• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 3-D Metal-organic Framework Mn(II)Complex with Ant Net Constructed from 3-Pyridin-4-yl-benzoic Acid①

    2014-03-25 02:35:28TANGLongFUFengHOUXiangYangWANGJiJiangWANGZao
    結(jié)構(gòu)化學(xué) 2014年12期

    TANG Long FU Feng HOU Xiang-Yang WANG Ji-Jiang WANG Zao

    (Yan'an University, Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an, Shaanxi 716000, China)

    1 INTRODUCTION

    Current interest in coordination polymers based on the assembly of metal ions and multifunctional organic ligands is rapidly expanding, owing to their intriguing topological architectures and potential applications as functional solid materials[1,2]. Recently, large numbers of metal-organic frameworks(MOFs) have been obtained, and many of them exhibit versatile physical and chemical properties[3,4].Nevertheless, the rational design and synthesis of MOFs with unique structure and specific function still remains a long-term challenge. The topological analysis of MOFs has been a topical research area,and is not only an important tool for simplifying complicated compounds but also plays an instructive role in the rational design of functional materials.The topological types found in three-dimensional(3D) MOFs are commonly defined by the vertices(metal ions and/or ligands) and edges (links between vertices), among which three-, four-, five-, six-,seven- and eight-connected topologies are observed in many reported polymers[4,5]. Although some MOFs with mixed-connected topologies have been reported, such as Pt3O4, boracite, twisted boracite,PtS, rutile, pyrite, anatase, etc. Up to now, MOFs with high-mixed connectivity, like (3,6)-, (3,9)-,(4,8)- and (6,8)-connected architectures, are still quite scarce[6,7].

    The key steps in building MOFs are to rationally design appropriate ligands and to choose metal ions with suitable coordination geometries[8]. In the synthetic design of MOFs, the asymmetrical bridging ligands (pyridine carboxylic acids) containing N- or/and O-donors have been used widely[9]. In our previous work, several compounds with pyridine carboxylic acids have been reported[10-13]. To continue our research, a multidentate pyridine-benzoate acid, 3-pyridin-4-yl-benzoic acid (3,4-Hpybz), was employed in the self-assembly. Herein, we report a new 3D coordination polymer, 1, which shows a 3D(3,6)-connected ant net with (42.6)2(44.62.88.10)topology. Moreover, the thermogravimetric analysis and magnetic properties of 1 were also investigated.

    2 EXPERIMENTAL

    2.1 Materials and methods

    All commercially available solvents and starting materials were used as received without further purification. The FT-IR spectra were recorded from KBr pellets in the range of 4000~400 cm–1on a Bruker EQUINOX-55 spectrometer. Elemental analysis was determined with an Elementar Vario EL III elemental analyzer. Thermogravimetric analyses(TGA) were performed under nitrogen using a NETZSCH STA 449C thermogravimetric analyzer at a heating rate of 10 ℃·min–1. X-ray powder diffraction (XRPD) was carried out on a Shimadzu XRD-7000 analyzer. Variable temperature magnetic susceptibility was measured on an Oxford Maglab 2000 magnetometer with an applied field of 10 kOe.Diamagnetic correction was estimated from Pascal’s constants.

    2.2 Computational details

    All calculations have been processed in Gaussian 03(version 6.1) package[14]. The geometrical optimization was carried out with the hybrid DFT method on the basis of B3LYP functional[15]. The magnetic isotropic shielding tensors were also calculated using the B3LYP/6-31G(d) approach. The experimentally determined geometries for the complete structure of complex 1 were used for the calculation of magnetic exchange coupling constants. Neither variation of the geometrical parameters nor the geometry optimization[16]was attempted in this calculation because a small variation in the geometry can have a big effect on the calculated magnetic interaction parameters.

    2.3 Synthesis of [Mn(3,4-pybz)2]·3(H2O) (1)

    An aqueous solution (10 mL) containing 3-pyridin-4-yl-benzoic acid (0.10 mmol, 0.020 g) and MnCl2·4H2O (0.10 mmol, 0.020 g) was placed in a Parr Teflon-lined stainless steel vessel (25 mL)under autogenous pressure, which was heated to 160℃ for 5 d and subsequently cooled to room temperature at a rate of 5 ℃/h. Colorless block crystalline products were obtained (yield: 26% based on 3,4-Hpybz). Elemental analysis. calcd for C24H22N2O7Mn: C, 57.04, H, 4.38; N, 5.54%. Found:C, 57.56; H, 4.36; N, 5.82%. IR (KBr pellet, cm–1):3484 b, 1626 s, 1432 s, 1378 vs, 1199 m, 1046 m,814 m, 776 vs, 684 vs, 576 m.

    2.4 Crystal structure determination

    A single crystal with dimensions of 0.36mm ×0.24mm × 0.16mm was mounted on a glass fiber and the data were collected on a Bruker SMART APEX II CCD diffractometer equipped with a graphite-monochromatic MoKα radiation (λ =0.71075 ?) at 296(2) K by using an ω-φ scan mode.Absorption corrections were applied by using multi-scan program SADABS[17]. The structure was solved by direct methods with SHELXS-97 and refined with full-matrix least-squares technique using the SHELXL program package[18,19]. Anisotropic thermal parameters were applied to all of the non-hydrogen atoms. The hydrogen atoms were assigned with common isotropic displacement factors and included in the final refinement by use of geometrical restrains. A total of 6829 reflections for complex 1 were collected in the range of 2.73≤θ≤27.100 (–15≤h≤24, –19≤k≤17, –10≤l≤10) and 2588 were independent with Rint= 0.0114, of which 2426 with I > 2σ(I) (refinement on F2) were obser-ved and used in the succeeding structure calculation.The final R = 0.0275, wR = 0.0817 (w = 1/[σ2(Fo2) +(0.0550P)2+ 1.5000P], where P = (Fo2+ 2Fc2)/3), S= 1.006, (Δ/σ)max= 0.001, (Δρ)max= 0.288 and(Δρ)min= –0.284 e/?3. Selected bond distances and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complex 1

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure of complex 1

    Single-crystal X-ray diffraction analysis suggests that the asymmetric unit of complex 1 consists of one Mn(II) ion, two 3,4-pybz anions and three free water molecules. Each Mn(II) center is six-coordinated by two pyridyl nitrogen donors (Mn–N =2.3278(11) ?) and four carboxylate oxygen atoms coming from different 3,4-pybz ligands (Mn–O =2.1404(10) and 2.1613(9) ?), forming a distorted MnN2O4octahedral geometry (Fig. 1). The Mn–O(carboxylate)and Mn–N(bipy)bond lengths are in agreement with those in carboxylate- and bipy-containing manganese(II) complexes[20]. The O/N–Mn–O/N bond angles are in the range of 83.74(4)~173.89(4)°. In this structure, the 3,4-pybz ligand adopts a μ3-unidentate (Npy)/bidentate bridging(OCOO-) coordination mode (μ3-κ1-N:κ1-O:κ1-O see Scheme 1). The phenyl and pyridyl rings are not coplanar, with the dihedral angle of 36.39° in the 3,4-pybz ligand. In virtue of the bridging roles of carboxylate, two adjacent Mn(II) centers are combined to constitute an eight-membered ring, with the M···Mn separation of 4.888 ? (Fig. 2). Two different directional eight-membered rings are alternated with each other, leading to a 1D eight-membered ring chain along the c axis. The adjacent chains are interlinked by 3,4-pybz ligands to result in a 3D metal-organic framework (Fig. 3a). From the pers- pective of net topology, the 3,4-pybz ligands in this 3D structure serve as a three-connected node,and each Mn(II) center acts as a six-connected node,linking to six 3-connected 3,4-pybz. Thus, a binodal(3,6)-connected ant network with the Schl?fli symbol of (42.6)2(44.62.88.10) is constituted[21](Fig. 3b).

    Scheme 1. Coordination modes of 3,4-pybz ligands (μ3-κ1-N:κ1-O:κ1-O)

    Fig. 1. Coordination environment of Mn(II) in complex 1 with 50% thermal ellipsoids.All hydrogen atoms and free water molecules are omitted for clarity

    Fig. 2. 1D loop chain of complex 1 along the c axis

    Fig. 3. 3D metal-organic framework (3a) and (3,6)-connected ant network (3b) of complex 1

    There were some pyridine carboxylic acid complexes reported with structures based on 3-pyridin-4-yl-benzoic acid and the transition metal cations(Cd(II), Zn(II), Co(II), Ni(II), Cu(II), etc)[10-12]. Five different coordination polymers show interesting supramolecular patterns of unique double-stranded clasp for Cd(II), (3,5,6)-connected 2D helical tubular double layer for Zn(II), 2-fold interpenetrating cds 3D network for Co(II)/Ni(II), and 2D 2-fold interpenetrated framework for Cu(II), respectively.However, complex 1 exhibits a 3D binodal (3,6)-connected ant network in this text. Their structural difference should be ascribed to the transition metal ions used in the assembled processes.

    3.2 PXRD and thermogravimetric analysis

    X-ray powder diffraction (PXRD) was used to confirm the phase purity of bulk materials of 1 at room temperature (Fig. 4). Although the experimental patterns show several slightly broadened diffraction peaks in comparison to those simulated from the single-crystal data, it can still be regarded that the bulk as-synthesized materials represent the pure phases of complex 1. To examine the thermal stability of complex 1, thermal gravimetric (TG)analyses were carried out for 1 between 20 and 700℃ (Fig. 5). The samples were heated up under a static air atmosphere with a heating rate of 10℃·min–1. The TG curve indicates that the weight loss of the complex can be divided into two steps.The first weight loss is 10.1% from 120 to 160 ℃,corresponding to the removal of two water molecules in the complex (calcd. 10.69%). The second weight loss occurs between 270 to 480 ℃, giving manganese oxides as the final decomposition product which constitutes 14.2% (Calcd. 13.93 %). The residue of MnO was confirmed by X-ray powder diffraction analysis.

    Fig. 4. PXRD pattern of complex 1

    Fig. 5. TG curve of complex 1

    3.3 IR spectra

    The significant bands in IR spectra of complex 1 show broad peaks at 3484 cm–1which could be attributed to OH of water. The characteristic bands of carboxyl groups at 1626 and 1432 cm–1are assigned to the carboxylate group asymmetric and symmetric stretching vibrations. The separation value between vasym(CO2) and vsym(CO2) indicates that the carboxylate group coordinates in a bis-monodentate (194 cm–1) fashion[22], which is confirmed by the X-ray analysis.

    3.4 Magnetic properties

    The magnetic properties of complex 1 were investigated over the temperature range of 3~300 K in a field of 10 kOe. The magnetic susceptibilities χMand χMT versus T plots are shown in Fig. 6. For complex 1, the experimental χMT value at 300 K is 8.799 cm3·K·mol–1, slightly larger than the spin-only value(8.750 cm3·K·mol–1) expected for the spin-only Mn(II) ion (S = 5/2). The χMT value of 1 remains almost constant from 300 to 75 K, and then decreases on further cooling, reaching a value of 1.582 cm3·K·mol–1at 3 K. This behavior indicates a dominant antiferromagnetic interaction between the Mn(II) ions in the structure. The temperature dependence of the reciprocal susceptibilities (1/χM) obeys the Curie-Weiss law above 3 K with θ = – 9.24 K, C= 7.56 and R = 1.241 × 10–5. The values of θ for 1 indicate weak antiferromagnetic interactions between the adjacent Mn(II) ions.

    Fig. 6. Thermal variation of χMT and 1/ χM for complex 1 (○, χMT experimental values; □, 1/ χM experimentalvalues and solid lines, theoretical values)

    3.5 Theoretical calculation

    3. 5. 1 Optimized geometry structure

    Complex 1 was a 3D structure, and theoretical calculations would be a difficult task for such a large periodical system. Here, the asymmetric unit Mn-(3,4-pybz)2(3,4-Hpybz)4of 1 was intercepted, then the geometry of the unit was optimized by the DFT method with the B3LYP functional. The main bond lengths and bond angles for 1 in the opti- mization structure are shown in Table 1. The Mn–O and Mn–N bond lengths calculated are slightly longer than those in experiment, and the Δcal.-exp.(the difference between the calculated and experimental values) of the bond lengths is ranging from 0.001 to 0.005 ?. The highest deviation is about 0.55° for the bond angles in complex 1. There is a little deviation between the calculated and experimental values probably due to the following reasons: the approximation of calculation methods and basis set, the neglect of anionic effect in the course of calculation and the chemical environmental difference of the complex. The deviation can be accepted in theoretical calculation for a big system.

    3. 5. 2 Magnetic properties of DFT calculations

    The DFT calculations have been widely proved to be one of the most efficient tools to investigate the magnetic structure of transition metal complexes[23]. The magnetic interaction between two paramagnetic centers with local spin operatorscan be written in a spin Hamiltonian suggested originally by Heisenberg et al[24,25].

    In this study, the broken symmetry (BS) formalism, proposed by Noodlemann et al[26], was used. For the present systems with two unpaired electrons on the magnetic centers (MnIIMnII, where S1= S2= 5/2), the coupling constant (J) can be defined by[27]

    where EBSand EHSare the energy of the broken symmetry state and the high-spin state (HS) (EBS=–6117.359153 a.u. and EHS= –6117.359869 a.u.).We have used approach via Eq. (1) to estimate the magnetic coupling constants (J = –6.29 cm-1) of complex 1. The computed J values (J < 0) of complex 1 predict antiferromagnetic ground state with a BS-HS splitting, and the results agreed with the experimental data (θ).

    4 CONCLUSION

    Using the 3-pyridin-4-yl-benzoic acid, a new coordination polymer [Mn(3,4-pybz)2]n·3(H2O) (1),was prepared and characterized crystallographically and magnetically. Complex 1 exhibits a 3D metalorganic framework with (3,6)-connected ant net topology. Furthermore, theoretical calculation results also demonstrate the rationality of crystal structures,and the magnetic behavior of 1 was analyzed by experiments and calculations, which show all the antiferromagnetic behaviors.

    ACKNOWLEDGEMENT The authors thank Professor Wang Wen-Liang of Shaanxi Normal University for providing Gauss calculation Software.

    (1) Li, D. S.; Zhao, J.; Wu, Y. P.; Liu, B.; Bai, L.; Zou, K.; Du, M. Co5/Co8-cluster-based coordination polymers showing high-connected self-penetrating networks: syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2013, 52, 8091-8091.

    (2) Ma, L. F.; Han, M. L.; Qin, J. H.; Wang, L. Y.; Du, M. MnIIcoordination polymers based on bi-, tri-, and tetranuclear and polymeric chain building units: crystal structures and magnetic properties. Inorg. Chem. 2012, 51, 9431-9442.

    (3) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.

    (4) Li, D. S.; Wu, Y. P.; Zhao, J.; Zhang, J.; Lu, J. Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coord. Chem. Rev. 2014,261, 1-27.

    (5) Zhang, Y. B.; Zhang, W. X.; Feng, F. Y.; Zhang, J. P.; Chen, X. M. A highly connected porous coordination polymer with unusual channel structure and sorption properties. Angew. Chem. Int. Ed. 2009, 48, 5287-5290.

    (6) Jiang, X. J.; Du, M.; Sun, Y.; Guo, J. H.; Li, J. S. Three-dimensional (3-D) metal-organic frameworks with 3-pyridin-4-yl-benzoate defining new (3,6)-connected net topologies. J. Solid State Chem. 2009, 182, 3211-3214.

    (7) Zhang, X. M.; Zheng, Y. Z.; Li, C. R.; Zhang, W. X.; Chen, X. M. Unprecedented (3,9)-connected (42.6)3(46.621.89) net constructed by trinuclear mixed-valence cobalt clusters. Cryst. Growth Des. 2007, 7, 980-983.

    (8) Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo. M. Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132,2561-2563.

    (9) Fu, F.; Li, D. S.; Wu, Y. P.; Gao, X. M.; Du, M.; Tang, L.; Zhang, X. N.; Meng, C. X. A versatile V-shaped tetracarboxylate building block for constructing mixed-ligand Co(II) and Mn(II) complexes incorporating various N-donor co-ligands. CrystEngComm. 2010, 12, 1227-1237.

    (10) Li, D. S.; Tang, L.; Fu, F.; Du, M.; Zhao, J.; Wang, N.; Zhang, P. Coordination assemblies of CdII/ZnII/CoIIwith the 3-(pyridin-4-yl) benzoate tecton:structural diversity and properties. Inorg. Chem. Commun. 2010, 13, 1126-1130.

    (11) Tang, L.; Fu, F.; Gao, L. J.; Wu, Y. P.; Liu, Q. R.; Gao, X. M. A 3D nickel(II) coordination polymer with cds nets constructed from 3-pyridin-4-yl-benzoic acid. Z. Anorg. Allg. Chem. 2011, 637, 608-612.

    (12) Tang, L.; Fu, F.; Gao, L. J.; Wei, Q. B.; Zhang, Z. L.; Liu, Q. R. Synthesis, crystal structure, and magnetic properties of a new 2D twofold interpenetrated coordination polymer [Cu(3,4-pybz)2]n.. Z. Anorg. Allg. Chem. 2013, 639, 918-921.

    (13) Tang, L.; Wu, Y. P.; Fu, F.; Zhang, P.; Wang, N.; Gao, L. F. A 3-D cobalt(II)-coordination polymer with mixed-connected network topology constructed from 4-pyridin-3-yl-benzoic acid. J. Coord. Chem. 2010, 63, 1873-1881.

    (14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant,J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M.C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian (version 6.1), Inc., Wallingford CT 2004.

    (15) Becke, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107,8554-8554.

    (16) Ruiz, E.; Rodríguez-Fortea, A.; Tercero, J.; Cauchy, T.; Massobrio, C. Exchange coupling in transition-metal complexes via density-functional theory:comparison and reliability of different basis set approaches. J. Chem. Phys. 2005, 123, 074102-074102.

    (17) Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data. University of G?ttingen, Germany 1997.

    (18) Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (19) Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of G?ttingen, Germany 1997.

    (20) Guo, F. Synthesis and crystal structures of pH-dependent Mn(II) coordination polymers with 3-pyrid-3-ylbenzoic acid. J. Coord. Chem. 2009, 62,3606-3612.

    (21) Zou, J. P.; Peng, Q.; Wen, Z. H.; Zeng, G. S.; Xing, Q. J.; Guo, G. C. Two novel metal-organic frameworks (MOFs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties. Cryst. Growth Des. 2010, 10, 2613-2619.

    (22) Wu, Y. P.; Li, D. S.; Fu, F.; Dong, W. W.; Tang, L.; Wang, Y. Y. 3D PbII-coordination framework based on rod-shaped Pb–O–Pb SBUs defining a new(4,5)-connected net topology. Inorg. Chem. Commun. 2010, 13, 1005-1008.

    (23) Tang, L.; Fu, F.; Wang, W. L.; Li, D. S.; Wu, Y. P.; Gao, X. M.; Yang, X. G. Two novel 3D hydrogen-bonded architectures constructed from maleic acid and N-donor ligands: structures, magnetic properties and theoretical studies. Chin. J. Chem. 2009, 27, 273-280.

    (24) Dirac, P. A. M. Quantum mechanics of many-electron systems. Proc. Roy. Soc. London 1929, 123, 714-733.

    (25) Van Vleck, J. H. Theory of Electric and Magnetic Susceptibilities. Oxford University Press, London 1932.

    (26) Ruiz, E.; Cano, E.; Alvare, S.; Alemany, P. Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J. Comp. Chem. 1999, 20, 1391-1400.

    (27) Beghidja, C.; Rogez, G.; Kortus, J.; Wesolek, M.; Welter, R. Theoretical studies of magnetic interactions in Mn(II)(hfac)2{di(4-pyridyl)phenylcarbene} and Cu(II)(hfac)2{di(4-pyridyl)-phenylcarbene}. J. Am. Chem. Soc. 2006, 128 , 3140-3141.

    久久精品久久久久久久性| 日韩免费高清中文字幕av| 夫妻午夜视频| 亚洲精品色激情综合| 亚洲天堂av无毛| 婷婷色麻豆天堂久久| 全区人妻精品视频| 全区人妻精品视频| 欧美日韩一区二区视频在线观看视频在线| 日韩成人伦理影院| 欧美激情 高清一区二区三区| 国产又色又爽无遮挡免| 18禁国产床啪视频网站| 国产又爽黄色视频| 欧美老熟妇乱子伦牲交| 国产毛片在线视频| 欧美老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 97超碰精品成人国产| 久久精品国产亚洲av涩爱| 久热这里只有精品99| 久久精品aⅴ一区二区三区四区 | 多毛熟女@视频| 亚洲av.av天堂| 国产一区亚洲一区在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩中字成人| 国产一区二区三区av在线| 如日韩欧美国产精品一区二区三区| 国产极品天堂在线| 男女边摸边吃奶| 欧美精品一区二区免费开放| 香蕉国产在线看| 波多野结衣一区麻豆| 亚洲欧洲国产日韩| 免费播放大片免费观看视频在线观看| 观看av在线不卡| 国产精品秋霞免费鲁丝片| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91| 国产男女内射视频| www.熟女人妻精品国产 | 亚洲天堂av无毛| av黄色大香蕉| 国产精品一二三区在线看| 国产欧美亚洲国产| 久久久精品区二区三区| 亚洲av免费高清在线观看| 国产精品99久久99久久久不卡 | 日本午夜av视频| 国产熟女欧美一区二区| 国产福利在线免费观看视频| 国产免费一级a男人的天堂| 天天操日日干夜夜撸| 国产一区二区三区av在线| 日韩精品有码人妻一区| 精品一区二区免费观看| 色婷婷av一区二区三区视频| 免费不卡的大黄色大毛片视频在线观看| 午夜av观看不卡| 日产精品乱码卡一卡2卡三| 欧美精品人与动牲交sv欧美| 欧美最新免费一区二区三区| 免费观看av网站的网址| 在线天堂最新版资源| 国产有黄有色有爽视频| 国产白丝娇喘喷水9色精品| 夫妻性生交免费视频一级片| 久久精品国产亚洲av涩爱| 色94色欧美一区二区| 亚洲人成77777在线视频| 精品少妇黑人巨大在线播放| 精品国产一区二区三区久久久樱花| 午夜福利网站1000一区二区三区| 国产av码专区亚洲av| 制服丝袜香蕉在线| 高清黄色对白视频在线免费看| 男女免费视频国产| 中文天堂在线官网| 全区人妻精品视频| 日韩一本色道免费dvd| 99国产综合亚洲精品| 免费女性裸体啪啪无遮挡网站| 制服丝袜香蕉在线| 在线天堂最新版资源| 人成视频在线观看免费观看| 日韩一本色道免费dvd| 亚洲色图 男人天堂 中文字幕 | 校园人妻丝袜中文字幕| 午夜福利视频精品| 九色亚洲精品在线播放| 亚洲人与动物交配视频| 国产日韩欧美视频二区| 三上悠亚av全集在线观看| 国产亚洲av片在线观看秒播厂| 亚洲欧美色中文字幕在线| 国产又色又爽无遮挡免| 岛国毛片在线播放| 最近中文字幕2019免费版| 日韩av不卡免费在线播放| 亚洲天堂av无毛| 黑人高潮一二区| 一边亲一边摸免费视频| 看免费av毛片| 一本大道久久a久久精品| 亚洲国产精品成人久久小说| 黄网站色视频无遮挡免费观看| 黑人巨大精品欧美一区二区蜜桃 | 免费在线观看黄色视频的| 十分钟在线观看高清视频www| www.熟女人妻精品国产 | 色94色欧美一区二区| 人成视频在线观看免费观看| 观看av在线不卡| 777米奇影视久久| 天堂8中文在线网| av不卡在线播放| av电影中文网址| av国产久精品久网站免费入址| a级毛片黄视频| 晚上一个人看的免费电影| av在线老鸭窝| 欧美激情 高清一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产熟女欧美一区二区| 这个男人来自地球电影免费观看 | 亚洲图色成人| 精品人妻在线不人妻| 亚洲精华国产精华液的使用体验| 成人亚洲欧美一区二区av| a级毛片在线看网站| av福利片在线| 色哟哟·www| 热re99久久国产66热| 99热6这里只有精品| 涩涩av久久男人的天堂| 另类亚洲欧美激情| 国产高清不卡午夜福利| 国产极品天堂在线| 中国三级夫妇交换| 欧美性感艳星| 国产亚洲精品久久久com| 亚洲成人一二三区av| 午夜福利视频在线观看免费| 久久精品国产亚洲av涩爱| 国产成人精品久久久久久| 最黄视频免费看| 国产男人的电影天堂91| 一区二区三区四区激情视频| 王馨瑶露胸无遮挡在线观看| 国产一区亚洲一区在线观看| 午夜免费鲁丝| 老司机亚洲免费影院| 18禁观看日本| 欧美97在线视频| 女人久久www免费人成看片| 欧美日韩一区二区视频在线观看视频在线| 汤姆久久久久久久影院中文字幕| 国产欧美日韩综合在线一区二区| 一本—道久久a久久精品蜜桃钙片| av天堂久久9| 91精品国产国语对白视频| 亚洲精品成人av观看孕妇| 丁香六月天网| 丰满饥渴人妻一区二区三| 久久久久精品性色| 18禁动态无遮挡网站| 日韩欧美一区视频在线观看| 波野结衣二区三区在线| av网站免费在线观看视频| 国产一区二区在线观看av| 成人漫画全彩无遮挡| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 精品视频人人做人人爽| 久久久国产精品麻豆| 只有这里有精品99| 色吧在线观看| 免费观看性生交大片5| 色婷婷久久久亚洲欧美| 国产69精品久久久久777片| 亚洲国产毛片av蜜桃av| 九草在线视频观看| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 在线观看国产h片| 男人爽女人下面视频在线观看| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 亚洲国产精品一区二区三区在线| 最黄视频免费看| 国产视频首页在线观看| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 麻豆乱淫一区二区| 一级爰片在线观看| 波野结衣二区三区在线| 日本av免费视频播放| 有码 亚洲区| 春色校园在线视频观看| 飞空精品影院首页| 宅男免费午夜| 最近最新中文字幕大全免费视频 | xxx大片免费视频| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 免费人成在线观看视频色| 黑丝袜美女国产一区| 制服诱惑二区| 一边亲一边摸免费视频| 性色avwww在线观看| 久久久久久人人人人人| 少妇的逼水好多| 国产福利在线免费观看视频| 99热网站在线观看| 日日摸夜夜添夜夜爱| 久久久久国产精品人妻一区二区| videos熟女内射| 成人亚洲精品一区在线观看| 美女主播在线视频| 国产综合精华液| 97精品久久久久久久久久精品| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 看非洲黑人一级黄片| www.熟女人妻精品国产 | 亚洲av日韩在线播放| 精品久久久久久电影网| 午夜免费鲁丝| 曰老女人黄片| 国产色爽女视频免费观看| 国产高清不卡午夜福利| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 51国产日韩欧美| 一区二区日韩欧美中文字幕 | 自拍欧美九色日韩亚洲蝌蚪91| 咕卡用的链子| 国产在线一区二区三区精| 99国产精品免费福利视频| 亚洲av国产av综合av卡| 有码 亚洲区| 久久久久网色| 日韩视频在线欧美| 国产有黄有色有爽视频| 女人精品久久久久毛片| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 日本黄色日本黄色录像| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| 一级爰片在线观看| 免费高清在线观看日韩| av福利片在线| 看免费av毛片| 亚洲精品456在线播放app| 十八禁网站网址无遮挡| 久久99蜜桃精品久久| 国产精品一区二区在线不卡| 免费黄色在线免费观看| 久热这里只有精品99| 成人毛片a级毛片在线播放| 2018国产大陆天天弄谢| 在现免费观看毛片| 亚洲第一av免费看| 大码成人一级视频| 久久精品国产综合久久久 | 久久99精品国语久久久| 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 夜夜爽夜夜爽视频| 在线看a的网站| 国产欧美另类精品又又久久亚洲欧美| 9191精品国产免费久久| 99热6这里只有精品| kizo精华| 蜜臀久久99精品久久宅男| 国产片内射在线| 一级黄片播放器| 国产午夜精品一二区理论片| 婷婷色麻豆天堂久久| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 三上悠亚av全集在线观看| 亚洲人成77777在线视频| 一本色道久久久久久精品综合| av女优亚洲男人天堂| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| av国产精品久久久久影院| 日韩制服丝袜自拍偷拍| 香蕉丝袜av| √禁漫天堂资源中文www| 人妻系列 视频| 久久亚洲国产成人精品v| 日本与韩国留学比较| 黄色毛片三级朝国网站| 在线观看人妻少妇| 精品人妻偷拍中文字幕| 国产片内射在线| 水蜜桃什么品种好| 亚洲,欧美精品.| 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 最新的欧美精品一区二区| 国产av国产精品国产| 久久国产亚洲av麻豆专区| 免费黄网站久久成人精品| 免费看光身美女| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 欧美 日韩 精品 国产| 色网站视频免费| 久久久久视频综合| a 毛片基地| 色5月婷婷丁香| 国产熟女午夜一区二区三区| 99久久综合免费| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| www.熟女人妻精品国产 | 国产女主播在线喷水免费视频网站| 一级a做视频免费观看| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 九色成人免费人妻av| 韩国av在线不卡| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 日本欧美国产在线视频| 国产精品国产av在线观看| 日本色播在线视频| 精品少妇内射三级| 在线观看一区二区三区激情| 在线看a的网站| 天堂8中文在线网| 亚洲图色成人| 久久99一区二区三区| 国国产精品蜜臀av免费| 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| 五月玫瑰六月丁香| 三级国产精品片| 老司机影院毛片| 欧美国产精品一级二级三级| 飞空精品影院首页| 国产av精品麻豆| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 18禁国产床啪视频网站| 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 久久这里有精品视频免费| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 男人舔女人的私密视频| 成年美女黄网站色视频大全免费| 欧美少妇被猛烈插入视频| 晚上一个人看的免费电影| 久久久久久久久久人人人人人人| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 国产精品.久久久| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 国产av精品麻豆| 中国三级夫妇交换| 少妇人妻精品综合一区二区| www.av在线官网国产| 日韩av免费高清视频| 久久久精品区二区三区| 少妇高潮的动态图| 国产男女内射视频| 飞空精品影院首页| 美女脱内裤让男人舔精品视频| 国产精品免费大片| 国产精品蜜桃在线观看| 九九在线视频观看精品| 亚洲综合色网址| 婷婷成人精品国产| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 99久久人妻综合| 高清黄色对白视频在线免费看| 综合色丁香网| av在线老鸭窝| 午夜日本视频在线| xxxhd国产人妻xxx| 精品人妻一区二区三区麻豆| 视频在线观看一区二区三区| 热re99久久国产66热| 亚洲丝袜综合中文字幕| 国产 一区精品| 中文乱码字字幕精品一区二区三区| 免费在线观看完整版高清| 亚洲综合色惰| 欧美xxxx性猛交bbbb| 免费av不卡在线播放| 97在线视频观看| 内地一区二区视频在线| 波多野结衣一区麻豆| 久久韩国三级中文字幕| 日韩一区二区视频免费看| 国产精品无大码| 老司机亚洲免费影院| 高清视频免费观看一区二区| 女人精品久久久久毛片| 99热全是精品| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 十八禁高潮呻吟视频| 国产黄频视频在线观看| 日本欧美国产在线视频| 欧美日本中文国产一区发布| 大码成人一级视频| 热re99久久精品国产66热6| 日本黄大片高清| 亚洲情色 制服丝袜| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 国产成人aa在线观看| 国产精品一区二区在线观看99| 伦理电影免费视频| 国产日韩欧美亚洲二区| 如日韩欧美国产精品一区二区三区| 在现免费观看毛片| 黄色一级大片看看| 激情五月婷婷亚洲| 在线观看人妻少妇| 美女主播在线视频| 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 国产免费视频播放在线视频| 久久久精品免费免费高清| av免费在线看不卡| 亚洲精品中文字幕在线视频| 22中文网久久字幕| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 国产精品三级大全| 亚洲精品一区蜜桃| 91国产中文字幕| 女性被躁到高潮视频| 大陆偷拍与自拍| 久久影院123| 日韩精品免费视频一区二区三区 | 久久97久久精品| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 九九爱精品视频在线观看| 国产黄频视频在线观看| a级毛片黄视频| 国产av精品麻豆| 国产精品久久久久久久电影| 黄片无遮挡物在线观看| 国产av国产精品国产| 亚洲欧美成人精品一区二区| 国产男女内射视频| 老女人水多毛片| 最新中文字幕久久久久| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 亚洲人成77777在线视频| 亚洲情色 制服丝袜| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| av线在线观看网站| 国产熟女午夜一区二区三区| 麻豆乱淫一区二区| 国产永久视频网站| 在现免费观看毛片| 最近中文字幕2019免费版| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看 | 一区在线观看完整版| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 永久网站在线| 最近手机中文字幕大全| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 欧美精品av麻豆av| 久久狼人影院| 中国三级夫妇交换| 国产日韩欧美亚洲二区| 日本wwww免费看| 久久久久久人妻| 婷婷色综合大香蕉| 久久99热6这里只有精品| 国产永久视频网站| 高清欧美精品videossex| 色网站视频免费| av国产久精品久网站免费入址| 国产一区二区激情短视频 | 欧美日韩综合久久久久久| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 久久久久人妻精品一区果冻| 一区二区日韩欧美中文字幕 | 欧美人与性动交α欧美软件 | 精品久久久精品久久久| 国产成人精品在线电影| 久久99热这里只频精品6学生| 国产精品人妻久久久久久| 色哟哟·www| 成年女人在线观看亚洲视频| 欧美bdsm另类| 黄色 视频免费看| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 制服丝袜香蕉在线| 婷婷色综合www| 全区人妻精品视频| 免费观看无遮挡的男女| 在线精品无人区一区二区三| 国产成人av激情在线播放| 中国美白少妇内射xxxbb| 亚洲av电影在线观看一区二区三区| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| 久久久久久久亚洲中文字幕| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 精品久久久久久电影网| 亚洲伊人色综图| 最新中文字幕久久久久| 久久久久久人妻| 亚洲国产av新网站| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 亚洲国产av影院在线观看| 韩国精品一区二区三区 | 如何舔出高潮| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 国产一区二区在线观看日韩| 999精品在线视频| 欧美bdsm另类| 国产欧美日韩一区二区三区在线| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 草草在线视频免费看| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看 | 国产成人一区二区在线| 成人漫画全彩无遮挡| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图| 国产伦理片在线播放av一区| 免费大片18禁| www.av在线官网国产| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 午夜91福利影院| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 人成视频在线观看免费观看| 久久久久精品性色| 国产黄色免费在线视频| 久久精品久久久久久久性| 日本午夜av视频| 日日啪夜夜爽| 国产精品人妻久久久影院| 午夜免费观看性视频| 亚洲国产精品一区三区| 深夜精品福利| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 国产日韩欧美视频二区| 免费观看a级毛片全部| 国产在线一区二区三区精| 少妇人妻 视频| 九九爱精品视频在线观看| 国产一区二区三区av在线| 少妇 在线观看| 一级,二级,三级黄色视频| 久久国内精品自在自线图片| 老司机影院毛片| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 爱豆传媒免费全集在线观看| 黑人巨大精品欧美一区二区蜜桃 | videossex国产| 黄色一级大片看看| 9191精品国产免费久久| 狠狠婷婷综合久久久久久88av| 亚洲av免费高清在线观看| 国产永久视频网站| 国产69精品久久久久777片| 久久久久精品久久久久真实原创| 丁香六月天网| 亚洲欧洲日产国产| 免费看光身美女| 咕卡用的链子| 天天躁夜夜躁狠狠久久av| 蜜桃国产av成人99| 亚洲国产精品专区欧美| h视频一区二区三区|