• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Catalytic Properties of a New 2D Nickel(II) Coordination Polymer Based on Flexible Bis(benzimidazole)①

    2014-03-25 02:35:28YANGRuiGEMingVANHECKEKristofCUIGungHu
    結(jié)構(gòu)化學(xué) 2014年12期

    YANG Rui GE Ming VAN HECKE Kristof CUI Gung-Hu②

    a (College of Chemical Engineering, Hebei United University, Tangshan, Hebei 063009, China)

    b (Department of Inorganic and Physical Chemistry, Ghent University,Krijgslaan 281 S3, B-9000 Ghent, Belgium)

    1 INTRODUCTION

    Metal Organic Framworks (MOFs) have been of great interest in the field of supramolecular chemistry and crystal engineering because of their large numbers of promising applications in many areas,such as luminescence, catalysis, gas storage, ion exchange and so on, as well as for their diverse architectures and topologies[1-4]. However, it is still a challenge to predict the desirable coordination architecture. Some factors, such as the geometrical and electronic properties of organic ligands and central metal ions, temperature, pH value of solution,solvent, hydrogen bonding and π-π stacking interactions also have an efficient effect on assembling the final structure[5-7]. The selection of suitable linkers is the key step because the configuration, length and substituent groups of organic ligands may influence the structures and properties of the resulting MOFs[8-11]. Complexes based on benzimidazole ligands have attracted increasing attention in recent years. In this context, flexible bis(benzimidazole)derivatives are excellent building blocks, owing to their interesting characteristics that include strong coordination ability, rich coordination modes,different organic skeletons, π-π stacking interactions,and diverse conformations according to the restrictions imposed by the coordination geometry of metal ions[12,13]. However, MOFs based on flexible bis-(benzimidazole) with thiocyanate as co-ligands have rarely been reported when searching the Cambridge Structural Database (version 5.35, Feb 2014)[14]. As part of our ongoing work, herein we report the synthesis, structures and characterizations of a first Ni(II) coordination polymers constructed based on flexible bis(benzimidazole) and thiocya- nate ligands,[Ni(L)2(SCN)2]n. Furthermore, the fluorescence,thermal gravimetry and catalytic properties of the title complex are discussed in detail.

    2 EXPERIMENTAL

    2.1 Materials and physical measurements

    All the reagents and solvents for synthesis were obtained from commercial sources and used directly without further purification. The ligand L was prepared according to the previously reported literature method[15]. Elemental analyses of C, H and N were obtained on a Perkin-Elmer 240C automatic analyzer.IR spectra were recorded on an Avatar 360 (Nicolet)spectrophotometer in the 4000~400 cm-1region using KBr pellets with a resolution of 2 cm-1. The TG-DTA measurements were performed on a NETZSCH TG 209 thermal analyzer from room temperature to 800 ℃ under N2atmosphere at a heating rate of 10 ℃/min. The luminescence spectra for the powdered solid samples were performed with a Hitachi F-7000 spectrophotometer at room temperature.

    2.2 Synthesis of [Ni(L)2(SCN)2]n

    A mixture of NiCl2·6H2O (0.1 mmol, 23.7 mg), L ligand (0.1 mmol, 29.0 mg) and KSCN (0.1 mmol,9.7 mg) was dissolved in 10 mL of distilled water and stirred for 0.5 h. The resulting mixture was sealed in a Teflon-lined stainless steel vessel and heated to 140 ℃ for 3 d under autogenous pressure,and then cooled down to room temperature at a rate of 10 ℃/h. Light green block crystals of the complex were obtained by filtration, washed with distilled water, and dried at ambient temperature in the yield of 54% based on NiCl2·6H2O. Anal. Calcd.(%) for C38H36N10NiS2: C, 60.41; H, 4.80; N, 18.54.Found (%): C, 60.11; H, 4.58; N, 18.72. IR (KBr,cm–1): 3106w, 2937m, 2860w, 2081s, 1615m, 1513s,1462m, 1386m, 1335m, 1293m, 1191m, 937w, 861w,751s, 623w.

    2.3 Catalysis experiments

    The catalytic activity was studied according to our previous reported literature method[16]. The catalytic experiments were carried out using a 100 mL round-bottomed flask with 0.5 mL H2O2(30%) and 15 mg of the title complex, in which the temperature was held constant at 40 ℃. At a given interval, 0.5 mL of the reaction solution was taken out and measured by using a Shanghai Jingke 722N visible spectrophotometer with an absorption wavelength of 496 nm. Control experiments without any catalyst but with an equal molar amount of NiCl2·6H2O with Ni(II) contained in the coordination framework as catalyst have been investigated under the same conditions. The degradation efficiency of Congo red was evaluated based on the following formula[17]:

    where C0(mg/L) is the initial concentration of Congo red, and Ct(mg/L) is the concentration of Congo red azo dye at reaction time t (min).

    2.4 X-ray data collection and crystal structure determination

    A suitable single crystal with dimensions of 0.22mm × 0.20mm× 0.19mm was collected on the top of a glass fiber with epoxy cement for the X-ray measurement. Crystallographic data for the title complex were collected at 293 K on a Bruker Smart 1000 CCD diffractometer equipped with a graphitemonochromatic Mo-Kα radiation (λ = 0.71073 ?)using an ω-2θ scan mode in the range of 2.82 < θ <27.10o. The structure was solved by direct methods using the SHELXS-97 program[18]and refined on F2by full-matrix least-squares methods with the SHELXL-97 program[19]. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were geometrically included in the final refinement. The final R = 0.0486, wR = 0.1062 (w = 1/[σ2(Fo2) +(0.0355P)2+ 9.1235P], where P = (Fo2+ 2Fc2)/3), S= 0.942, (Δρ)max= 0.748, (Δρ)min= –0.661 e·?–3and(Δ/σ)max= 0.000. Table 1 lists the selected bond distances and bond angles.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure description

    X-ray crystallographic analysis revealed that the complex crystallizes in monoclinic, space group C2/c. The asymmetric unit of the complex contains one half of a Ni(II) ion, one L ligand and one SCN-counterion. As shown in Fig. 1, each Ni atom is six-coordinated, exhibiting a slightly distorted octahedral geometry, in which the equatorial plane is formed by the four N atoms (N(1), N(1A), N(3),N(3A)) from two different L ligands and the axial positions are occupied by two N atoms (N(5), N(5A))from two separated SCN–anions (symmetry code: A:1 – x, y, –z + 0.5). Remarkably, the N atoms from the SCN–ligands are nearly perpendicular to the equatorial plane, whereas the two linear SCN–anions are bent, with the angles of N(5)–Ni(1)–N(5A) and C(10)–N(5)–Ni(1) to be 179.07(13) and 161.7(2)°, respectively. The length of Ni–N(CS)(Ni(1)–N(5) = 2.085(2) ?) is shorter than those of Ni–N(L) (Ni–N = 2.095(2)~2.112(2) ?), which are comparable to those of similar nickel complexes[20].

    Fig. 1. Coordination environment around the Ni atom in the complex(Symmetry codes: A: –x+1, y, –z+1/2; B: –x, y, –z+1/2; F: –x+1, –y+1, –z+1/2)

    In the structure of the complex, the two SCN–groups act as terminal ligands to link the Ni(II)centers. The L ligands adopt two types of coordination conformations, namely cis- and trans-,in which the dihedral angles between the mean planes of the two benzimidazole rings are 180° and 70.08(4)°, respectively. The trans-conformation L ligands bridge the adjacent two hexa-coordinate Ni(II) centers to form a 1D zigzag chain of Ni(Ltrans)2along the c axis; Simultaneously, each cis-conformation L links these 1D chains together with a linear mode toward the a direction, generating 2D (4,4) sheets (Fig. 2). The distances between the Ni centers are 9.4760(3) ? (Ni1–NiE) and 12.9140(4)? (Ni(1)–Ni(1D)) across the trans-conformation and cis-conformation L (symmetry codes: D = 2–x, 1–y,1–z, E = 1 + x, y, z), respectively. The angle of Ni(1C)···Ni(1)···Ni(1D) is 125.441(0)° (symmetry code: C = –x, 1–y, –z). In addition, the 2D network is further extended into a 3D supramolecular network by face-to-face π-π stacking interactions between the neighboring benzimidazole rings of the L ligands(Fig. 3), which features the centroid-to-centroid distance of 3.797(2) ?, and an inter-planar angle α is 0°.

    Fig. 2. 2D sheet of the complex

    Fig. 3. 3D supramolecular network formed by π-π (dashed lines) stacking interactions of the title complex

    3.2 IR spectra of the complex

    In the IR spectra of the coordination polymer, the strong absorption band at 2081 cm-1is assigned to the CN stretching frequency[21]. The peak at 1513 cm-1may be attributed to ν(C=N)absorption in the imidazole ring of the L ligand. The bands at 3106 and 2937 cm-1for the title compound could be associated with Ar–H stretching vibration and CH2stretching vibration of the L ligand, respectively.

    3.3 XRPD analysis and thermal analysis

    In order to confirm the phase purity of the bulk materials, an X-ray powder diffraction (XRPD)experiment was performed for the title complex. It is apparent that the corresponding simulated patterns calculated from the single-crystal X-ray diffraction data and as-synthesized patterns of the complex are in good agreement (Fig. 4). There are a few unindexed diffraction differences between the measured and simulated patterns, which may be related to the different orientation of the crystals in the powdered samples.

    To investigate the thermal stability of the complex,thermogravimetric analysis was carried out on a temperature gradient from room temperature to 800℃ at a heating rate of 10 ℃/min under N2atmosphere. As shown in Fig. 5, the complex remains stable up to 298 ℃ and exhibits a mass loss of 77.92% (calcd.: 76.76%) between 299 and 580 ℃,which can be assigned to the decomposition of the L ligands, and the final residual weight is 22.08%(calcd.: 23.24%), corresponding to Ni(SCN)2as the final product.

    Fig. 4. X-ray powder diffraction patterns of the title compound

    Fig. 5. TG curve of the complex

    3.4 Fluorescence properties

    The emission spectra of the compound as well as the free L ligand are shown in Fig. 6. The free ligand exhibits an emission peak at 405 nm upon excitation at 350 nm. It can be presumed that the peak comes from the π → π* transition[22]. For the complex, the maximal emission peak is are observed at 480 nm(λex= 349 nm). When compared with the free ligand,the emission of the coordination polymer is 75 nm red-shifted, which may be assigned to metal-toligand charge transfer[23].

    3.5 Catalytic properties

    Azo dyes are an important source of environmental contamination, and most of them are toxic,non-biodegradable and potentially carcinogenic in nature. Therefore, it is necessary to find an effective way to remove color from wastewater. Advanced oxidation technologies such as a Fenton-like method have drawn more attention to degrade dye wastewater[24,25]. To date, some researches have proven that the transition metal coordination complexes exhibit prominent catalytic activities in Fenton-like process[25,26]. The different catalytic performances of these metal complexes may be due to the distinct coordination environments around the metal centers or molecular structures[16]. Herein, we choose Congo red (sodium salt of benzidinediazo-bis-1-naphthlamine-4sulfonic acid) as a model dye to evaluate the catalytic effect on wastewater.

    Fig. 6. Solid-state photoluminescent spectra of free L ligand and the complex

    As shown in Fig. 7, when H2O2alone was added into the Congo red solution as the control experiment, clearly, there was no evident color removal of Congo red with the degradation of 12.7%, indicating that Congo red can not be effectively oxidized by hydrogen peroxide. However, when adding the title complex into the system, degradation efficiency went up to 93 % after 120 min. Since Ni(II) species may play a key role in the reaction, an experiment with an equal amount of NiCl2·6H2O with Ni(II)contained in the network as catalyst, instead of the title complex was carried out under the same condition. The degradation efficiency showed a lower overall 35 % compared to the title complex. The result revealed that the complex has a higher catalytic effect on the degradation of Congo red in the Fenton-like system. The degradation mechanism can be presented as follows (2~4):

    Fig. 7. Experimental results of the catalytic degradation of Congo red

    Over the past decades, several transition metal complexes were applied to catalyze the degradation of azo dyes in a Fenton-like process. Our group synthesized three-dimensional binodal (4, 10)-connected MOFs based on pentanuclear cobalt(II) clusters showing high catalytic activity for the degradation of organic dyes in the presence of Na2S2O8[26]. Li and coworkers reported a (3,5)-connected copper(II)MOF, which shows distinct catalytic activity for the degradation of Methyl orange under the condition of H2O2, and eventually the degradation efficiency was up to 97.3%[27]. In addition, our group has reported three Ag(I) complexes based on bis(imidazole) and benzenedicarboxylic acid ligands which possesses a remarkable activity for the degradation of MO (methyl orange) by persulfate in a Fenton-like process[28].

    (1) O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets.Chem. Rev. 2012, 112, 675–702.

    (2) Dai, Y. M.; Huang, J. F.; Fang, Y. L. (2D+1D) Hydrogen bond structure constructed from dendrimer precursor. Chin. J. Struct. Chem. 2013, 32,1437–1442.

    (3) Du, M.; Li, C. P.; Liu, C. S.; Fang, S. M. Design and construction of coordination polymers with mixed ligand synthetic strategy. Coord. Chem.Rev. 2013, 257, 1282–1305.

    (4) Cui, G. H.; Li, J. R.; Tian, J. L.; Bu, X. H.; Batten, S. R. Multidimensional metal-organic frameworks constructed from flexible bis(imidazole)ligands. Cryst. Growth Des. 2005, 5, 1775–1780.

    (5) Qin, L.; Li, Y. H.; Ma, P. J.; Cui, G. H. Exploring the effect of chain length of bridging ligands in cobalt(II) coordination polymers based on flexible bis(5,6-dimethylbenzimidazole) ligands: synthesis, crystal structures, fluorescence and catalytic properties. J. Mol. Struct. 2013, 1051,215–220.

    (6) Geng, J. C.; Jiao, C. H.; Hao, J. M.; Cui, G. H. Assembly of three cadmium(II) complexes based on flexible α,ω-bis(benzimidazolyl)alkane ligands.Z. Naturforsch. 2012, 67b, 791–798.

    (7) Su, Z.; Fan, J.; Okamura, T. A.; Sun, W. Y.; Ueyama, N. Ligand-directed and pH-controlled assembly of chiral 3d-3d heterometallic metal-organic frameworks. Cryst. Growth Des. 2010, 10, 3515–3521.

    (8) Jiao, C. H.; He, C. H; Geng, J. C.; Cui, G. H. Syntheses, structures, and photoluminescence of three cadmium(II) coordination polymers with flexible bis(benzimidazole) ligands. J. Coord. Chem. 2012, 65, 2852–2861.

    (9) Wang, X. L.; Qu, Y.; Liu, G. C.; Luan, J.; Lin, H. Y.; Kan, X. M. A series of flexible bis(imidazole)-based coordination polymers tuned by central metal ions and dicarboxylates: diverse structures and properties. Inorg Chim Acta 2014, 412, 104–113.

    (10) Bu, X. H.; Hou, W. F.; Du, M.; Chen, W.; Zhang, R. H. Varying the frameworks of novel silver(I) coordination polymers with thioethers by altering the backbone or terminal groups of ligands. Cryst. Growth Des. 2002, 2, 303–307.

    (11) Liu, P. P.; Wang, Y. Q.; Tian, C. Y.; Peng, H. Q.; Gao, E. Q. Nickel(II) and copper(II) coordination polymers with 1,2-bis(tetrazol-1-yl)ethane and thiocyanate: structure, supramolecular isomerism and magnetism. J. Mol. Struct. 2009, 920, 459–465.

    (12) Qin, L.; Ming, C. L.; Xiao, S. L.; Ma, P. J.; Cui, G. H. Synthesis, structures, and catalytic properties of two-cobalt(II) coordination polymers based on 5-substituted isophthalate and flexible bis(benzimidazole) co-ligands. Z. Anorg. Allg. Chem. 2014, 640, 491–496.

    (13) Li, L. L.; Yuan, R. U.; Liu, L. L.; Ren, Z. G.; Zheng, A. X.; Cheng, H. J.; Li, H. X.; Lang, J. P. Formation of [CuSCN]n-based topological structures via a family of flexible benzimidazolyl-based linkers with different spacer lengths. Cryst. Growth Des. 2010, 10, 1929–1938.

    (14) Allen, F. H. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst. 2002, B58, 380–388.

    (15) Hoskins, B. F.; Robson, R.; Slizys, D. A. An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2(bix = 1,4-bis(imidazol-1-ylmethyl)benzene). J.Am. Chem. Soc. 1997, 119, 2952–2953.

    (16) Geng, J. C.; Liu, L. W.; Xiao, S. L.; Cui, G. H. Two 2D cobalt(II) coordination frameworks with unusual binodal network topology: synthesis,structures, and catalytic properties. Transi. Met. Chem. 2013, 38, 143–148.

    (17) Hameed, B. H.; Lee, T. W. Degradation of malachite green in aqueous solution by Fenton process. J. Hazard. Mater. 2009, 164, 468–472.

    (18) Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structures. University of G?ttingen, Germany 1997.

    (19) Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structures. University of G?ttingen, Germany 1997.

    (20) Feng, X.; Ma, L. F.; Wang, L. Y.; Zhao, J. S. A unique tetranuclear nickel(II) complex containing pyridine-2-carboxaldehyde derivative bearing an intramolecular acetato: synthesis, crystal structure and magnetic property. Inorg. Chem. Commun. 2011, 14, 584–589.

    (21) Bai, Y.; Shang, W. L.; Dang, D. B.; Gao, H.; Niu, X. F.; Guan, Y. F. Synthesis, crystal structure and luminescent properties of a thiocyanato bridged two-dimensional heteronuclear polymeric complex of cadmium(II) and copper(II). Inorg. Chem. Commun. 2008, 11, 1470–1473.

    (22) Jin, C. M.; Chen, Z. F.; Mei, H. F.; Shi, X. K. Ag(I) coordination polymers with flexible bis-imidazole ligands: 2D interwoven structure and wavy layer network based on silver–silver interaction. J. Mol. Struct. 2009, 921, 58–62.

    (23) Allendrof, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.

    (24) Ateer, B. M.; Beattie, N.; Richens, D. T. Catalytic oxidation of cyclohexene by aqueous iron(III)/H2O2in mildly acidic solution: epoxidation versus allylic oxidation. Inorg Chem Commun. 2013, 35, 284–289.

    (25) Jiao, C. H.; He, C. H.; Geng, J. C.; Cui, G. H. Synthesis, crystal structures and catalytic properties of two 1D cobalt(II) coordination polymers.Transi. Met. Chem. 2012, 37, 17–23.

    (26) Hao, J. M.; Wang, L. N.; Van Hecke, K.; Cui, G. H. An unprecedented binodal (4, 10)-connected metal-organic framework based on pentanuclear cobalt (II) clusters. Inorg. Chem. Commun. 2014, 41, 43–46.

    (27) Li, M.; Zhao, S.; Peng, Y. F.; Li, B. L.; Li, H. Y. A polythreading array formed by a (3,5)-connected 3D anionic network and 1D cationic chains:synthesis, structure, and catalytic properties. Dalton Trans. 2013, 42, 955–964.

    (28) Ming, C. L.; Li, Y. H.; Li, G. Y.; Cui, G. H. Synthesis, crystal structures, luminescence and catalytic properties of three silver(I) coordination polymers with bis(imidazole) and benzenedicarboxylic acid ligands. Transi. Met. Chem. 2014, 39, 477–485.

    白带黄色成豆腐渣| 悠悠久久av| 亚洲欧美日韩无卡精品| 欧美一区二区亚洲| 两人在一起打扑克的视频| 乱码一卡2卡4卡精品| 757午夜福利合集在线观看| 一区二区三区高清视频在线| 88av欧美| 中亚洲国语对白在线视频| 美女高潮的动态| 国产色婷婷99| 欧美区成人在线视频| 精品久久久久久,| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 国产伦一二天堂av在线观看| 成人三级黄色视频| 久久6这里有精品| 男人狂女人下面高潮的视频| 伊人久久精品亚洲午夜| 午夜福利欧美成人| 久久天躁狠狠躁夜夜2o2o| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| a在线观看视频网站| 亚洲美女搞黄在线观看 | 国产成人a区在线观看| 国语自产精品视频在线第100页| 深夜a级毛片| 偷拍熟女少妇极品色| 亚洲欧美激情综合另类| 伊人久久精品亚洲午夜| 欧美bdsm另类| а√天堂www在线а√下载| 久久99热6这里只有精品| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看 | 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 女人十人毛片免费观看3o分钟| 中出人妻视频一区二区| 免费av不卡在线播放| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 成人欧美大片| 91久久精品电影网| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 国产探花在线观看一区二区| 两个人的视频大全免费| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 真人做人爱边吃奶动态| 亚洲国产精品sss在线观看| 一个人免费在线观看电影| 国产美女午夜福利| 国产精品电影一区二区三区| 久久精品人妻少妇| 免费大片18禁| 麻豆av噜噜一区二区三区| 91九色精品人成在线观看| 亚洲精品在线观看二区| or卡值多少钱| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 亚洲中文日韩欧美视频| 人人妻人人澡欧美一区二区| 亚洲黑人精品在线| 亚洲第一电影网av| 国产精品一区二区性色av| 亚洲av成人av| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 精品人妻视频免费看| 听说在线观看完整版免费高清| 精品久久久久久久末码| 国产单亲对白刺激| 天堂av国产一区二区熟女人妻| 国产午夜福利久久久久久| eeuss影院久久| 国产精品一区二区三区四区久久| 欧美zozozo另类| 三级毛片av免费| 精品午夜福利视频在线观看一区| 免费一级毛片在线播放高清视频| 丝袜美腿在线中文| 男人的好看免费观看在线视频| 欧美3d第一页| 老女人水多毛片| 欧美精品啪啪一区二区三区| 在线a可以看的网站| 亚洲专区中文字幕在线| 久久精品人妻少妇| 五月伊人婷婷丁香| 久久久成人免费电影| 成人特级av手机在线观看| 色精品久久人妻99蜜桃| 麻豆国产av国片精品| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 日韩国内少妇激情av| 91字幕亚洲| 五月伊人婷婷丁香| 男女床上黄色一级片免费看| 最近视频中文字幕2019在线8| 国模一区二区三区四区视频| 国产69精品久久久久777片| 国产精品亚洲美女久久久| 免费在线观看影片大全网站| 精品久久久久久,| 高清日韩中文字幕在线| 天堂√8在线中文| 黄色视频,在线免费观看| www.www免费av| 老司机午夜十八禁免费视频| 极品教师在线视频| 性色avwww在线观看| 一a级毛片在线观看| 九色成人免费人妻av| 欧美乱妇无乱码| 亚洲av电影不卡..在线观看| 欧美潮喷喷水| 久久香蕉精品热| 亚洲激情在线av| 日本 欧美在线| 色av中文字幕| 91狼人影院| 91字幕亚洲| 欧美黑人欧美精品刺激| 亚洲最大成人av| 97热精品久久久久久| 日韩 亚洲 欧美在线| www.熟女人妻精品国产| 色综合婷婷激情| 我的老师免费观看完整版| 亚洲美女黄片视频| 国产精品,欧美在线| 国产精品自产拍在线观看55亚洲| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 国产高清三级在线| 黄色配什么色好看| 日韩免费av在线播放| 免费av毛片视频| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| 亚洲经典国产精华液单 | 三级毛片av免费| 国产欧美日韩精品一区二区| 亚洲片人在线观看| 在线免费观看不下载黄p国产 | 久久精品久久久久久噜噜老黄 | 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 乱码一卡2卡4卡精品| 成人国产一区最新在线观看| 欧美在线一区亚洲| 国内精品久久久久精免费| 亚洲精品在线观看二区| 免费观看的影片在线观看| 久久久久久久久中文| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 综合色av麻豆| 精品久久久久久成人av| 国产乱人视频| av视频在线观看入口| 久久久精品大字幕| 久久人人精品亚洲av| 中国美女看黄片| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 熟妇人妻久久中文字幕3abv| 亚洲内射少妇av| 欧美成人免费av一区二区三区| 不卡一级毛片| 最近中文字幕高清免费大全6 | 特级一级黄色大片| 天堂√8在线中文| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 欧美性感艳星| 中文在线观看免费www的网站| 好男人电影高清在线观看| 成人午夜高清在线视频| 中文字幕av在线有码专区| 日本 av在线| 可以在线观看的亚洲视频| 伊人久久精品亚洲午夜| 久久久久久大精品| 99热这里只有是精品50| 国产不卡一卡二| 欧美日韩福利视频一区二区| 全区人妻精品视频| av在线天堂中文字幕| 久久久久精品国产欧美久久久| 91字幕亚洲| 亚洲五月天丁香| 看片在线看免费视频| 国产主播在线观看一区二区| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单 | 成年版毛片免费区| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| av欧美777| 能在线免费观看的黄片| 免费av不卡在线播放| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 欧美又色又爽又黄视频| 青草久久国产| 天天一区二区日本电影三级| 亚洲无线在线观看| 一本精品99久久精品77| 中文字幕人成人乱码亚洲影| 很黄的视频免费| 在线天堂最新版资源| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看 | 国产一区二区三区视频了| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 男女做爰动态图高潮gif福利片| 简卡轻食公司| 看十八女毛片水多多多| 男女之事视频高清在线观看| 人人妻人人看人人澡| 我的女老师完整版在线观看| 免费黄网站久久成人精品 | 精品99又大又爽又粗少妇毛片 | 国产精品自产拍在线观看55亚洲| 国产av麻豆久久久久久久| 99久久精品热视频| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 久久亚洲真实| 韩国av一区二区三区四区| 黄片小视频在线播放| 国产成人欧美在线观看| 三级国产精品欧美在线观看| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| av欧美777| 国产视频内射| 国产免费一级a男人的天堂| 欧美成人a在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲av美国av| 成人亚洲精品av一区二区| 国产精品影院久久| 成人性生交大片免费视频hd| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 成人永久免费在线观看视频| 少妇的逼好多水| 99久久成人亚洲精品观看| 欧美日本亚洲视频在线播放| 简卡轻食公司| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 少妇的逼水好多| 亚州av有码| 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 桃色一区二区三区在线观看| 嫩草影视91久久| 男人的好看免费观看在线视频| 欧美激情久久久久久爽电影| 两个人视频免费观看高清| 国产在线男女| 欧美黑人欧美精品刺激| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 亚洲avbb在线观看| 少妇被粗大猛烈的视频| 免费看日本二区| 欧美又色又爽又黄视频| 少妇人妻精品综合一区二区 | 一本久久中文字幕| 国产视频一区二区在线看| 嫩草影院新地址| 少妇的逼水好多| 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 亚洲精品成人久久久久久| aaaaa片日本免费| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频| 亚洲av二区三区四区| 我要搜黄色片| 中文资源天堂在线| 嫩草影院精品99| 丁香六月欧美| 亚洲av成人av| 亚洲在线观看片| 色综合亚洲欧美另类图片| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品成人久久久久久| 两人在一起打扑克的视频| 91午夜精品亚洲一区二区三区 | 亚洲av中文字字幕乱码综合| 国产亚洲欧美在线一区二区| 美女被艹到高潮喷水动态| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 国产欧美日韩精品亚洲av| 九色国产91popny在线| 久久精品夜夜夜夜夜久久蜜豆| 一级av片app| av天堂在线播放| 国产成人av教育| 亚洲成人久久性| 国产亚洲av嫩草精品影院| 日本成人三级电影网站| 久久久久九九精品影院| 全区人妻精品视频| 久久午夜亚洲精品久久| 永久网站在线| 午夜免费激情av| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 久久久色成人| 麻豆久久精品国产亚洲av| 免费观看的影片在线观看| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 久久香蕉精品热| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 91久久精品电影网| 无人区码免费观看不卡| 国产av在哪里看| 免费在线观看成人毛片| 无遮挡黄片免费观看| 日本撒尿小便嘘嘘汇集6| 久久精品人妻少妇| 两人在一起打扑克的视频| 精品人妻1区二区| 三级毛片av免费| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 一级黄片播放器| 91午夜精品亚洲一区二区三区 | 91九色精品人成在线观看| 亚洲狠狠婷婷综合久久图片| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频 | 久久久国产成人免费| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 亚洲第一区二区三区不卡| 亚洲成av人片免费观看| 国产免费一级a男人的天堂| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 熟女人妻精品中文字幕| 久久欧美精品欧美久久欧美| 欧美黄色淫秽网站| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 免费av毛片视频| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 99热精品在线国产| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 国产伦人伦偷精品视频| 少妇高潮的动态图| 久久午夜福利片| 在线观看66精品国产| 性色avwww在线观看| 成人特级黄色片久久久久久久| 久久九九热精品免费| 国产免费一级a男人的天堂| 国产真实乱freesex| av中文乱码字幕在线| 桃色一区二区三区在线观看| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 成人美女网站在线观看视频| 精品久久国产蜜桃| 国产精品人妻久久久久久| 嫩草影院精品99| 中文字幕av在线有码专区| 国产精品精品国产色婷婷| 一本综合久久免费| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三| 好男人在线观看高清免费视频| 1000部很黄的大片| 在线看三级毛片| 深夜a级毛片| 校园春色视频在线观看| 国产91精品成人一区二区三区| 国产在线精品亚洲第一网站| 久久精品综合一区二区三区| 国产精品99久久久久久久久| 亚洲五月天丁香| 一区二区三区激情视频| 欧美xxxx性猛交bbbb| 国产三级在线视频| 精品久久久久久成人av| 深夜精品福利| 色综合婷婷激情| 国产伦人伦偷精品视频| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 亚洲第一电影网av| 九色成人免费人妻av| 91在线观看av| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久 | 老司机午夜福利在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 国产大屁股一区二区在线视频| 九色成人免费人妻av| 在线播放无遮挡| 成人午夜高清在线视频| 一区二区三区激情视频| 国产中年淑女户外野战色| 丁香欧美五月| 国产又黄又爽又无遮挡在线| 国产精品三级大全| 亚洲欧美日韩东京热| 18美女黄网站色大片免费观看| 三级国产精品欧美在线观看| 成年免费大片在线观看| 国产主播在线观看一区二区| 中文字幕久久专区| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 青草久久国产| 免费看a级黄色片| 精品久久久久久成人av| 亚洲av成人av| 熟妇人妻久久中文字幕3abv| 18禁裸乳无遮挡免费网站照片| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 好男人电影高清在线观看| 久久久久性生活片| av欧美777| 亚洲在线观看片| 久久久精品欧美日韩精品| 黄色一级大片看看| 免费观看的影片在线观看| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久| 91狼人影院| 午夜福利在线观看吧| 91久久精品电影网| 99久国产av精品| 我的女老师完整版在线观看| 午夜免费男女啪啪视频观看 | 一级毛片久久久久久久久女| 国产老妇女一区| bbb黄色大片| 精品久久久久久久久亚洲 | 亚洲中文字幕一区二区三区有码在线看| 无人区码免费观看不卡| 国产主播在线观看一区二区| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 麻豆久久精品国产亚洲av| 欧美黄色淫秽网站| 亚洲,欧美精品.| 亚洲午夜理论影院| 一边摸一边抽搐一进一小说| 亚洲av成人不卡在线观看播放网| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮喷水抽搐中文字幕| 亚洲国产日韩欧美精品在线观看| 国模一区二区三区四区视频| 波多野结衣高清无吗| 精品久久久久久成人av| 精品久久国产蜜桃| 少妇高潮的动态图| 简卡轻食公司| 色噜噜av男人的天堂激情| 国产在线精品亚洲第一网站| 免费大片18禁| 欧美三级亚洲精品| 久久久国产成人精品二区| 丰满的人妻完整版| 人人妻人人看人人澡| 亚洲五月天丁香| 大型黄色视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产av不卡久久| 特级一级黄色大片| 亚洲最大成人手机在线| 久久国产乱子伦精品免费另类| 最近最新中文字幕大全电影3| 最近视频中文字幕2019在线8| av天堂中文字幕网| 国内精品久久久久久久电影| 香蕉av资源在线| 少妇的逼水好多| 亚洲精华国产精华精| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区激情短视频| 亚洲国产精品合色在线| 最近在线观看免费完整版| 日韩成人在线观看一区二区三区| 亚洲在线观看片| 精品免费久久久久久久清纯| 永久网站在线| 欧美成人免费av一区二区三区| 久久精品影院6| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 精品人妻一区二区三区麻豆 | 亚洲国产精品999在线| 又黄又爽又刺激的免费视频.| 免费观看人在逋| 日本黄大片高清| 男人狂女人下面高潮的视频| 欧美精品国产亚洲| 黄色一级大片看看| 欧美xxxx性猛交bbbb| 久久久成人免费电影| 亚洲成av人片在线播放无| 久久久久九九精品影院| 亚洲国产精品999在线| 日韩大尺度精品在线看网址| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 国产精品久久电影中文字幕| 90打野战视频偷拍视频| 全区人妻精品视频| 中出人妻视频一区二区| 国产三级黄色录像| 亚洲av二区三区四区| 老司机午夜十八禁免费视频| 黄片小视频在线播放| 国产探花极品一区二区| 一级作爱视频免费观看| 99久久精品热视频| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久com| 婷婷色综合大香蕉| 日日夜夜操网爽| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| av在线老鸭窝| 久久久久久久精品吃奶| 神马国产精品三级电影在线观看| av黄色大香蕉| 在线观看美女被高潮喷水网站 | 最后的刺客免费高清国语| 午夜福利18| 成人一区二区视频在线观看| 久久午夜福利片| 午夜福利18| 国产精品电影一区二区三区| 午夜福利在线观看吧| 午夜福利18| 欧美潮喷喷水| 日韩欧美精品免费久久 | 99热这里只有是精品50| 欧美激情在线99| 午夜福利在线在线| 淫妇啪啪啪对白视频| 国产精品久久久久久人妻精品电影| 久久精品人妻少妇| av在线老鸭窝| 69av精品久久久久久| 亚洲av成人不卡在线观看播放网| 男女那种视频在线观看| 亚洲黑人精品在线| 亚洲精品一区av在线观看| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 亚洲乱码一区二区免费版| 国产精品电影一区二区三区| 在线观看午夜福利视频| 18禁黄网站禁片免费观看直播| 波多野结衣巨乳人妻| a在线观看视频网站| 国产不卡一卡二| 中文资源天堂在线| 亚洲国产色片| 91麻豆精品激情在线观看国产| 成人高潮视频无遮挡免费网站| 精品无人区乱码1区二区| 99热只有精品国产|