• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational Investigation of the Substituent Effect on the Intramolecular Proton Transfer Reaction of 3-Hydroxytropolone

    2014-03-25 02:35:26VedtINDilrzbkir
    結(jié)構(gòu)化學(xué) 2014年12期

    GüL Vedt I?IN Dilr ?zbkir

    (Chemistry Department, Faculty of Science, Cumhuriyet University 58140 Sivas, Turkey)

    1 INTRODUCTION

    The proton transfer reaction plays very important roles in physical, chemical and biological systems[1-4].Tropolone (TRN) and its derivatives, as model compounds for intramolecular proton transfer, are explored experimentally[5-15]and theoretically[16-22].Tropolone is a seven-membered aromatic molecule having an intramolecular hydrogen bond. It can form both intramolecular and intermolecular hydrogen bonds because of its acidic OH proton and basic C=O groups. 3-OHTRN (3-hydroxytropolone, a derivative of TRN) exhibits two tautomers, 2,7-dihydroxycyclohepta-2,4,6-trien-1-one (I) and 2,3-dihydroxycyclohepta-2,4,6-trien-1-one (II)[23]. In the previous paper[24], we have reported the density functional theory (DFT) (B3LYP/6-31+G**) calculation results for the proton transfer reaction of 3-OHTRN and its dimers. In this paper, -CN, -NH2,-NO2and -CH3groups have been attached to the 3, 4,5 and 6 positions of ring in order to investigate the influence of these groups on the proton transfer reaction of 3-OHTRN (these reactions are shown schematically in Scheme 1). For this reason, we have carried out the calculations using the Becke’s three-parameter hybrid method with the Lee, Yang and Parr correlation functional (B3LYP)[25-27]in the gas phase and in solution. According to the literature data, there have been no experimental and computational studies on the proton transfer reaction between tautomers of these derivatives.

    2 METHODS

    The stationary structures (reactants, products and transition states) were optimized using B3LYP[25-27]method by applying at the 6-31+G** basis set with polarization functions on all atoms and diffuse functions on heavy atoms in the gas phase. The harmonic vibrational frequencies were obtained at the same level of theory used in the geometry optimizations. This allowed us to classify the stationary points found as local minima or transition states. The solute-solvent interaction was evaluated using the self-consistent reaction field (SCRF)method, which is based on the self-consistent isodensity polarized continuum model (SCI-PCM)[28].The reaction field calculation was carried out for ε =78.39 (water). All the calculations were performed with the Gaussian 03W computational package[29].

    3 RESULTS AND DISCUSSION

    The selected structural parameters for I, II and TS(the transition state) structures of -CN, -NH2, -CH3and -NO2derivatives of 3-OHTRN are listed in Tables 1 and 2. The atom numbering and the schematic projection are shown in Scheme 1. In addition,all reactions are shown in Figs. 1, 2, 3, and 4 (Some selected bond lengths are given on the compounds).

    Scheme 1. Schematic representation of the investigated compounds

    Fig. 1. Optimized structures of I, II and TS (transition state) with substituents (-NH2, -CH3, -NO2 and-CN) attached to 3 position of 3-OHTRN at the B3LYP (6-31+G**) level in the gas phase(Gauss View 3.0 [30]). Some selected bond lengths (in ?) at the same level are given on the compounds. The numbers in parentheses belong to the aqueous phase

    Fig. 2. Optimized structures of I, II and TS with substituents (-NH2, -CH3, -NO2 and -CN) attached to 4 position of 3-OHTRN at the B3LYP (6-31+G **) level in the gas phase. Some selected bond lengths (in ?) at the same level are given on the compounds. The numbers in parentheses belong to the aqueous phase

    Fig. 3. Optimized structures of I, II and TS with substituents (-NH2, -CH3, -NO2 and -CN) attached to 5 positions of 3-OHTRN at the B3LYP (6-31+G **) level in the gas phase. Some selected bond lengths (in ?) at the same level are given on the compounds. The numbers in parentheses belong to the aqueous phase

    Fig. 4. Optimized structures of I, II and TS with substituents (-NH2, -CH3, -NO2 and -CN) attached to 6 position of 3-OHTRN at the B3LYP (6-31+G**) level in the gas phase. Some selected bond lengths (in ?)at the same level are given on the compounds. The numbers in parentheses belong to the aqueous phase

    The proton transfer reaction was considered by II→TS→I. The transfer of hydrogen atom from the O8to the O9atom is companied by a rearrangement of the seven-membered ring, and substantial changes are observed in the carbon-carbon, carbon-oxygen and oxygen-hydrogen bonds. As seen in Tables 1 and 2, in the proton transfer II→TS→I, the C1–C7and C1–C2distances in the investigated 3-OHTRN derivatives decrease in the gas phase and in water.The C1–C7bond lengths in structures with -NH2and-CH3groups substituted on positions 3 and 5 are longer than in those substituted on positions 4 and 6 in the gas phase and in water; whereas, the C1–C2bond lengths in structures with the same groups substituted on positions 3 and 5 are shorter than in those substituted on positions 4 and 6 both in the gas phase and in water. In addition, the C1–C7and C1–C2bond lengths in structures with -NO2and -CN groups do not change with the position of substituent. One of the most striking structural features of the investigated structures is the change of C7–O9and C1–O8bond lengths. In the proton transfer II→TS→I,the C1–O8bond lengths are shortened while C7–O9are lengthened in both gas phase and water. The C1–O8bond lengths in structures (I, II and TS) with-NH2and -CH3groups are longer than those with-NO2and -CN groups. The C1–O8–H15angles in all derivatives decrease on II→I transfer, while the O8–C1–C7angles increase in the gas phase and in water. The calculated tautomerization energies (ΔE),activation energy barriers (ΔE#), free energies (ΔG),and activation free barriers (ΔG#) for the proton transfer reaction of investigated derivatives are compared in Table 3. Let’s see how the calculated relative free energies (ΔG) for the proton transfer reactions change by the position of the substituents attached to the 3-OHTRN ring. As can be seen in the results, in gas phase and water, the ΔG order of structures with -NH2and -CH3groups is 6 > 5 > 3 > 4 in terms of position of the substitution. In addition, the ΔG order of structures with -NO2and -CN groups is 6> 4 > 3 > 5 according to the position of substitution.That is, the proton transfer reactions are easier by substitution on position 5 of the electron withdrawing groups (-NO2and -CN) than on other positions of the same groups both in the gas phase and in water.

    Table 1. Selected Bond Lengths (?), Bond Angles (°) and Dihedral Angles (°) for I, II and TS Structures with Substituent Attached to 3 and 4 Positions of 3-OHTRN at the B3LYP (6-31+G**)Level in the Gas Phase (For Numbering of Atoms, See Scheme 1)

    O(8)–C(1)–C(7) 113.18 109.84 118.98 112.80 109.60 118.11 112.48 109.25 117.28 112.52 109.32 117.51 O(8)–H(15)–O(9) 121.73 138.04 119.03 122.13 137.93 119.63 121.98 137.37 119.45 122.04 137.44 119.34 C(1)–C(7)–O(9) 116.02 109.41 113.63 115.23 109.03 113.04 114.40 108.70 112.70 114.60 108.78 112.82 C(1)–O(8)–H(15) 103.04 91.56 83.21 103.08 91.79 84.07 103.57 92.57 84.92 103.45 92.45 84.71 C(1)–C(7)–O(9)–H(1 –0.086 0.0007 –0.024 0.000 –0.009 0.0013 0.019 –0.008 0.006 0.085 –0.026 –0.002 O(8)–C(1)–C(7)–O(9 0.109 0.008 –0.013 0.0005 0.0007 0.006 –0.016 0.007 –0.015 –0.074 0.012 –0.004

    Table 2. Selected Bond Lengths (?), Bond Angles (°) and Dihedral Angles (°) for I, II and TS Structureswith Substituent Attached to 5 and 6 Positions of 3-OHTRN at the B3LYP(6-31+G**) Level in the Gas Phase (For Numbering of Atoms, See Scheme 1)

    Table 3. Calculated Tautomerization Energies (ΔE), Activation Energy Barriers (ΔE#), Free Energies (ΔG) and Activation Free Energy Barriers (ΔG#) (in kcal/mol) for the Proton Transfer Reactions of 3-OHTRN Derivatives in the Gas Phase and Water

    ΔG# 2.49 1.96 1.77 1.88 2.92 2.25 2.55 2.53 ΔG –5.73 –5.33 –5.09 –5.17 –4.66 –4.32 –4.12 –4.20 ΔE# 3.51 3.97 3.64 3.70 3.67 4.42 4.21 4.28 ΔE –4.05 –5.12 –7.22 –6.54 –3.05 –3.98 –6.31 –5.56 ΔG# 1.45 1.56 1.87 1.73 1.02 1.76 3.55 2.35 5 ΔG –3.70 –4.98 –6.32 –6.12 –2.55 –4.06 –5.92 –5.19 ΔE# 6.26 3.85 4.16 4.01 5.97 4.08 5.10 5.11 ΔE –1.32 –4.47 –4.32 –4.59 –1.46 –3.80 –2.29 –2.58 ΔG# 4.29 1.71 2.34 2.03 3.25 1.96 3.46 3.15 6 ΔG –0.74 –4.45 –3.87 –4.17 –1.44 –3.47 –1.84 –2.25

    However, by substitution on position 4 of electron donating groups (-NH2and -CH3), the reactions are easier than by substitution on other positions of these groups. In addition, the proton transfer reactions become difficult by substitution on position 6 of each of these groups. The calculated ΔG and ΔG#values in Table 3 show that these reactions are either thermodynamically or kinetically easier in the gas phase than in water, except the reaction of structure with -NH2group at position 6. The reason of this exception is magnitude of dipole moments of I, II and TS structures with -NH2group at position 6 in water.The structures with large dipole moments could be expended to be more stable than those having smaller dipole moments in an environment with high dielectric constant. The dipole moments of I and TS structures with -NH2group at position 6 are higher than the II structure with the same position and group.As also seen in ΔEs(solvation energies, Table 4), II and TS structures with -NH2group at position 6 become more stable than the I structure with the same group and position in water due to the solvent effects.Therefore, it can explain that the energy barrier of proton transfer reaction for structure with -NH2group at position 6 decreases and that the reaction is also thermodynamically easier in water than in gas phase.

    Let’s see also how the calculated free energies (ΔG)for the proton transfer reactions change by different substituents attached on the same position. While the reaction is the easiest by substitution of the -CN group(ΔG value for the reaction with -NH2group at the same position is only higher than those with -CN group by 0.01 kcal/mol in the gas phase) among the groups attached to position 3, the proton transfer for structure with -NH2group at position 4 is the easiest among the groups attached to position 4 in the gas phase and in water. In addition, the proton transfer is the easiest by substitution of -NO2group on position 5 and -CH3group on position 6 among the groups attached to the same position both in gas phase and in water.

    Table 4. Dipole Moments (μ(g) in Gas Phase and μ(w) in Water, in Debye) and Solvation Energies ΔEs = Egas – Esolv (kcal/mol) of the Tautomeric Forms in Gas Phase and Water

    From the viewpoint of valence theory, the interaction between the lone pair of acceptor O atom and O–H σ*orbital is mainly responsible for the proton transfer. Therefore, the O···H–O angle and O···H distance may play important roles in the proton transfer reactions. In most cases, hydrogen bonds with linear O···H–O structures and short hydrogen bond distances are considered to be strong. In addition, the O8···H15distances in TS structures have important effect on the energy barriers of the reactions.According to this information, evaluated to activation free energy barrier (ΔG#) for -NH2substituted systems,the ΔG#order is 6 > 4 > 5 > 3 in terms of substitution position in the gas phase. The same order is 6 > 4 > 3> 5 in water. Hence, in the case attached to the -NH2group at position 3, the ΔG#value for the reaction is the lowest in the gas phase. Comparing the above mentioned bond lengths and bond angles in the II and TS structures, it can be seen that the II structure with-NH2group at position 3 has the most linear O8···H15-O9structure and the shortest O8···H15hydrogen bond. Also, the O8···H15distance is the shortest in the TS structure with -NH2group in the same position (Fig. 1). In water, the ΔG#is lower for structure with -NH2group at position 5 than that with the same group at position 3. Because the dipole moment of the TS structure with -NH2group at position 5 is larger than that with the -NH2substituted on position 3, the TS structure with -NH2group at position 5 becomes stable in water, while the ΔG#order for -CH3substituted systems in the gas phase is 4 > 6 > 5 > 3 in terms of substitution position, and 4 >6 > 3 > 5 in water. That is, both in gas phase and water,the reaction having -CH3group at position 4 is the most difficult. As seen in Table 2, the II structure with-CH3group at position 4 has the weakest O9···H15hydrogen bond. Also, the TS structure with -CH3group at position 4 has the longest O8···H15distance among further TS structures with -CH3group (see Fig. 2).The ΔG#order for -NO2substituted systems is 6 > 5 >4 > 3 in terms of substitution position in the gas phase.In water, the same order is 5 > 6 > 4 > 3. That is, in both gas phase and water, the ΔG#is the lowest for system with -NO2group at position 3. The II and TS structures with -NO2group at position 3 have the shortest hydrogen bonds. The ΔG#order for -CN substituted systems is 6 > 4 > 5 = 3 in terms of substitution position in the gas phase. In water, the same order is 6 > 3 > 4 > 5. The proton transfer in structures with -CN group at position 5 is the easiest in gas phase and water.

    4 CONCLUSION

    The major conclusions to be gleaned from this work are as follows,

    (1) Tautomer I structures are more stable than tautomer II structures in gas phase and in water.

    (2) The calculated ΔG and ΔG#values show that these reactions are either thermodynamically or kinetically easier in gas phase than in water, except the reaction of structure with -NH2group at position 6.

    (3) Comparing the calculated free energies (ΔG)for the proton transfer reactions of structures with the same substituent attached to different positions, the proton transfer reactions become difficult by substitution on position 6 of each group in gas phase and in water.

    (4) The proton transfer reactions are easier by substitution on position 5 of electron withdrawing groups (-NO2and -CN) than substitution on other positions of the same groups in both gas phase and water. On the other hand, by substitution on position 4 of electron donating groups (-NH2and -CH3), the reactions are easier than substitution on other positions of these groups.

    (5) Considering ΔG and ΔG#values for all investigated reactions, the proton transfer reaction is kinetically the easiest by substitution on position 3 of-NH2group in the gas phase but, it is kinetically the easiest by substitution on position 5 of the same group in water. Also, the proton transfer reaction is thermodynamically the easiest by substitution of-NO2group on position 5, but it is thermodynamically the most difficult by substitution on position 6 of -NH2group in the gas phase and in water.

    ACKNOWLEDGEMENTS The authors acknowledge the CUBAP (The Scientific Research Projects Council of Cumhuriyet University) for providing the Gaussian 03W and Gauss View 3.0 program packages.

    (1) Camilo, A.; Alves, P.; Hollas, J. M.; Hamdan, M.; Ridley, T. The 370-nm electronic spectrum of tropolone: evidence from single vibronic level fluorescence spectra regarding the assignment of some vibrational fundamentals in the X~ and ? states. J. Mol. Spectrosc. 1985, 109, 99-122.

    (2) Sekiya, H.; Nagashima, Y.; Nishimura, Y. Vibrational specificity of proton-transfer dynamics in ground-state tropolone. Bull. Chem. Soc. Jpn. 1989, 62,3229-3231.

    (3) Yi, P. G.; Liang, Y. H.; Tang, Z. Q. Theoretical study of intermolecular proton transfer reaction in isolated 5-hydroxyisoxazole-water complexes. Chem.Phys. 2006, 322, 387-391.

    (4) Casadesus, R.; Moreno, M. A theoretical study of the ground and first excited singlet state proton transfer reaction in isolated 7-azaindole-water complexes. Chem. Phys. 2003, 290, 319-336.

    (5) Ikegami, Y. The infrared spectra of troponoid compounds. VI. The infrared and Raman spectra of tropolone, 3- and 4-isopropyltropolones. Bull. Chem.Soc. Jpn. 1963, 36, 1118-1125.

    (6) Alves, A. C. P.; Hollas, J. M. The near ultra-violet absorption spectrum of tropolone vapour II. Vibrational analysis. Mol. Phys. 1973, 25, 1305-1314.(7) Redington, R. L.; Redington, T. E. Tropolone monomer: vibrational spectrum and proton tunneling. J. Mol. Spectrosc. 1979, 78, 229-247.

    (8) Tomioka, Y.; Ito, M.; Mikami, N. Electronic spectra of tropolone in a supersonic free jet. Proton tunneling in the S1 state. J. Phys. Chem. 1983, 87,4401-4405.

    (9) Redington, R. L.; Chen, Y.; Scherer, G. J.; Field, R. W. Laser fluorescence excitation spectrum of jet-cooled tropolone. J. Chem. Phys. 1988, 88,627-633.

    (10) Sekiya, H.; Nagashima, Y.; Nishimura, Y. Electronic spectra of jet-cooled tropolone. Effect of the vibrational excitation on the proton tunneling dynamics. J. Chem. Phys. 1990, 92, 5761-5769.

    (11) Sekiya, H.; Nagashima, Y.; Tsuji, T.; Nishimura, Y.; Mori, A.; Takeshita, H. Vibrational mode-specific tunneling splittings in the A states of deuterated tropolones. J. Phys. Chem. 1991, 95, 10311-10317.

    (12) Nishi, K.; Sekiya, H.; Kawakami, H.; Mori, A.; Nishimura, Y. Coupling of internal rotation of methyl group with proton transfer in the S1 state of 5-methyltropolone. J. Chem. Phys. 1998, 109, 1589-1592.

    (13) Frost, K.; Hagemeister, F. C.; Arrington, C. A.; Zwier, T. S.; Jordan, K. D. Fluorescence-dip infrared spectroscopy of tropolone and tropolone-OD. J.Chem. Phys. 1996, 105, 2595-2604.

    (14) Mó, O.; Yá?ez, M.; Esseffar, M.; Herreros, M.; Notario, R.; Abboud, J. L. Role of chelation and resonance on the intrinsic acidity and basicity of tropolone. J. Org. Chem. 1997, 62, 3200-3207.

    (15) Redington, R. L.; Bock, C. W. MO study of singlets, triplets, and tunneling in tropolone. 1. Geometries, tunneling, and vibrations in the ground electronic state. J. Phys. Chem. 1991, 95, 10284-10294.

    (16) Sanna, N.; Ramondo, F.; Bencivenni, L. MP2/6-31G* structural study of tropone and tropolone molecules. J. Mol. Struct. 1994, 318, 217-235.

    (17) Nash, J. J.; Zwier, T. S.; Jordan, K. D. Mode-selective photoisomerization in 5-hydroxytropolone. II. Theory. J. Chem. Phys. 1995, 102, 5260-5270.

    (18) Vener, M. V.; Scheiner, S.; Sokolov, N. D. Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone. J. Chem. Phys. 1994, 101, 9755-9765.

    (19) Smerdachina, Z.; Siebrand, W.; Zgierski, M. Z. Mode-specific hydrogen tunneling in tropolone: an instanton approach. J. Chem. Phys. 1996, 104,1203-1212.

    (20) Takada, S.; Nakamura, H. Effects of vibrational excitation on multidimensional tunneling: general study and proton tunneling in tropolone. J. Chem.Phys. 1995, 102, 3977-3992.

    (21) Wójcik, M. J.; Boczar, M.; Stoma, M. Spectroscopic and theoretical study of vibrational spectra of hydrogen-bonded tropolone. Int. J. Quantum.Chem. 1999, 73, 275-282.

    (22) Tsuji, T.; Hamabe, H.; Hayashi, Y.; Sekiya, H.; Mori, A.; Nishimura, Y. Investigation of intramolecular hydrogen bonds in ortho-hydroxytropolone. J.Chem. Phys. 1999, 110, 966-971.

    (23) Kubo, K.; Matsimoto, T.; Mori, A. 3-Hydroxytropolone (2,7-dihydroxycyclohepta-2,4,6-trien-1-one). Acta Cryst. 2007, E63, o941-o943.

    (24) Isin, D. ?.; Karakus, N. Computational study of the intramolecular proton transfer reactions of 3-hydroxytropolone(2,7-dihydroxycyclohepta-2,4,6-trien-1-one) and its dimers. J. Mol. Model. 2010, 16, 1877-1882.

    (25) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys. Rev. B 1988,37, 785-789.

    (26) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

    (27) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.

    (28) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frich, M. J. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab Initio reaction field calculations. J. Phys. Chem. 1996, 100, 16098-16104.

    (29) Frisch, M. J. et al. Gaussian, Inc., Pittsburgh PA 2003.

    (30) Frisch, A.; Dennington II, R.; Keith, T.; Nielsen, A. B.; Holder, A. J. GaussView Reference, Version 3. 0. Gaussian ?nc 2003.

    黄色毛片三级朝国网站| 亚洲精品一二三| 免费黄色在线免费观看| 一级毛片我不卡| 高清不卡的av网站| 国产精品女同一区二区软件| 亚洲欧洲日产国产| 亚洲综合色网址| 中文字幕色久视频| 99热网站在线观看| 欧美精品一区二区免费开放| 久久久亚洲精品成人影院| 亚洲av国产av综合av卡| 国产av精品麻豆| 波野结衣二区三区在线| 伦精品一区二区三区| 国产精品国产av在线观看| 如何舔出高潮| 777久久人妻少妇嫩草av网站| a级毛片黄视频| 久久国内精品自在自线图片| 美国免费a级毛片| 精品少妇内射三级| 亚洲国产欧美网| 亚洲国产最新在线播放| 丝袜美足系列| 午夜91福利影院| av电影中文网址| 女性被躁到高潮视频| 夜夜骑夜夜射夜夜干| 最近手机中文字幕大全| 精品久久久精品久久久| 大片免费播放器 马上看| 国产免费视频播放在线视频| 精品少妇久久久久久888优播| 久久影院123| 可以免费在线观看a视频的电影网站 | 久久午夜综合久久蜜桃| 亚洲欧洲精品一区二区精品久久久 | 国产乱人偷精品视频| 国产亚洲精品第一综合不卡| 91成人精品电影| 高清在线视频一区二区三区| 晚上一个人看的免费电影| 婷婷色av中文字幕| 如何舔出高潮| 九九爱精品视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 成年av动漫网址| www.自偷自拍.com| 精品亚洲成国产av| 秋霞伦理黄片| 一区二区日韩欧美中文字幕| 一区福利在线观看| 免费在线观看完整版高清| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美精品自产自拍| 亚洲精品aⅴ在线观看| 一级,二级,三级黄色视频| 日韩人妻精品一区2区三区| av在线观看视频网站免费| 精品人妻一区二区三区麻豆| 在线 av 中文字幕| 免费黄色在线免费观看| 婷婷色av中文字幕| 久久人人97超碰香蕉20202| 一级爰片在线观看| 日韩电影二区| 午夜福利乱码中文字幕| 中文字幕人妻丝袜一区二区 | 亚洲国产日韩一区二区| 免费高清在线观看日韩| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 视频在线观看一区二区三区| 欧美日韩成人在线一区二区| 街头女战士在线观看网站| 中文欧美无线码| 欧美日韩一级在线毛片| 精品一区二区三区四区五区乱码 | 天堂俺去俺来也www色官网| 999精品在线视频| 午夜精品国产一区二区电影| 欧美成人午夜免费资源| tube8黄色片| 久久久欧美国产精品| 亚洲男人天堂网一区| 黄色一级大片看看| 老司机影院毛片| 肉色欧美久久久久久久蜜桃| 母亲3免费完整高清在线观看 | 国产精品免费大片| 久久久久久久久免费视频了| 国产精品女同一区二区软件| 一二三四中文在线观看免费高清| 久久午夜福利片| 亚洲av免费高清在线观看| 青春草国产在线视频| 老熟女久久久| 成年女人在线观看亚洲视频| 国产成人午夜福利电影在线观看| 尾随美女入室| 黄色一级大片看看| 亚洲精品乱久久久久久| 女人精品久久久久毛片| 精品午夜福利在线看| 搡老乐熟女国产| 高清不卡的av网站| 午夜91福利影院| 不卡av一区二区三区| 亚洲欧美一区二区三区国产| 另类精品久久| 亚洲少妇的诱惑av| 午夜免费观看性视频| 国产不卡av网站在线观看| 欧美日本中文国产一区发布| 免费高清在线观看日韩| 亚洲激情五月婷婷啪啪| 免费播放大片免费观看视频在线观看| 欧美精品国产亚洲| 制服人妻中文乱码| 精品少妇内射三级| 亚洲欧美中文字幕日韩二区| 亚洲五月色婷婷综合| 亚洲精品中文字幕在线视频| 丝袜喷水一区| 日韩在线高清观看一区二区三区| www.av在线官网国产| 90打野战视频偷拍视频| 亚洲第一区二区三区不卡| 久久精品亚洲av国产电影网| 只有这里有精品99| 精品国产乱码久久久久久小说| 亚洲伊人久久精品综合| 亚洲av福利一区| 久久久精品94久久精品| 一区二区三区四区激情视频| 免费日韩欧美在线观看| 在线观看美女被高潮喷水网站| 在线天堂中文资源库| 国产av码专区亚洲av| 欧美日本中文国产一区发布| 亚洲精品乱久久久久久| 又大又黄又爽视频免费| 搡女人真爽免费视频火全软件| 97在线视频观看| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 国产无遮挡羞羞视频在线观看| av在线老鸭窝| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到 | 1024视频免费在线观看| 日韩不卡一区二区三区视频在线| xxx大片免费视频| 日日摸夜夜添夜夜爱| 日韩中文字幕欧美一区二区 | 婷婷色综合大香蕉| 亚洲综合色惰| 搡老乐熟女国产| 日韩欧美精品免费久久| 最近的中文字幕免费完整| 亚洲伊人色综图| 日韩精品免费视频一区二区三区| 久久久久国产网址| 国产成人精品久久久久久| 欧美日韩成人在线一区二区| 国产一区二区在线观看av| 欧美精品av麻豆av| 午夜福利影视在线免费观看| 麻豆乱淫一区二区| 国产在线一区二区三区精| kizo精华| 国产免费福利视频在线观看| 国产熟女午夜一区二区三区| 国产亚洲欧美精品永久| 91精品国产国语对白视频| 久久久久精品性色| a 毛片基地| 精品99又大又爽又粗少妇毛片| 香蕉精品网在线| 99久久人妻综合| 97在线人人人人妻| 亚洲国产看品久久| 高清视频免费观看一区二区| 亚洲精品美女久久av网站| 欧美最新免费一区二区三区| 最近最新中文字幕大全免费视频 | 成人影院久久| 高清不卡的av网站| 日本欧美国产在线视频| 韩国av在线不卡| 亚洲三区欧美一区| videos熟女内射| 男女无遮挡免费网站观看| 高清视频免费观看一区二区| 一个人免费看片子| 国产精品香港三级国产av潘金莲 | 如何舔出高潮| 日韩电影二区| 日韩电影二区| 黄色配什么色好看| 国产免费现黄频在线看| 亚洲一码二码三码区别大吗| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 制服人妻中文乱码| 人妻人人澡人人爽人人| 国产亚洲一区二区精品| 丁香六月天网| 日韩欧美一区视频在线观看| 国产精品不卡视频一区二区| 亚洲欧美精品自产自拍| 欧美日韩精品成人综合77777| 2018国产大陆天天弄谢| 亚洲,一卡二卡三卡| 少妇 在线观看| 国产色婷婷99| 国产精品一区二区在线观看99| 久久99精品国语久久久| 国产精品人妻久久久影院| 免费观看无遮挡的男女| 天堂俺去俺来也www色官网| 美女中出高潮动态图| 90打野战视频偷拍视频| 日本午夜av视频| 多毛熟女@视频| 亚洲av免费高清在线观看| 亚洲av综合色区一区| 亚洲视频免费观看视频| 满18在线观看网站| 亚洲伊人久久精品综合| 色视频在线一区二区三区| av女优亚洲男人天堂| 日日啪夜夜爽| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 各种免费的搞黄视频| 91精品国产国语对白视频| 热re99久久精品国产66热6| 久久久欧美国产精品| 永久免费av网站大全| 色吧在线观看| 日本爱情动作片www.在线观看| 精品少妇一区二区三区视频日本电影 | 1024视频免费在线观看| 国产麻豆69| 久久97久久精品| 青春草国产在线视频| 久久久a久久爽久久v久久| 大陆偷拍与自拍| av福利片在线| 久久久久久久久免费视频了| 少妇 在线观看| 午夜免费观看性视频| 最近最新中文字幕大全免费视频 | 久久久久久久亚洲中文字幕| 大陆偷拍与自拍| 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 最新的欧美精品一区二区| 中国三级夫妇交换| videossex国产| 丝袜在线中文字幕| 久久精品国产亚洲av涩爱| 欧美亚洲 丝袜 人妻 在线| 色哟哟·www| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| www.av在线官网国产| 国产熟女午夜一区二区三区| 成人18禁高潮啪啪吃奶动态图| 97精品久久久久久久久久精品| 一区二区日韩欧美中文字幕| 免费观看av网站的网址| 久久久久久伊人网av| 国产成人a∨麻豆精品| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 免费人妻精品一区二区三区视频| 2018国产大陆天天弄谢| 我要看黄色一级片免费的| 国产野战对白在线观看| 九草在线视频观看| 日韩伦理黄色片| 啦啦啦视频在线资源免费观看| 在线亚洲精品国产二区图片欧美| 在线天堂中文资源库| 街头女战士在线观看网站| 成人18禁高潮啪啪吃奶动态图| 麻豆精品久久久久久蜜桃| 国产精品国产av在线观看| 国产极品天堂在线| 制服人妻中文乱码| 亚洲国产精品成人久久小说| 免费黄网站久久成人精品| 男人添女人高潮全过程视频| 国产成人精品无人区| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 男女无遮挡免费网站观看| 日韩人妻精品一区2区三区| 男女边吃奶边做爰视频| 国产精品99久久99久久久不卡 | 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 亚洲精品乱久久久久久| av不卡在线播放| 亚洲欧美色中文字幕在线| 男女下面插进去视频免费观看| 国产成人精品婷婷| 女性被躁到高潮视频| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 成人影院久久| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 一级毛片黄色毛片免费观看视频| 欧美精品一区二区免费开放| 成人漫画全彩无遮挡| 美女视频免费永久观看网站| 国产精品.久久久| 国产精品秋霞免费鲁丝片| 2021少妇久久久久久久久久久| 精品国产一区二区三区四区第35| 永久免费av网站大全| 一级毛片电影观看| 超碰97精品在线观看| 不卡视频在线观看欧美| 69精品国产乱码久久久| 国产成人av激情在线播放| 久久久久久人人人人人| 大香蕉久久网| 免费播放大片免费观看视频在线观看| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| 一级毛片 在线播放| av女优亚洲男人天堂| 男女边吃奶边做爰视频| 下体分泌物呈黄色| a级片在线免费高清观看视频| 亚洲美女黄色视频免费看| 久久青草综合色| 日韩制服丝袜自拍偷拍| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 亚洲av免费高清在线观看| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 99久国产av精品国产电影| 久热这里只有精品99| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 亚洲第一av免费看| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图| 超碰97精品在线观看| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 婷婷成人精品国产| 人体艺术视频欧美日本| 国产男女内射视频| 狂野欧美激情性bbbbbb| 伦精品一区二区三区| 日本wwww免费看| www日本在线高清视频| 精品一区二区三卡| 午夜日本视频在线| 天堂8中文在线网| 18禁观看日本| 天堂中文最新版在线下载| 久久久国产一区二区| 97人妻天天添夜夜摸| 尾随美女入室| 婷婷色综合大香蕉| 亚洲国产欧美网| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 看免费av毛片| 日本91视频免费播放| 久久久久久久久久久久大奶| 日韩成人av中文字幕在线观看| 成年av动漫网址| 黄频高清免费视频| 夫妻午夜视频| 女人被躁到高潮嗷嗷叫费观| 国产精品av久久久久免费| 大片电影免费在线观看免费| 韩国高清视频一区二区三区| 在线精品无人区一区二区三| 日韩精品有码人妻一区| 国产精品熟女久久久久浪| 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 夜夜骑夜夜射夜夜干| 成年女人在线观看亚洲视频| 一区二区三区精品91| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| 中文欧美无线码| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 少妇被粗大猛烈的视频| av不卡在线播放| 欧美+日韩+精品| 亚洲精品乱久久久久久| 人妻系列 视频| 香蕉丝袜av| 久久影院123| 亚洲精品一区蜜桃| 男女边摸边吃奶| 国产精品女同一区二区软件| 亚洲伊人色综图| 亚洲精品aⅴ在线观看| 黄色毛片三级朝国网站| 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 最近中文字幕高清免费大全6| 午夜影院在线不卡| 黄片无遮挡物在线观看| 久久国内精品自在自线图片| 亚洲精品一二三| 色吧在线观看| 国产亚洲一区二区精品| 亚洲欧美精品自产自拍| 制服人妻中文乱码| 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 五月开心婷婷网| 熟女少妇亚洲综合色aaa.| 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 久久青草综合色| 精品人妻在线不人妻| 国产精品一国产av| 在线 av 中文字幕| 国产欧美亚洲国产| 精品午夜福利在线看| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 丁香六月天网| 成人手机av| 老司机亚洲免费影院| 不卡视频在线观看欧美| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 欧美日韩成人在线一区二区| 亚洲一区中文字幕在线| 日韩,欧美,国产一区二区三区| 一级片'在线观看视频| www.自偷自拍.com| 国产极品天堂在线| 超碰成人久久| 国产免费现黄频在线看| 校园人妻丝袜中文字幕| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 一区二区三区激情视频| 免费观看在线日韩| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| √禁漫天堂资源中文www| av在线app专区| freevideosex欧美| www日本在线高清视频| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 国产精品女同一区二区软件| 丁香六月天网| 精品国产乱码久久久久久小说| 秋霞在线观看毛片| 成年美女黄网站色视频大全免费| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 国产精品欧美亚洲77777| 午夜影院在线不卡| 免费播放大片免费观看视频在线观看| 免费黄色在线免费观看| 国产福利在线免费观看视频| 精品国产国语对白av| 久久鲁丝午夜福利片| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 国产一区亚洲一区在线观看| 男人舔女人的私密视频| 日本色播在线视频| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 老司机影院成人| 中文字幕人妻丝袜制服| 好男人视频免费观看在线| 91精品三级在线观看| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 美女国产视频在线观看| 中文字幕亚洲精品专区| 91国产中文字幕| 最近的中文字幕免费完整| 满18在线观看网站| 久久午夜福利片| 成人免费观看视频高清| 91在线精品国自产拍蜜月| 免费看不卡的av| 高清av免费在线| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 三上悠亚av全集在线观看| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 女性生殖器流出的白浆| 大码成人一级视频| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 人妻系列 视频| 亚洲人成77777在线视频| 国产精品免费大片| tube8黄色片| 欧美bdsm另类| 超碰成人久久| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 日本黄色日本黄色录像| 欧美日韩视频高清一区二区三区二| 18+在线观看网站| www.精华液| 国产野战对白在线观看| 日韩精品有码人妻一区| 国产成人欧美| av免费观看日本| 18禁动态无遮挡网站| 欧美bdsm另类| 久热久热在线精品观看| 国产精品一国产av| 亚洲成人一二三区av| 国产精品一国产av| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 天天操日日干夜夜撸| 国产 精品1| 男女下面插进去视频免费观看| 午夜91福利影院| 国产成人精品在线电影| 国产成人a∨麻豆精品| av有码第一页| av在线播放精品| 99国产精品免费福利视频| 午夜久久久在线观看| 久久狼人影院| 欧美少妇被猛烈插入视频| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 少妇的逼水好多| 可以免费在线观看a视频的电影网站 | 伦理电影免费视频| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 尾随美女入室| 午夜免费鲁丝| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 色网站视频免费| 又黄又粗又硬又大视频| 午夜福利在线观看免费完整高清在| 欧美国产精品va在线观看不卡| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 国产 一区精品| 久久精品国产亚洲av天美| 性少妇av在线| 日本欧美视频一区| 免费av中文字幕在线| 欧美黄色片欧美黄色片| 国产av国产精品国产| 国产高清不卡午夜福利| 国产精品熟女久久久久浪| av网站免费在线观看视频| 久久精品夜色国产| 成人黄色视频免费在线看| 99久久人妻综合| xxx大片免费视频| 亚洲精华国产精华液的使用体验| 看免费av毛片| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 成人黄色视频免费在线看| 伊人久久大香线蕉亚洲五| 亚洲一级一片aⅴ在线观看| 久久狼人影院| 黄片播放在线免费| 女人久久www免费人成看片| 亚洲欧美清纯卡通| 久久久亚洲精品成人影院| 久久人人爽人人片av| 观看av在线不卡|