then, the power percentages of local fi eld potentials in the following sub-frequency bands were calculated: delta (0.5-2 Hz), theta (2-7 Hz), alpha (7-13 Hz), beta (13-30 Hz) and gamma (30-80 Hz) (Buzsáki and Draguhn, 2004).

    The digital high-pass fi lter provided in the LabChart software with a cut-off frequency of 500 Hz was used to extract the multiple unit activity signals from the raw recordings from the CA1 stratum pyramidale. Unit spikes were then detected using a threshold method (Lewicki, 1998). The threshold values were set as ± 5-8 times the standard deviation of the multiple unit activity signal to minimize error. Signals with amplitudes larger than the threshold were collected as unit waveforms with a duration of 4 ms (2 ms pre-threshold and 2 ms post-threshold). The feature vectors (i.e., principal components) of the unit spike waveforms were extracted with a Matlab program, MClust (http://redishlab.neuroscience.umn.edu/MClust/MClust.html). Then, spike sorting was performed with an open-source automatic clustering software, KlustaKwik (Rutgers University, New Brunswick, NJ, USA) (Harris et al., 2000), which is based on the principal component analysis method.

    To distinguish the unit spikes of pyramidal cells from that of interneurons, we calculated the mean waveform widths of the sorted unit spikes. Because the trough to post-peak width for the spike waveforms of a pyramidal cell and an interneuron are 0.86 ± 0.17 ms and 0.43 ± 0.27 ms, respectively (Barthó et al., 2004), a width of 0.7 ms was used to distinguish pyramidal neurons from interneurons. In addition, autocorrelograms of the inter-spike intervals of the sorted unit spikes were used to con fi rm the judgment of neuronal type. CA1 pyramidal cells usually fi re spike bursts of 3-5 or more action potentials with very short inter-spike intervals (Ranck, 1973), yielding two sharp peaks at the short intervals near the center of the autocorrelogram, while autocorrelograms for interneurons appear smooth without sharp peaks (Csicsvari et al., 1999; Barthó et al., 2004).

    The raster plots and the peristimulus time histogram of sorted unit spikes were used to calculate the change in fi ring rate of single neurons 30 seconds before and 30 seconds after the onset of somatosensory stimulation (tail clamping). In the peristimulus time histogram, the bin width of the horizontal axis was set at 1 second. Plots of peristimulus time histogram were also used to show the change in fi ring rate of multiple unit spikes.

    Somatosensory stimulation

    Somatosensory stimulation was applied by clamping the tail for 3 minutes using a crocodile clip with a length of 35 mm (Sute Inc., Shanghai, China) (Bermudez Contreras et al., 2013).

    Statistical analysis

    All data were expressed as mean ± SD, and analyzed using SPSS for Windows (SPSS, Chicago, IL, USA). Paired t-test was used to evaluate differences in fi ring rates of pyramidal cells and interneurons before and during somatosensory stimulation. One-way analysis of variance and repeated analysis of variance with post hoc Bonferroni tests were used to compare differences in the power spectra of local fi eld potentials and the amplitudes of orthodromic-evoked population spikes before, during and after somatosensory stimulation.

    Results

    Changes in local fi eld potentials and multiple unit activity under somatosensory stimulation

    The local fi eld potential signal in the stratum pyramidale of the CA1 region was examined from one channel of the recording electrode array (Figure 1A). The waveforms of localfi eld potentials changed immediately following the onset of tail clamping with a clip and were maintained for 3 minutes until the removal of the clip. Before tail stimulation, the local fi eld potentials exhibited large-amplitude slow activity with a main power in the delta band. However, during the tail clamping period, local fi eld potentials changed into a theta rhythm-dominated waveform. After removing the clip, the local field potentials recovered quickly to the original slow rhythm (Figure 1B).

    The changes in local fi eld potentials were quanti fi ed using power spectrums for 30-second episodes of local fi eld potential signals before and following the onset of tail clamping, as well as after the end of tail clamping. As shown inFigure 1C,during tail clamping, the power percentage of the delta rhythm signi fi cantly decreased by 54.5 ± 13.2% (one-way analysis of variance, F > 283.8, P < 0.001; with post hoc Bonferroni test, P < 0.001; n = 12), while that of the theta rhythm significantly increased by 25.5 ± 9.0% (one-way analysis of variance, F > 24.7, P < 0.001; with post hoc Bonferroni test, P < 0.001; n = 12). The power percentages of the other three bands with higher frequencies were also increased signi fi cantly during tail clamping, but their powers were far less than the theta band.

    The signi fi cant changes in local fi eld potential induced by somatosensory stimulation might be associated with changes in unit spike activity. Therefore, the peristimulus time histogram plots of multiple unit activity were used to show the differences in fi ring rates of the multiple unit spikes in the period 30 seconds before and 30 seconds following the onset of tail clamping. However, there were no consistent multiple unit activity changes (n = 12). Some of the peristimulus time histogram plots showed a decrease in spike firing rate following the onset of tail clamping (Figure 1D), while others did not show obvious changes (Figure 1E). Our investigation of single unit activity suggested that the inconsistent changes in multiple unit activity could be caused by the activity of different types of neurons, not by variations in tail clamping or other factors.

    Studies have shown that an increase in theta rhythm in the local field potential in the hippocampal CA1 region is usually accompanied by an increase in firing of interneurons (Buzsáki et al., 1986; Toth et al., 1993; Buzsáki, 2002; Bienvenu et al., 2012). In addition, it has been shown that somatosensory stimulation decreases the fi ring of pyramidal cells in the CA1 region (Bellistri et al., 2013). Therefore, we next examined whether tail clamping could induce contrasting changes in pyramidal cells and interneurons in the CA1 region, which could account for the inconsistent changes in multiple unit activity.

    Different responses of pyramidal cells and interneurons induced by somatosensory stimulation

    To study the responses of pyramidal cells and interneurons to somatosensory stimulation, we sorted the multiple unit activity signals into single unit spikes, and then distinguished the two types of neurons based on the widths of spike waveforms and the autocorrelogram of inter-spike-intervals. As shown inFigure 2A, the superimposed spike waveforms of the pyramidal neurons have a longer trough to post-peak interval than the spike waveforms of interneurons. The autocorrelogram of pyramidal neurons usually contains obvious peaks at very short inter-spike intervals, while that of interneurons does not have this feature. In this study, 10 pyramidal cells and 17 interneurons with an original fi ring rate greater than 2 spikes/s were obtained from 12 rats. The raster plots of these neurons showed that under tail clamping, the spike fi ring rates of pyramidal cells decreased, while that of interneurons increased (Figure 2B). The average peristimulus time histogram plots of the two types of neurons also clearly showed these opposite changes induced by somatosensory stimulation (Figure 2C). The fi ring rates of the neurons in the two 30-second periods before and after the onset of tail clamping were calculated. The fi ring rates of pyramidal cells decreased signi fi cantly from 3.0 ± 1.6 to 1.1 ± 0.9 spike/s (paired t-test, P < 0.001, n = 10), and that of interneurons increased signi fi cantly from 3.3 ± 1.3 to 7.1 ± 7.7 spike/s (paired t-test, P < 0.05, n = 17;Figure 3). Opposite changes in fi ring in different types of neurons might explain the inconsistent multiple unit activity responses that re fl ected mixed unit spikes of pyramidal cells and interneurons.

    These data indicate that somatosensory stimulation can enhance the activation of interneurons in the CA1 region. Considering that interneurons have inhibitory effects on primary neurons, the decrease in firing of pyramidal cells induced by somatosensory stimulation could be caused by a decrease in excitability of pyramidal cells or by a decrease in excitatory input from Schaffer collaterals (Miller and Groves, 1977; Herreras et al., 1986). Therefore, we examined changes in the excitability of pyramidal cells under somatosensory stimulation by applying stimulation pulses on the afferent Schaffer collateral pathway with a constant current intensity.

    Somatosensory stimulation suppressed the excitability of pyramidal cells in the CA1 region

    To investigate the changes in the excitability of pyramidal cells, electrical pulses with a constant current of 0.25-0.35 mA were applied on the Schaffer collaterals in the CA1 region. The test stimulus was applied before and after the onset of tail clamping, as well as after the release of tail clamping. As shown inFigure 4, the stimulus evoked orthodromic population spikes with a large amplitude (7.2 ± 1.8 mV) in the CA1 pyramidal layer before the onset of the tail clamping. In comparison, during tail clamping, the same stimulus evoked population spikes with a signi fi cantly reduced amplitude (5.1 ± 2.5 mV). After the release of tail clamping, the population spike amplitudes returned to the original level (6.8 ± 1.8 mV, n = 12). This result shows that constant afferent inputs induce smaller responses in CA1 pyramidal cells during tail clamping, indicating that somatosensory stimulation can suppress pyramidal cell excitability.

    Discussion

    Figure 1 Changes in local fi eld potentials and multiple unit activity (MUA) under somatosensory stimulation.

    Figure 2 Different responses of pyramidal cells and interneurons induced by somatosensory stimulation.

    Figure 3 Comparison of the fi ring rates of pyramidal cells (Pyr.) and interneurons (Int.) between the two 30-second periods obtained before and after the onset of tail clamping.

    This study shows that somatosensory stimulation changes local fi eld potentials into theta rhythm waveforms and decreases the spike firing of pyramidal cells, while increasing the firing of interneurons. In addition, the attenuation of orthodromic-evoked population spikes indicates a decrease in the excitability of CA1 pyramidal cells by somatosensory stimulation.

    Somatosensory input pathways in the brain project to the primary somatosensory cortex, then pass through the entorhinal cortex to enter the hippocampus (Zainos et al., 1997; Melzer et al., 2006). The inputs from the entorhinal cortex to the hippocampal CA1 region can either directly or indirectly (through CA3 and Schaffer collaterals) excite the dendrites of pyramidal cells in the CA1 (Lee et al., 2004; Andersen et al., 2006; Cutsuridis et al., 2010). However, during somatosensory stimulation, the firing of pyramidal cells in the CA1 decreases, instead of increasing, consistent with other studies (Khanna, 1997; Zheng and Khanna, 2001; Bellistri et al., 2013). Local network properties in the CA1 region can explain this phenomenon.

    In the CA1, the excitability of pyramidal cells is modulated by local inhibitory circuits consisting of interneurons (Alger and Nicoll, 1982; Papatheodoropoulos and Kostopoulos, 1998; Margineanu and Wülfert, 2000). Somatosensory inputs from both the entorhinal cortex and Schaffer collaterals can excite these interneurons (Lee et al., 2004; Andersen et al., 2006; Cutsuridis et al., 2010). This point is corroborated by the appearance of a strong theta rhythm in the local field potential during somatosensory stimulation, because the firing of interneurons can generate theta rhythms in the CA1 (Alonso and K?hler, 1982; Buzsáki et al., 1986; Toth et al., 1993; Buzsáki, 2002). Presumably, the significantly enhanced activity of interneurons suppresses the excitability of pyramidal cells through local inhibitory circuits, resulting in reduced pyramidal cell activity. In addition, the suppression of orthodromic-evoked population spikes during somatosensory stimulation suggests that pyramidal cell excitability was reduced. Therefore, the present findings suggest that sensory information can decrease rather than increase the activity of pyramidal neurons in the hippocampus.

    Figure 4 Somatosensory stimulation signi fi cantly decreases the amplitude of orthodromic-evoked population spikes (PSs) in the CA1 region.

    The present study suggests that the somatosensory-induced suppression of neuronal excitability under anesthesia may have therapeutic potential for abnormal brain states involving neuronal hyperactivity, such as epilepsy during sleep. Non-rapid eye movement sleep has been shown to facilitate the occurrence of seizures and epileptiform abnormalities (Matos et al., 2010; van Golde et al., 2011). In addition, small-wave desynchronized activity during arousal and rapid eye movement stages can reduce epileptiform activity (Matos et al., 2010). Our experiments were carried out under anesthesia. Large-amplitude slow waves in the delta frequency range (< 2 Hz) dominated the local fi eld potentials during anesthesia, indicating a state that was similar to non-rapid eye movement sleep. The increase in inhibitory interneuron activity during tail clamping characterized by theta-dominated small amplitude local fi eld potentials provides insight into the mechanisms underlying epilepsy suppression. Moreover, a previous study showed that somatosensory stimulation, such as fur stroking, abolishes interictal spike activity in epileptic animals (Lerma et al., 1984). Therefore, somatosensory stimulation may be a potential therapeutic approach for some types of neuronal hyperactivity. However, more investigations with epileptic animals are necessary to evaluate the impact of sensory stimulation on seizure activity.

    Although tail clamping may represent a noxious pain stimulus, the alterations in the fi ring of pyramidal cells induced bytail clamping are consistent with previous studies of moderate stimulation such as strokes on paws and whiskers (Miller and Groves, 1977; Vinogradova et al., 1993; Bellistri et al., 2013). Therefore, our results support the notion that different sensory inputs induce similar responses in the hippocampal region because they share common pathways of information processing (Bellistri et al., 2013). By using tail clamping, we can obtain consistent individual neuronal responses, which can facilitate statistical analysis of activity changes in individual neurons in a moderately long period. Therefore, tail clamping appears to be a simple and reliable method for investigating the mechanisms of somatosensory stimulation.

    In conclusion, somatosensory stimulation suppresses pyramidal cell excitability and fi ring in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect of the sensory input. Taken together, our findings provide valuable insight into the mechanisms of signal processing in the hippocampus. They also suggest that somatosensory stimulation may have therapeutic potential in brain disorders characterized by neuronal hyperactivity (Lerma et al., 1984).

    Author contributions:Wang Y and Feng ZY wrote this manuscript. All authors designed, performed and evaluated the study, and approved the final version of the paper.

    Con fl icts of interest:None declared.

    Alger BE, Nicoll RA (1982) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105-123.

    Alonso A, K?hler C (1982) Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neurosci Lett 31:209-214.

    Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The Hippocampus Book. Oxford: Oxford University Press.

    Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G (2004) Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 92:600-608.

    Bellistri E, Aguilar J, Brotons-Mas JR, Foffani G, de la Prida LM (2013) Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat. J Physiol 591:2667-2686.

    Bermudez Contreras EJ, Schjetnan AGP, Muhammad A, Bartho P, McNaughton BL, Kolb B, Gruber AJ, Luczak A (2013) Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79:555-566.

    Bienvenu TC, Busti D, Magill PJ, Ferraguti F, Capogna M (2012) Cell-type-speci fi c recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron 74:1059-1074.

    Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325-340.

    Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-1929.

    Buzsáki G, Czopf J, Kondakor I, Kellenyi L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365:125-137.

    Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274-287.

    Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20:423-446.

    Deadwyler SA, West MO, Robinson JH. Evoked potentials from the dentate gyrus during auditory stimulus generalization in the rat. Exp Neurol. 1981;71:615-624.

    Feng Z, Zheng X, Yu Y, Durand DM (2013) Functional disconnection of axonal fi bers generated by high frequency stimulation in the hippocampal CA1 region in-vivo. Brain Res 1509:32-42.

    George P, Charles W (2007) The Rat Brain in Stereotaxic Coordinates. London: Academic Press.

    Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401-414.

    Herreras O, Soils J, Lerma J (1986) Abolition of CA1 population spike by sensory stimulation. Exp Brain Res 61:654-657.

    Itskov PM, Vinnik E, Diamond ME. Hippocampal representation of touch-guided behavior in rats: persistent and independent traces of stimulus and reward location. PLoS One. 2011;6:e16462.

    Khanna S (1997) Dorsal hippocampus field CA1 pyramidal cell responses to a persistent vs an acute nociceptive stimulus and their septal modulation. Neuroscience 77:713-721.

    Kloosterman F, Peloquin P, Leung LS (2001) Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. J Neurophysiol 86:2435-2444.

    Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal sub fi elds CA1 and CA3. Nature 430:456-459.

    Lerma J, Herreras O, Munoz D, Solís JM (1984) Interactions between hippocampal penicillin spikes and theta rhythm. Electroencephalogr Clin Neurophysiol 57:532-540.

    Lewicki MS (1998) A review of methods for spike sorting: the detection and classi fi cation of neural action potentials. Network 9:R53-78.

    Margineanu DG, Wülfert E (2000) Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area. Brain Res Bull 51:69-74.

    Matos G, Andersen ML, do Valle AC, Tu fi k S (2010) The relationship between sleep and epilepsy: evidence from clinical trials and animal models. J Neurol Sci 295:1-7.

    Melzer P, Champney GC, Maguire MJ, Ebner FF (2006) Rate code and temporal code for frequency of whisker stimulation in rat primary and secondary somatic sensory cortex. Exp Brain Res 172:370-386.

    Miller SW, Groves PM (1977) Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei. Physiol Behav 18:141-146.

    Papatheodoropoulos C, Kostopoulos G (1998) Development of a transient increase in recurrent inhibition and paired-pulse facilitation in hippocampal CA1 region. Brain Res Dev Brain Res 108:273-285.

    Pereira A, Ribeiro S, Wiest M, Moore LC, Pantoja J, Lin SC, Nicolelis MA (2007) Processing of tactile information by the hippocampus. Proc Natl Acad Sci U S A 104:18286-18291.

    Ranck JB (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats: Part I. Behavioral correlates and fi ring repertoires. Exp Neurol 41:462-531.

    Sceniak MP, Maciver MB. Cellular actions of urethane on rat visual cortical neurons in vitro. J Neurophysiol. 2006;95: 3865-3874.

    Toth K, Borhegyi Z, Freund TF (1993) Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex. J Neurosci 13:3712-3724.

    van Golde EG, Gutter T, de Weerd AW (2011) Sleep disturbances in people with epilepsy; prevalence, impact and treatment. Sleep Med Rev 15:357-368.

    Vinogradova OS, Brazhnik ES, Kitchigina VF, Stafekhina VS (1993) Acetylcholine, theta-rhythm and activity of hippocampal neurons in the rabbit-IV. Sensory stimulation. Neuroscience 53:993-1007.

    Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modi fi ed periodograms. IEEE Trans Acoust 15:70-73.

    Zainos A, Merchant H, Hernández A, Salinas E, Romo R (1997) Role of primary somatic sensory cortex in the categorization of tactile stimuli: effects of lesions. Exp Brain Res 115:357-360.

    Zheng F, Khanna S (2001) Selective destruction of medial septal cholinergic neurons attenuates pyramidal cell suppression, but not excitation in dorsal hippocampus fi eld CA1 induced by subcutaneous injection of formalin. Neuroscience 103:985-998.

    Copyedited by Patel B, Robens J, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.135316

    http://www.nrronline.org/

    Accepted: 2014-05-03

    The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of individual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local fi eld potentials and the fi ring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, changed local fi eld potentials into theta rhythm-dominated waveforms, decreased the spike fi ring of pyramidal cells, and increased interneuron fi ring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These fi ndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have therapeutic potential for brain disorders associated with neuronal hyperexcitability.

    90打野战视频偷拍视频| 97人妻天天添夜夜摸| 日韩制服丝袜自拍偷拍| 日韩欧美三级三区| 1024视频免费在线观看| 99久久国产精品久久久| 国产成人啪精品午夜网站| 国内久久婷婷六月综合欲色啪| 日日夜夜操网爽| 色婷婷久久久亚洲欧美| 国产成人欧美| 精品一品国产午夜福利视频| 精品久久久久久久毛片微露脸| 国产精品久久视频播放| aaaaa片日本免费| 欧美精品av麻豆av| 欧美 亚洲 国产 日韩一| 国产亚洲一区二区精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 18禁裸乳无遮挡免费网站照片 | 丁香六月欧美| 最近最新中文字幕大全电影3 | 人人妻人人澡人人看| 多毛熟女@视频| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 又紧又爽又黄一区二区| 午夜精品国产一区二区电影| 宅男免费午夜| 亚洲精品国产精品久久久不卡| 在线看a的网站| 亚洲人成电影观看| 午夜福利在线观看吧| 建设人人有责人人尽责人人享有的| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜激情av网站| 国产激情欧美一区二区| 人人妻人人添人人爽欧美一区卜| xxxhd国产人妻xxx| 91老司机精品| 国内久久婷婷六月综合欲色啪| av一本久久久久| 人人妻人人添人人爽欧美一区卜| 正在播放国产对白刺激| 99久久综合精品五月天人人| 免费不卡黄色视频| 一区在线观看完整版| 视频在线观看一区二区三区| 亚洲国产精品一区二区三区在线| 99国产精品免费福利视频| 一a级毛片在线观看| 亚洲少妇的诱惑av| 一进一出抽搐gif免费好疼 | 亚洲欧美一区二区三区黑人| 99riav亚洲国产免费| 亚洲欧美激情综合另类| 国精品久久久久久国模美| 777久久人妻少妇嫩草av网站| 久久香蕉精品热| tube8黄色片| 一二三四社区在线视频社区8| 亚洲黑人精品在线| 久9热在线精品视频| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 激情在线观看视频在线高清 | 啦啦啦 在线观看视频| 亚洲第一青青草原| 人成视频在线观看免费观看| 亚洲成国产人片在线观看| 丰满迷人的少妇在线观看| 亚洲av片天天在线观看| 日本黄色视频三级网站网址 | 国产成人精品久久二区二区91| 久久久国产成人免费| 欧美成狂野欧美在线观看| 中文字幕色久视频| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 在线观看免费视频网站a站| 99在线人妻在线中文字幕 | 我的亚洲天堂| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 1024香蕉在线观看| 亚洲av欧美aⅴ国产| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人 | 老司机福利观看| 欧美精品亚洲一区二区| 亚洲久久久国产精品| 欧美色视频一区免费| 啦啦啦在线免费观看视频4| 国产欧美日韩一区二区三区在线| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 日韩熟女老妇一区二区性免费视频| 无人区码免费观看不卡| 757午夜福利合集在线观看| av欧美777| 1024视频免费在线观看| 亚洲在线自拍视频| 一进一出抽搐gif免费好疼 | 亚洲第一欧美日韩一区二区三区| 欧美日韩精品网址| 一二三四社区在线视频社区8| 女警被强在线播放| 黑人操中国人逼视频| 久久国产乱子伦精品免费另类| 国产成人精品无人区| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡| 精品国产美女av久久久久小说| 久久精品亚洲av国产电影网| 欧美最黄视频在线播放免费 | 国产男女内射视频| 人人澡人人妻人| 午夜福利影视在线免费观看| 手机成人av网站| 每晚都被弄得嗷嗷叫到高潮| 成人国产一区最新在线观看| 久热这里只有精品99| 亚洲九九香蕉| 一区在线观看完整版| 日韩欧美在线二视频 | 19禁男女啪啪无遮挡网站| 视频在线观看一区二区三区| 国产亚洲欧美98| 国产激情欧美一区二区| 一边摸一边做爽爽视频免费| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 色播在线永久视频| 1024香蕉在线观看| 三级毛片av免费| 亚洲va日本ⅴa欧美va伊人久久| 国产免费av片在线观看野外av| 久久性视频一级片| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免费看| 久久久国产成人免费| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品国产亚洲精品| 久99久视频精品免费| 国产成人啪精品午夜网站| 国产精品1区2区在线观看. | 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 精品午夜福利视频在线观看一区| 久久青草综合色| 亚洲欧美日韩另类电影网站| 精品人妻1区二区| 五月开心婷婷网| 中文欧美无线码| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 极品少妇高潮喷水抽搐| 捣出白浆h1v1| 国产色视频综合| 国产高清国产精品国产三级| 成年人午夜在线观看视频| 国产一区有黄有色的免费视频| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 下体分泌物呈黄色| 成人亚洲精品一区在线观看| 久久人妻av系列| www.自偷自拍.com| 国产精品成人在线| 又黄又爽又免费观看的视频| 90打野战视频偷拍视频| 免费av中文字幕在线| 国产成人欧美| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 国产精品98久久久久久宅男小说| 国产有黄有色有爽视频| av国产精品久久久久影院| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| av不卡在线播放| 亚洲av美国av| 亚洲成国产人片在线观看| 激情视频va一区二区三区| 日韩视频一区二区在线观看| 9色porny在线观看| 国产精品香港三级国产av潘金莲| 人人妻人人澡人人看| 老司机亚洲免费影院| 在线观看一区二区三区激情| 19禁男女啪啪无遮挡网站| 男人舔女人的私密视频| 午夜福利一区二区在线看| 满18在线观看网站| 欧美丝袜亚洲另类 | 国产精品自产拍在线观看55亚洲 | 又黄又爽又免费观看的视频| 飞空精品影院首页| 亚洲成人免费av在线播放| 精品人妻熟女毛片av久久网站| 嫁个100分男人电影在线观看| 多毛熟女@视频| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 在线看a的网站| 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av | 欧美丝袜亚洲另类 | 男人舔女人的私密视频| 在线观看免费日韩欧美大片| 成年人午夜在线观看视频| 岛国毛片在线播放| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 欧美黄色淫秽网站| 日韩免费av在线播放| 电影成人av| 男男h啪啪无遮挡| 黄色女人牲交| 久久久国产一区二区| 精品电影一区二区在线| 国产精华一区二区三区| 一二三四在线观看免费中文在| 午夜福利在线免费观看网站| 午夜免费鲁丝| 他把我摸到了高潮在线观看| 十分钟在线观看高清视频www| 国产亚洲一区二区精品| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| 热99久久久久精品小说推荐| 久久草成人影院| 身体一侧抽搐| 在线观看午夜福利视频| 国产精品久久久久成人av| 宅男免费午夜| 在线观看免费午夜福利视频| 免费观看精品视频网站| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 久久天躁狠狠躁夜夜2o2o| 国产日韩一区二区三区精品不卡| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 女人精品久久久久毛片| 天天躁日日躁夜夜躁夜夜| 日本欧美视频一区| 午夜福利在线观看吧| 国产在线精品亚洲第一网站| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 中文字幕高清在线视频| 妹子高潮喷水视频| 久久精品国产亚洲av香蕉五月 | 欧美国产精品一级二级三级| 国产亚洲av高清不卡| a级片在线免费高清观看视频| 久久久久久久精品吃奶| 在线播放国产精品三级| 丁香欧美五月| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| 亚洲国产欧美日韩在线播放| 大香蕉久久成人网| 久热爱精品视频在线9| 丝袜美腿诱惑在线| 在线观看舔阴道视频| 99re6热这里在线精品视频| 高清av免费在线| 新久久久久国产一级毛片| tocl精华| 日韩中文字幕欧美一区二区| 国产黄色免费在线视频| 少妇 在线观看| 满18在线观看网站| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 精品高清国产在线一区| 国产精品九九99| 精品第一国产精品| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 国产精品秋霞免费鲁丝片| 在线观看www视频免费| a级毛片在线看网站| 超碰成人久久| 精品免费久久久久久久清纯 | 亚洲国产欧美一区二区综合| 美女国产高潮福利片在线看| 亚洲aⅴ乱码一区二区在线播放 | 一区二区日韩欧美中文字幕| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 久久精品国产清高在天天线| 成人影院久久| 日韩欧美一区二区三区在线观看 | 婷婷精品国产亚洲av在线 | 美女午夜性视频免费| 亚洲人成伊人成综合网2020| 国产精品影院久久| 国产色视频综合| 女同久久另类99精品国产91| 中国美女看黄片| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 欧美日韩av久久| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区免费欧美| 深夜精品福利| 亚洲精品久久午夜乱码| 亚洲熟妇熟女久久| 一级毛片精品| 亚洲成人国产一区在线观看| 国产精品一区二区免费欧美| 99国产精品免费福利视频| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区 | 国产精品二区激情视频| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 国产成人欧美在线观看 | 日韩欧美在线二视频 | 精品国内亚洲2022精品成人 | 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 在线播放国产精品三级| 日韩精品免费视频一区二区三区| 一级片'在线观看视频| 在线视频色国产色| 91麻豆av在线| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 久久久久视频综合| 搡老岳熟女国产| 夜夜夜夜夜久久久久| av天堂在线播放| 久久这里只有精品19| 亚洲 国产 在线| 99香蕉大伊视频| 国产成人欧美| 国产国语露脸激情在线看| 日韩免费av在线播放| 亚洲人成电影免费在线| 男人舔女人的私密视频| 日本vs欧美在线观看视频| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 亚洲欧美色中文字幕在线| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 精品视频人人做人人爽| 久久久久精品国产欧美久久久| 国产av一区二区精品久久| 欧美中文综合在线视频| 午夜免费观看网址| 9色porny在线观看| 亚洲精品粉嫩美女一区| 色综合婷婷激情| 国产精品一区二区在线观看99| 色综合婷婷激情| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 欧美日韩精品网址| 欧美日韩成人在线一区二区| 飞空精品影院首页| 精品无人区乱码1区二区| 99久久人妻综合| av片东京热男人的天堂| 日本欧美视频一区| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 国产免费现黄频在线看| 欧美人与性动交α欧美软件| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 免费观看a级毛片全部| 日韩免费av在线播放| 国产精品秋霞免费鲁丝片| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 热99久久久久精品小说推荐| 黄色怎么调成土黄色| 岛国毛片在线播放| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 黄片大片在线免费观看| 18禁观看日本| 欧美黄色淫秽网站| 久久亚洲精品不卡| 人人澡人人妻人| 19禁男女啪啪无遮挡网站| 精品高清国产在线一区| 天堂中文最新版在线下载| 757午夜福利合集在线观看| 久久久久久久久久久久大奶| 精品国产超薄肉色丝袜足j| 国产欧美日韩一区二区精品| 国产在线一区二区三区精| 女人被狂操c到高潮| 国产又爽黄色视频| 亚洲国产中文字幕在线视频| 91成人精品电影| bbb黄色大片| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一级在线毛片| 午夜福利视频在线观看免费| 免费av中文字幕在线| 99热只有精品国产| 亚洲成人手机| 国产精品.久久久| 亚洲在线自拍视频| 村上凉子中文字幕在线| 欧美老熟妇乱子伦牲交| 五月开心婷婷网| 中文字幕最新亚洲高清| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 99久久综合精品五月天人人| 男女午夜视频在线观看| 久久九九热精品免费| 亚洲专区国产一区二区| 一级片免费观看大全| 老司机在亚洲福利影院| 亚洲黑人精品在线| 水蜜桃什么品种好| 丝袜人妻中文字幕| 成年版毛片免费区| 美女高潮到喷水免费观看| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 国产av又大| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 欧美 亚洲 国产 日韩一| 老司机影院毛片| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出 | 大片电影免费在线观看免费| 在线观看一区二区三区激情| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 麻豆国产av国片精品| 麻豆乱淫一区二区| 三级毛片av免费| 啦啦啦免费观看视频1| 最新美女视频免费是黄的| 久久久久久久午夜电影 | 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 一个人免费在线观看的高清视频| 曰老女人黄片| 欧美人与性动交α欧美精品济南到| 韩国精品一区二区三区| 亚洲国产中文字幕在线视频| 亚洲熟妇熟女久久| 欧美性长视频在线观看| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 男女高潮啪啪啪动态图| 亚洲精品国产精品久久久不卡| 中文字幕精品免费在线观看视频| a在线观看视频网站| 国产精品99久久99久久久不卡| 亚洲黑人精品在线| 多毛熟女@视频| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 一a级毛片在线观看| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 国产精品久久久人人做人人爽| 窝窝影院91人妻| 51午夜福利影视在线观看| 国产亚洲av高清不卡| 午夜老司机福利片| av视频免费观看在线观看| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 午夜激情av网站| 欧美日韩一级在线毛片| 久久狼人影院| 亚洲精品av麻豆狂野| 男女之事视频高清在线观看| 天堂俺去俺来也www色官网| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区二区三区在线观看 | 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 欧美激情极品国产一区二区三区| 一边摸一边抽搐一进一出视频| 欧美色视频一区免费| 国产精品久久久av美女十八| 人人妻人人添人人爽欧美一区卜| 精品免费久久久久久久清纯 | 在线观看免费午夜福利视频| 日韩精品免费视频一区二区三区| 啦啦啦在线免费观看视频4| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 首页视频小说图片口味搜索| 国产精品二区激情视频| 一本大道久久a久久精品| 日韩大码丰满熟妇| 精品亚洲成国产av| 黄色a级毛片大全视频| 黄频高清免费视频| 国产亚洲精品久久久久久毛片 | 精品视频人人做人人爽| 脱女人内裤的视频| 久久99一区二区三区| 一边摸一边做爽爽视频免费| 欧美丝袜亚洲另类 | av视频免费观看在线观看| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 国产在线一区二区三区精| 中文字幕最新亚洲高清| 久久中文字幕一级| 不卡一级毛片| 国产亚洲欧美精品永久| 国产一区二区激情短视频| 777久久人妻少妇嫩草av网站| 三级毛片av免费| 国产精品国产av在线观看| 在线观看舔阴道视频| 一区二区三区精品91| 国产精品久久久av美女十八| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 久久精品人人爽人人爽视色| 黑人巨大精品欧美一区二区mp4| bbb黄色大片| 他把我摸到了高潮在线观看| av电影中文网址| 大香蕉久久成人网| 国产又爽黄色视频| 真人做人爱边吃奶动态| 丝袜人妻中文字幕| 欧美精品高潮呻吟av久久| 一级毛片女人18水好多| 久久久久久久久久久久大奶| 好男人电影高清在线观看| 欧美国产精品一级二级三级| 99国产综合亚洲精品| 不卡一级毛片| 国产精品免费大片| 天天添夜夜摸| 日韩中文字幕欧美一区二区| 欧美一级毛片孕妇| 五月开心婷婷网| 在线观看免费视频日本深夜| 亚洲精品乱久久久久久| 久久香蕉国产精品| 在线观看免费视频日本深夜| 可以免费在线观看a视频的电影网站| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 久久这里只有精品19| 人妻一区二区av| 美女国产高潮福利片在线看| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃| www日本在线高清视频| 操出白浆在线播放| 国产91精品成人一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩综合在线一区二区| 久久久精品免费免费高清| 久久精品亚洲精品国产色婷小说| 99精品久久久久人妻精品| 久久精品国产亚洲av香蕉五月 | 欧美亚洲 丝袜 人妻 在线| 国产又爽黄色视频| 丝袜美足系列| 欧美成狂野欧美在线观看| 在线观看免费视频网站a站| 搡老熟女国产l中国老女人| 久久久国产成人免费| 他把我摸到了高潮在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 三级毛片av免费| 日韩欧美三级三区| 9热在线视频观看99| 国产亚洲欧美98| 国产精品九九99|