• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nasal mucosal inhalation of amyloid-beta peptide 3-10 defective adenovirus attenuates cytotoxicity induced by beta-amyloid (1-42)

    2014-03-24 07:55:11TongziJiangWanshuGuoShaShaXiaonaXingRongGuoYunpengCao
    關(guān)鍵詞:舌系帶黏膜炎潰瘍面

    Tongzi Jiang, Wanshu Guo, Sha Sha, Xiaona Xing, Rong Guo, Yunpeng Cao

    Department of Neurology, First Af fi liated Hospital of China Medical University, Shenyang, Liaoning Province, China

    Nasal mucosal inhalation of amyloid-beta peptide 3-10 defective adenovirus attenuates cytotoxicity induced by beta-amyloid (1-42)

    Tongzi Jiang, Wanshu Guo, Sha Sha, Xiaona Xing, Rong Guo, Yunpeng Cao

    Department of Neurology, First Af fi liated Hospital of China Medical University, Shenyang, Liaoning Province, China

    Three-month-old Alzheimer’s disease model transgenic mice were immunized with Aβ1-42, Plp-Adenovirus [Ad]-X-CMV-(Aβ3-10)10-CpG [AdCpG-(Aβ3-10)10] or AdCpG virus fl uid via nasal mucosal inhalation, respectively. ELISA analysis of serum showed Aβ42antibody titers were signi fi cantly increased in mice immunized with Aβ1-42and AdCpG-(Aβ3-10)10. Concanavalin A and AdCpG-(Aβ3-10)10stimulation signi fi cantly increased the number of proliferating spleen cells cultured from AdCpG(Aβ3-10)10and Aβ42groups compared with the control group. In the AdCp-G(Aβ3-10)10group, levels of interleukin (IL)-4 and IL-10 were increased, while those of IL-2 and interferon-γ were decreased. In the Aβ42group, levels of IL-4, IL-10, IL-2 and interferon-γ were all increased. Experimental fi ndings indicate that AdCpG-(Aβ3-10)10vaccine can produce strong T helper 2 (T2) humoral immune responses in addition to the production of Aβ42antibody. Te cellular immunologic response was weak and avoided Aβ1-42-mediated cytotoxicity.

    nerve regeneration; neurodegenerative disease; Alzheimer’s disease; immunotherapy; amyloid-beta peptide vaccine; cytokines; humoral immunity; inflammation; NSFC grant; neural regeneration

    Funding: This study was supported by the National Natural Science Foundation of China, No. 30471927.

    Jiang TZ, Guo WS, Sha S, Xing XN, Guo R, Cao YP. Nasal mucosal inhalation of amyloid-beta peptide 3-10 defective adenovirus attenuates cytotoxicity induced by beta-amyloid (1-42). Neural Regen Res. 2014;9(8):872-877.

    Introduction

    Current drug treatment for Alzheimer’s disease includes cholinergic inhibitors for the improvement of cognitive function, and N-methyl-D-aspartate receptor antagonists for medium and severe patients. However, these drugs only alleviate the symptoms of Alzheimer’s disease, and fail to a ff ect irreversible cognitive dysfunction and e ff ectively scavenge amyloid beta peptide (Aβ) in the brain. Aβ vaccines reduced and eliminated Aβ deposition in an Alzheimer’s disease transgenic mouse model, and signi fi cantly improved behavioral and cognitive impairment (Arendash et al., 2001a; Dodart et al., 2002). In 1999, the application of vaccine AN1792 (ELAN Pharmaceuticals, Inc., San Diego, CA, USA) in a phase IIa clinical trial was terminated owing to the presence of aseptic meningitis in 6% subjects, but an autopsy report found it e ff ectively scavanged brain Aβ plaques (Nicoll et al., 2003). AN1792-induced aseptic meningitis was caused by T cell-mediated autologous immune cellular responses (Town et al., 2002). T lymphocytes mediate cell-mediated immunity and immune regulatory effects. T helper cells can be classi fi ed into T helper (T)1 cells and T2 cells according to the type of cytokine produced. T1 cells secrete interferon-γ (IFN-γ) and IFN-β, for cell immunity, while T2 cells secrete interleukin (IL)-4 and IL-10 that function in humoral immunity. A safe and effective Aβ vaccine can reduce Th1 immune responses and increase Th2 immune responses, thus attenuating in fl ammation in the brain (Piras et al., 2014).

    Numerous measures have been proposed to make the vaccine safe and e ff ective, such as selecting di ff erent amino acid fragments of Aβ1-42, using di ff erent adjuvants, and immune pathways (Serpente et al., 2014). A gene vaccine synthesized with an N-terminal amino acid fragment of Aβ1-42has attracted increasing attention, and Aβ1-6and Aβ1-15fragments have been investigated in animal experiments (Janus et al., 2000; Arendash et al., 2001b). However, it is important to avoid cellular immune responses caused by the Aβ vaccine. We constructed a recombinant defective adenovirus vaccine Plp-Adeno-X-CMV-(Aβ3-10)10-CpG [AdCpG-(Aβ3-10)10] using defective adenovirus carriers, by repeated synthesis of Aβ3-10that is bound to CpG (Guo et al., 2011). In this study, 3-month-old Alzheimer’s disease transgenic mice were immunized with B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/J via nasal mucosal inhalation, to observe serum Aβ antibody production and e ff ects on mousespleen cell in fl ammatory responses.

    Materials and Methods

    Vaccine and virus

    Adenovirus AdCpG-(Aβ3-10)10was inserted into the target gene, and AdCpG virus without target gene adenovirus and adjuvant CpG were provided by our research group as previously described (Guo et al., 2011).

    Immunization of transgenic mice

    Eighteen double transgenic mice B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/J, aged 3 months, 9 males and 9 females, weighing 220-280 g, were provided by the Experimental Animals Center of China Medical University, China (license No. SCXK (Liao) 2008-0005). The experiment was performed under approval of the Experimental Animal Ethics Committee, the First Affiliated Hospital of China Medical University, China. The mice were randomly divided into three groups: Aβ1-42group, AdCpG group and Aβ3-10group. Te mice of all three groups were nasally inhalated with 20 μL Aβ1-42(Sigma, St. Louis, MO, USA), AdCpG virus (containing 1010vector particles, equivalent to 108pfu virus) or Ad-CpG-(Aβ3-10)10(1010vector particles, equivalent to 108pfu virus) (Morgan et al., 2000). Nasal mucosal immunization was administered to mice every 3 weeks, for a total of eight immunizations.

    Preparation of blood specimens

    Tail vein blood (0.3 mL) was collected when mice were aged 3 months (1 week before immunization), 6 months (1 week after the fourth immunization), and 7.5 months (1 week after the sixth immunization). Cardiac blood (2 mL) was collected at the age of 10 months (4 weeks after the eighth immunization). The collected blood samples were placed at room temperature for 2 hours, and centrifuged at 4°C at 2,500 r/min, for 20 minutes. The serum was stored until further use.

    Indirect enzyme-linked immunosorbent assay (ELISA) detection of serum anti-Aβ42antibody concentration

    One hundred μL Aβ1-42(5 mL/L; AnaSpect, Fremont, CA, USA) was coated onto 96-well plates and incubated overnight at 4°C. The plate was then rinsed with PBS containing 0.05% Tween-20, three times, and incubated with 200 μL blocking buffer per well (PBS containing 0.5% fetal bovine serum and 0.05% Tween-20) at room temperature for 1 hour. Then, the buffer solution was discarded, the plate was rinsed with PBS (containing 0.05% Tween-20) three times, and incubated with mouse quantitive anti-Aβ1-16monoclonal antibody (100, 30, 10, 3, 1, 0 μg/L; Covance, Princeton, NJ, USA) at 4°C overnight. The serum and standard antibodies were removed, the plate was rinsed with PBS (containing 0.05% Tween-20) three times, and incubated with anti-mouse IgG (1:2,000; Thermo Fisher Biochemical Products Co., Ltd.,) at room temperature for 1 hour. The secondary antibody was removed, and the plate was rinsed five times and incubated with 3,3′,5,5′-tetramethylbenzidine (100 μL per well) at room temperature for 15 minutes, until the dye was visible. Terminating solution (100 μL) was added to each well, and the absorbance at 450 nm was calculated using a microplate reader (BioTex, Winooski, VT, USA).

    In vitro culture of spleen cells after immunization

    Ten-month-old mice were euthanized under anesthesia (10% chloral hydrate) and splenic tissue was harvested and placed in a petri dish containing RPMI-1640 medium (Termo Fisher Biochemical Products Co., Ltd., Beijing, China). Spleen tissue was sheared and ground to obtain a cell suspension. Tis was centrifuged at 4°C at 1,000 r/min (centrifugal radius of 12.5 cm) for 10 minutes, and the supernatant was discarded. Erythrocyte lysis bu ff er (3 mL; Beijing Dingguo Changsheng Biotechnology Co., Ltd., Beijing, China) was added to the cells for 5 minutes and mixed with RPMI 1640 medium. Te cells were re-suspended by centrifugation at 4°C at 1,000 r/min for 10 minutes, twice. Te precipitates were added with RPMI 1640 medium containing 10% fetal bovine serum. Te cell density was adjusted to 5 × 106/mL. Te cells were then incubated into the 96-well plates containing 2 μg/μL concanavalin A (Beijing Dingguo Changsheng Biotechnology Co., Ltd.) and 20 μg/μL AdCpG-(Aβ3-10)10, in a CO2incubator for 72 hours.

    MTT assay forin vitroproliferation rate of spleen cells after immunization

    Spleen cells were cultured in vitro and incubated with 20 μL MTT solution per well (5 mg/mL; Beijing Dingguo Changsheng Biotechnology Co., Ltd.) for an additional 4 hours, and centrifuged at 2,000 r/min (centrifugal radius of 12.5 cm) at 4°C for 10 minutes. The supernatant was removed and 150 μL DMSO was added to each well. The absorbance value at 492 nm was detected by ELISA (Corning, Steuben County, NY, USA).

    ELISA detection of IFN-γ, IL-2, IL-4, and IL-10 levels in spleen cell culture medium

    Different cytokines (IFN-γ, IL-2, IL-4, IL-10) were added to the microporous plate (Corning) and were incubated with 100 μL standard sample at different concentrations (GD Animal Health service, Deventer, Netherland) and 50 μL biotinylated antibody working solution (Thermo Fisher Biochemical Products Co., Ltd.) at 20-25°C for 120 minutes. All solutions in the wells were discarded and 100 μL enzyme conjugate working solution (Thermo Fisher Biochemical Products Co., Ltd.) was added to each well except for the blank, and incubated at 20-25°C for 30 minutes. Subseqently, 50 μL each of chromogenic agents A and B (Shanghai Baoman Bio-Technology Co., Ltd., Shanghai, China) were added and developed in the dark at 37°C for 10 minutes. Ten the reaction was terminated. Te absorbance value of each well at 450 nm was measured with a microplate reader. IFN-γ, IL-2, IL-4, and IL-10 content was obtained by comparison with the standard curve.

    Statistical analysis

    Figure 1 Changes in serum Aβ42antibody titers in transgenic mice after nasal mucosal immunization measured by enzyme-linked immunosorbent assay (ELISA).

    Results

    Serum anti-Aβ42antibody titers increased after immunization in transgenic mice

    ELISA results showed that low serum Aβ42antibody levels could be measured before immunization. As the time after immunization increased, serum Aβ42antibody concentrations in the Aβ1-42group and Aβ3-10group gradually increased (P < 0.05). Tis increase was not statistically signi ficant after the sixth and eighth immunizations (P > 0.05). In the AdCpG group, the serum Aβ42antibody concentration was unchanged during immunization. Compared with the AdCpG group, the Aβ1-42and Aβ3-10groups showed signi ficantly higher serum Aβ42antibody concentrations (P < 0.05). There was no significant difference between the Aβ1-42and Aβ3-10groups (P > 0.05; Figure 1).

    Nasal mucosal inhalation of AdCpG-(Aβ3-10)10promoted the in vitro proliferation of mouse spleen cellsAfter AdCpG-(Aβ3-10)10and Aβ1-42immunization, mouse spleen cells were cultured in vitro. MTT assay showed that stimulation with concanavalin A or AdCpG-(Aβ3-10)10, significantly increased the number of spleen cells cultured in the Aβ1-42and Aβ3-10groups compared with the AdCpG group (P < 0.05), but there was no signi fi cant di ff erence between the Aβ1-42and Aβ3-10groups (P > 0.05; Figure 2).

    Effect of nasal mucosal inhalation of AdCpG-(Aβ3-10)10on IFN-γ, IL-2, IL-4 and IL-10 levels in spleen cell culture medium

    Figure 2 Proliferation of mouse spleen cells cultured in vitro after immunization (MTT assay).

    ELISA results showed that after concanavalin A stimulation, IFN-γ and IL-2 levels in the culture medium of Aβ42immunized spleen cells (Aβ1-42group and Aβ3-10group) were significantly decreased compared with the AdCpG group (P < 0.05), whereas IL-4 and IL-10 levels showed no significant change. There was no significant difference in cytokine levels between the Aβ1-42and Aβ3-10groups (P > 0.05). After AdCpG-(Aβ3-10)10stimulation, IFN-γ, IL-2, IL-4 and IL-10 levels in the culture medium of Aβ42immunized spleen cells (Aβ1-42group and Aβ3-10group) were significantly increased compared with the AdCpG group (P < 0.05). IL-4 and IL-10 levels in the culture medium of AdCpG-(Aβ3-10)10immunized spleen cells were increased (P < 0.05), while IFN-γ and IL-2 levels were decreased (P < 0.05; Figure 3).

    Discussion

    Schenk et al. (2002) showed for the fi rst time that Aβ42peptide vaccine reduced Aβ deposition and scavenged senile plaques in the brain of PDAPP mice, opening a new field for the immunotherapy for Alzheimer’s disease. Subsequent studies have mostly supported the fi ndings; for example Aβ immunization improved learning and memory functions in Alzheimer’s disease transgenic mice (McLaurin et al., 2002). Furthermore, the presence of serum antibodies after immunization e ff ectively inhibited Aβ fi ber aggregation (McLaurin et al., 2002). Other studies have demonstrated the e ff ect of immunotherapy against Alzheimer’s disease. A phase I clinical trial using QS21 as an adjuvant for Aβ42peptide vaccine induced an immune response that generated Aβ antibodies that bound with amyloid-like plaques, thus signi fi cantly improving cognitive function in patients. Unfortunately, 6% of patients developed undersiable symptoms of cerebrospinal meningitis in a phase II clinical trial of the AN1792 vaccine (Hock et al., 2003), and the clinical trial was discontinued. A study by Dodart et al. (2002) con fi rmed aseptic meningitis occurred because of cellular immune responses mediated by T cells, which can be avoided.

    Figure 3 Di ff erential cytokine expression in mouse spleen cells after stimulation with concanavalin A (A) and AdCpG-(Aβ3-10)10(B) by enzyme-linked immunosorbent assay.

    Different types of cellular immune responses (Th1 and Th2) mediate either immune regulatory or inflammatory processes, and various types of T cell responses are important for developing Alzheimer’s disease immunotherapeutic strategies. Extracellular pathogen infection (or antigen immunity) is mainly prevented by antibody and complement reactions as these antigens preferentially induce the di ff erentiation of T2 cells, whereas intracellular infections (or antigen) are dominated by T1 responses. Infectious pathogen antigens are scavenged by activated macrophages or microglia in the central nervous system. Te T1 response mainly promotes the secretion of IL-2 and IFN-γ (Orgogozo et al., 2003), whereas Th2 responses produce IL-4 and IL-10, the expression of CD40, and the synthesis of IgG1, IgG3 and IgE antibodies from B cells. In addition, T2 responses stimulate human B cells to produce IgG2, IgG4, IgA, IgE and other antibody isotypes that remove extracellular Aβ with no damage to surrounding tissues or cells. Terefore, a crucial strategy for treating Alzheimer’s disease is to reduce T1 immune responses and enhance T2 immune responses.

    A variety of methods have been proposed to develop a safe vaccine for Alzheimer’s disease, including the synthesis of Aβ peptide chain amino acid sequences, adjuvants, vectors and immune system pathways. However, these methods a ff ect the vaccine’s efficacy. Kim et al. (2007) prepared a novel vaccine with Aβ1-6and Pseudomonas exotoxin A receptor delivered by adenoviral vector, and found that nasal mucosal immunization of this vaccine reduced brain Aβ plaques, induced T2 responses, and inhibited T1 responses in transgenic mice. Movsesyan et al. (2008) demonstrated that prophylactic immunization with DNA epitopes vaccine could induce strong Th2 immune responses and generate high concentrations of Aβ antibodies with cases of meningitis observed. Frenkel et al. (2001) elucidated that Aβ3-6is the epitope that prevents Aβ accumulation, and the lack of the 3rdamino acid signi fi cantly decreased the affinity of Aβ antibodies. It was also shown that the CpG funtion of activating the immune system in animals is mainly mediated by B lymphocyte proliferation and the secretion of cytokines from activated monocytes (Vellas et al., 2009). Accumulating evidence has demonstrated the application of adenoviral DNA as an immune adjuvant and therapeuticdrug (Ballas et al., 1996). Tus, it is feasible to use a defective adenovirus as the vector for nasal immunization (Lemere and Masliah, 2010). Furthermore, it is simple to use, is low cost, has a longer duration of expression, and causes less trauma.

    1.4 口腔黏膜炎治療效果評(píng)價(jià)[13] 顯效:7 d內(nèi)潰瘍面完全愈合、口腔黏膜完整或潰瘍面愈合2/3以上、疼痛完全消失;有效:7 d內(nèi)創(chuàng)面縮小、肉芽組織正常生長(zhǎng)、疼痛消失或減輕、無(wú)炎性分泌物;無(wú)效:創(chuàng)面無(wú)變化或擴(kuò)大、疼痛不減輕。評(píng)估時(shí)特別注意舌下、舌系帶、上下唇內(nèi)側(cè)和口咽部黏膜。

    Based on the above, we chose the N-terminal 3-10 amino acids of Aβ1-42as a macromolecular antigen, in an attempt to generate humoral immunity and reduce cell-mediated immunity. In addition, CpG functions as an adjuvant to increase the immune e ff ects of (Aβ3-10)10antigen and overcome immune tolerance. Te aim of this study was to induce Aβ antibodies and induce Th2 immune responses using the constructed AdCpG-(Aβ3-10)10. Lemere et al. (2009) found that Aβ immunotherapy effectively prevented neurological damage in the brain of Alzheimer’s disease patients, before Aβ aggregation. Therefore, we immunized 3-month-old transgenic mice with AdCpG-(Aβ3-10)10before senile plaques formed.

    We examined the plasma of 6-month-old transgenic mice by ELISA and observed the successful induction of Aβ42antibodies at high concentrations. At 9 months of age (after the eighth immunization), plasma antibodies could still be detected, and the measured concentration was similar to that after the fourth immunization. Tis evidence indicated that a high concentration of antibodies was obtained after four immunizations, and were maintained at a high concentration after multiple immunizations. After Aβ42vaccine immunization, under the stimulation of antigen or concanavalin A, the number of proliferative spleen cells cultured in vitro was signi fi cantly increased, and the secretion of IL-2, IFN-γ, IL-4 and IL-10 was also increased. This evidence indicated that Aβ42peptides contain T cell and B cell epitopes, and induce both Th1 and Th2 responses. After mice were immunized with the AdCpG-(Aβ3-10)10vaccine, the number of proliferative spleen cells and IL-4 and IL-10 levels were increased, while IL-2 and IFN-γ levels were reduced. Therefore, the Aβ3-10subunit is B cell epitope antigen, that stimulates T2 responses to activate cellular immune responses.

    This study demonstrated that the constructed Ad-CpG-(Aβ3-10)10could induce high concentrations of Aβ antibodies in young transgenic mice after immunization, stimulate Th2 responses and reduce Th1 responses. When 3-month-old double transgenic mice B6.Cg-Tg(APPswe, PSEN1dE9) were nasal immunized with AdCpG-(Aβ3-10)10vaccine, IL-4 and IL-10 levels were significantly increased, indicating that the vaccine induced Th2 humoral immune responses, and no apparent cellular immune responses were observed. Tis evidence indicated the safety of the vaccine. We further detected serum Aβ antibody titers before, during and after immunization by ELISA, and found that high levels of serum antibody were present in AdCpG-(Aβ3-10)10immunized mice. AdCpG-(Aβ3-10)10, as a second generation vaccine for Alzheimer’s disease, could induce high levels of Aβ antibodies in young transgenic mice, produce T2 responses, and reduce T1 responses.

    Author contributions:Jiang TZ was responsible for the study design, collecting the data, and writing the manuscript. Guo WS, Sha S, Xing XN and Guo R implemented the study. Cao YP evaluated the study. Jiang TZ and Cao YP were responsible for the manuscript. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Arendash GW, Gordon MN, Diamond DM, Austin LA, Hatcher JM, Jantzen P, DiCarlo G, Wilcock D, Morgan D (2001a) Behavioral assessment of Alzheimer’s transgenic mice following long-term Aβ vaccination: task speci fi city and correlations between Aβ deposition and spatial memory. DNA Cell Biol 20:737-744.

    Arendash GW, Gordon MN, Diamond DM, Austin LA, Hatcher JM, Jantzen P, DiCarlo G, Wilcock D, Morgan D (2001b) Behavioral assessment of Alzheimer’s transgenic mice following long-term Abeta vaccination: task speci fi city and correlations between Abeta deposition and spatial memory. DNA Cell Biol 20:737-744.

    Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157:1840-1845.

    Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory de fi cits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5:452-457.

    Frenkel D, Kariv N, Solomon B (2001) Generation of auto-antibodies towards Alzheimer’s disease vaccination. Vaccine 19:2615-2619.

    Guo R, Huang K, Jiang TZ, Li J, Li Y, Xing XN, Cao YP (2011) Induced T2 dominant immune response in APPswe, PSEN1dE9 transgenic mice after nasal immunization with an adenoviral vector encoding 10 tandem repeats of beta-amyloid 3-10. Neural Regen Res 6:2005-2012.

    Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Müller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJF, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547-554.

    Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979-982.

    Kim HD, Tahara K, Maxwell JA, Lalonde R, Fukuiwa T, Fujihashi K, Van Kampen KR, Kong FK, Tang DC, Fukuchi K (2007) Nasal inoculation of an adenovirus vector encoding 11 tandem repeats of Abeta1-6 upregulates IL-10 expression and reduces amyloid load in a Mo/Hu APPswe PS1dE9 mouse model of Alzheimer’s disease. J Gene Med 9:88-98.

    Lemere CA (2009) Developing novel immunogens for a safe and e ff ective Alzheimer’s disease vaccine. Prog Brain Res 175:83-93.

    Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol 6:108-119.

    McLaurin J, Cecal R, Kierstead M, Tian X, Phinney AL, Manea M, French J, Lambermon MH, Darabie AA, Brown ME (2002) Terapeutically e ff ective antibodies against amyloid-β peptide target amyloid-β residues 4-10 and inhibit cytotoxicity and fi brillogenesis. Nat Med 8:1263-1269.

    Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Du ff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, W AG (2000) Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982-985.

    Movsesyan N, Ghochikyan A, Mkrtichyan M, Petrushina I, Davtyan H, Olkhanud PB, Head E, Biragyn A, Cribbs DH, Agadjanyan MG (2008) Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine-a novel immunotherapeutic strategy. PLoS One 3:e2124.

    Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:448-452.

    Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61:46-54.

    Piras S, Furfaro AL, Piccini A, Passalacqua M, Borghi R, Carminati E, Parodi A, Colombo L, Salmona M, Pronzato MA, Marinari UM, Tabaton M, Nitti M (2014) Monomeric Aβ1-42 and RAGE: key players in neuronal di ff erentiation. Neurobiol Aging 35:1301-1308.

    Schenk D (2002) Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 3:824-828.

    Serpente M, Bonsi R, Scarpini E, Galimberti D (2014) Innate immune system and in fl ammation in Alzheimer’s disease: from pathogenesis to treatment. Neuroimmunomodulation 21:79-87.

    Town T, Vendrame M, Patel A, Poetter D, DelleDonne A, Mori T, Smeed R, Crawford F, Klein T, Tan J, Mullan M (2002) Reduced T1 and enhanced T2 immunity after immunization with Alzheimer’s beta-amyloid(1-42). J Neuroimmunol 132:49-59.

    Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G, Tompkins C, Leibman C, Pomfret M, Grundman M (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6:144-151.

    Copyedited by Croxfod L, Norman C, Cao J, He Z, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.131605

    Yunpeng Cao, Ph.D., Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China

    http://www.nrronline.org/

    Accepted: 2014-02-25

    猜你喜歡
    舌系帶黏膜炎潰瘍面
    孩子舌系帶短 剪還是不剪
    保健與生活(2023年2期)2023-05-30 10:48:04
    康復(fù)新聯(lián)合蒙脫石散防治放射性口腔黏膜炎的臨床療效
    集束化護(hù)理對(duì)鼻咽癌放療患者口腔黏膜炎及張口受限的影響
    中醫(yī)治療放射性口腔黏膜炎研究進(jìn)展
    孩子吐字不清,可能是舌系帶過(guò)短
    孩子吐字不清,可能是舌系帶過(guò)短
    口腔潰瘍患者試試這兩招
    保健與生活(2017年5期)2017-02-27 00:32:17
    治消化性潰瘍、潰瘍性結(jié)腸炎
    婦女生活(2016年10期)2016-10-12 19:14:47
    維生素C片治療口腔潰瘍
    女子世界(2016年7期)2016-07-11 16:18:04
    康復(fù)新液在放射性口腔黏膜炎口腔護(hù)理中的應(yīng)用
    欧美日韩视频精品一区| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 黄色毛片三级朝国网站| 日本av免费视频播放| 飞空精品影院首页| 哪个播放器可以免费观看大片| 久久婷婷青草| 少妇熟女欧美另类| 最近2019中文字幕mv第一页| 欧美日韩av久久| av女优亚洲男人天堂| 中国三级夫妇交换| 汤姆久久久久久久影院中文字幕| 亚洲av电影在线进入| 少妇被粗大的猛进出69影院 | 日韩不卡一区二区三区视频在线| 人体艺术视频欧美日本| 免费看不卡的av| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲 | 国产男女内射视频| 中文字幕人妻熟女乱码| 在线看a的网站| av线在线观看网站| 久久久久视频综合| 亚洲综合色惰| 免费播放大片免费观看视频在线观看| 亚洲av电影在线进入| 9色porny在线观看| 爱豆传媒免费全集在线观看| 超色免费av| av在线观看视频网站免费| 中文欧美无线码| 亚洲精品aⅴ在线观看| 黑丝袜美女国产一区| 久久久欧美国产精品| 美女中出高潮动态图| 亚洲伊人色综图| 99热这里只有是精品在线观看| 午夜激情av网站| 中文字幕最新亚洲高清| 老司机影院毛片| 秋霞伦理黄片| 两个人免费观看高清视频| 在线观看一区二区三区激情| 少妇精品久久久久久久| 尾随美女入室| 高清黄色对白视频在线免费看| 国产黄频视频在线观看| 国产精品国产三级国产av玫瑰| 人人澡人人妻人| 老司机影院成人| 如何舔出高潮| 久热这里只有精品99| 大香蕉久久网| 日本av免费视频播放| 人人妻人人澡人人看| 欧美国产精品一级二级三级| 我要看黄色一级片免费的| 另类精品久久| 热99久久久久精品小说推荐| 纵有疾风起免费观看全集完整版| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| av女优亚洲男人天堂| 纯流量卡能插随身wifi吗| 美女视频免费永久观看网站| av在线老鸭窝| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 一区二区av电影网| 久久青草综合色| 老司机亚洲免费影院| 飞空精品影院首页| 99re6热这里在线精品视频| 亚洲成色77777| 久热久热在线精品观看| 毛片一级片免费看久久久久| 久久ye,这里只有精品| 婷婷色麻豆天堂久久| 欧美人与性动交α欧美软件 | 少妇熟女欧美另类| 久久久久久人妻| 秋霞伦理黄片| 亚洲在久久综合| 国产精品一区二区在线观看99| 满18在线观看网站| 久久免费观看电影| 国产国语露脸激情在线看| av免费在线看不卡| 免费观看a级毛片全部| 最新的欧美精品一区二区| 极品人妻少妇av视频| 在线观看美女被高潮喷水网站| 女性被躁到高潮视频| 女的被弄到高潮叫床怎么办| 久久久欧美国产精品| 精品国产露脸久久av麻豆| 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频 | 精品一品国产午夜福利视频| 永久免费av网站大全| 又大又黄又爽视频免费| 黄色怎么调成土黄色| 男人爽女人下面视频在线观看| 97精品久久久久久久久久精品| 精品亚洲成a人片在线观看| 91精品三级在线观看| 国产永久视频网站| 少妇的逼好多水| 亚洲欧洲精品一区二区精品久久久 | 亚洲成国产人片在线观看| av国产精品久久久久影院| 一二三四在线观看免费中文在 | 插逼视频在线观看| 精品国产乱码久久久久久小说| 天堂8中文在线网| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 精品国产一区二区三区久久久樱花| 哪个播放器可以免费观看大片| 欧美精品av麻豆av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品456在线播放app| 午夜福利乱码中文字幕| 伊人亚洲综合成人网| 一级毛片 在线播放| 天美传媒精品一区二区| 国产无遮挡羞羞视频在线观看| 日韩一区二区视频免费看| 18禁国产床啪视频网站| 亚洲一码二码三码区别大吗| 亚洲内射少妇av| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 精品一区二区三卡| 欧美xxⅹ黑人| 亚洲av福利一区| videossex国产| 女的被弄到高潮叫床怎么办| 亚洲成av片中文字幕在线观看 | 国产午夜精品一二区理论片| 欧美日韩一区二区视频在线观看视频在线| 极品人妻少妇av视频| 一区二区三区四区激情视频| 婷婷色av中文字幕| 久久亚洲国产成人精品v| 国产精品.久久久| 亚洲天堂av无毛| 黑人高潮一二区| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 日韩熟女老妇一区二区性免费视频| 91aial.com中文字幕在线观看| av天堂久久9| 亚洲精品第二区| 久久婷婷青草| 久久久亚洲精品成人影院| 国产激情久久老熟女| 免费日韩欧美在线观看| 久久99热6这里只有精品| 精品人妻在线不人妻| 午夜福利在线观看免费完整高清在| 国产极品粉嫩免费观看在线| 久久韩国三级中文字幕| 熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 日韩不卡一区二区三区视频在线| 久久精品国产综合久久久 | 亚洲国产日韩一区二区| 99热国产这里只有精品6| 天美传媒精品一区二区| 黑人巨大精品欧美一区二区蜜桃 | 草草在线视频免费看| av在线播放精品| 热re99久久精品国产66热6| 人妻 亚洲 视频| 亚洲av日韩在线播放| 日韩大片免费观看网站| 丝袜美足系列| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 美女国产高潮福利片在线看| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 成人无遮挡网站| 国产成人免费无遮挡视频| 香蕉精品网在线| 成年美女黄网站色视频大全免费| av在线播放精品| 午夜影院在线不卡| 一区在线观看完整版| 高清欧美精品videossex| 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 在线看a的网站| 黄色怎么调成土黄色| 久久精品国产亚洲av天美| 男女下面插进去视频免费观看 | 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频 | 热99久久久久精品小说推荐| 国产欧美另类精品又又久久亚洲欧美| 人妻系列 视频| 久久女婷五月综合色啪小说| 国产精品免费大片| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 久久久国产精品麻豆| 少妇的逼好多水| 中文字幕制服av| 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 国产亚洲精品第一综合不卡 | 久久精品国产a三级三级三级| 永久免费av网站大全| 亚洲,一卡二卡三卡| 青春草视频在线免费观看| 欧美日韩视频精品一区| 亚洲四区av| 国产探花极品一区二区| 国产男女内射视频| 久久久a久久爽久久v久久| 午夜av观看不卡| 国产精品熟女久久久久浪| 捣出白浆h1v1| 搡老乐熟女国产| 亚洲精品一区蜜桃| 亚洲天堂av无毛| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 久久人人爽av亚洲精品天堂| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| videossex国产| 宅男免费午夜| 国产成人免费观看mmmm| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 一本久久精品| 亚洲精品美女久久久久99蜜臀 | 一区二区日韩欧美中文字幕 | 亚洲五月色婷婷综合| 久久国产精品大桥未久av| 9色porny在线观看| 久久毛片免费看一区二区三区| 少妇人妻久久综合中文| 中文字幕亚洲精品专区| 国产精品无大码| 久久久久网色| 日韩熟女老妇一区二区性免费视频| 激情五月婷婷亚洲| 免费黄频网站在线观看国产| 哪个播放器可以免费观看大片| 国产 精品1| 人人妻人人澡人人爽人人夜夜| 中国国产av一级| 国产一区有黄有色的免费视频| 免费观看a级毛片全部| 最近2019中文字幕mv第一页| 高清黄色对白视频在线免费看| 毛片一级片免费看久久久久| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 天天影视国产精品| 色吧在线观看| 黄色 视频免费看| av网站免费在线观看视频| 亚洲高清免费不卡视频| 黄色配什么色好看| 校园人妻丝袜中文字幕| 久久这里有精品视频免费| 国产一区二区在线观看av| 啦啦啦啦在线视频资源| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 亚洲精品美女久久av网站| 国产精品三级大全| 久久精品熟女亚洲av麻豆精品| 日韩欧美一区视频在线观看| 一级片'在线观看视频| 自线自在国产av| 在线观看免费日韩欧美大片| 国产黄色视频一区二区在线观看| 精品福利永久在线观看| 在现免费观看毛片| 免费观看av网站的网址| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 国产1区2区3区精品| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| av免费在线看不卡| 日本-黄色视频高清免费观看| 男人添女人高潮全过程视频| 99国产综合亚洲精品| 亚洲国产欧美在线一区| 男女午夜视频在线观看 | 纯流量卡能插随身wifi吗| 国产极品天堂在线| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| videosex国产| 热re99久久国产66热| 亚洲久久久国产精品| 多毛熟女@视频| 国产又爽黄色视频| 各种免费的搞黄视频| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 亚洲精品第二区| 狠狠婷婷综合久久久久久88av| 啦啦啦视频在线资源免费观看| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| 成年动漫av网址| 成人国语在线视频| 精品亚洲成a人片在线观看| 少妇人妻 视频| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看 | 黄色毛片三级朝国网站| 精品酒店卫生间| 看免费av毛片| 精品人妻熟女毛片av久久网站| 91久久精品国产一区二区三区| 日韩电影二区| 一级a做视频免费观看| 午夜影院在线不卡| 桃花免费在线播放| 在线观看人妻少妇| 中国三级夫妇交换| 午夜影院在线不卡| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 欧美3d第一页| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 久久人人爽人人片av| 美女大奶头黄色视频| 老司机亚洲免费影院| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 久久国产精品大桥未久av| 高清不卡的av网站| 国产精品一区二区在线观看99| 一二三四中文在线观看免费高清| 成人亚洲精品一区在线观看| 久久午夜福利片| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 精品一品国产午夜福利视频| 色哟哟·www| 精品亚洲成国产av| 十分钟在线观看高清视频www| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| av在线app专区| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区 | 99热这里只有是精品在线观看| 汤姆久久久久久久影院中文字幕| 另类精品久久| 日本黄大片高清| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频| 中国三级夫妇交换| 欧美丝袜亚洲另类| 最近中文字幕2019免费版| 中文字幕最新亚洲高清| 欧美丝袜亚洲另类| 国产精品久久久久成人av| 久久婷婷青草| 桃花免费在线播放| 在线观看www视频免费| 日本免费在线观看一区| 精品第一国产精品| 97在线人人人人妻| 观看av在线不卡| 亚洲精品第二区| 交换朋友夫妻互换小说| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 久久久久久伊人网av| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 中国美白少妇内射xxxbb| 大片电影免费在线观看免费| 丁香六月天网| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 中文天堂在线官网| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 五月开心婷婷网| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 欧美3d第一页| 视频在线观看一区二区三区| 成年人午夜在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 好男人视频免费观看在线| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 桃花免费在线播放| 成年av动漫网址| 国产精品一国产av| 久久久精品区二区三区| 久久免费观看电影| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| www日本在线高清视频| 亚洲成人av在线免费| 精品少妇内射三级| 久久亚洲国产成人精品v| 少妇的逼好多水| 国产xxxxx性猛交| 人人妻人人澡人人看| 女的被弄到高潮叫床怎么办| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 国产精品人妻久久久久久| 精品久久蜜臀av无| av在线app专区| 久久久久精品久久久久真实原创| 婷婷色av中文字幕| 天天影视国产精品| 日本与韩国留学比较| 久久久久久人人人人人| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线不卡| 伦理电影大哥的女人| 夜夜骑夜夜射夜夜干| 久久久久久久久久久久大奶| 蜜桃国产av成人99| 一级毛片 在线播放| 成年女人在线观看亚洲视频| 国产成人av激情在线播放| 亚洲成色77777| 老司机亚洲免费影院| 这个男人来自地球电影免费观看 | 美女xxoo啪啪120秒动态图| 亚洲国产精品999| 日韩成人av中文字幕在线观看| 国产免费现黄频在线看| 亚洲精品日本国产第一区| 国产极品天堂在线| 国产深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| a级片在线免费高清观看视频| 久久精品久久精品一区二区三区| 欧美日韩综合久久久久久| 中文乱码字字幕精品一区二区三区| 婷婷色麻豆天堂久久| 久热久热在线精品观看| 99热网站在线观看| 熟妇人妻不卡中文字幕| 日韩中字成人| 成人二区视频| 91午夜精品亚洲一区二区三区| 一本久久精品| 日本黄色日本黄色录像| √禁漫天堂资源中文www| 97在线人人人人妻| 日本av免费视频播放| 亚洲高清免费不卡视频| 岛国毛片在线播放| 久久久久久久精品精品| 欧美激情国产日韩精品一区| 久久久欧美国产精品| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 精品久久久精品久久久| 99国产精品免费福利视频| 国产男女内射视频| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 男人舔女人的私密视频| 中文字幕人妻熟女乱码| 婷婷色av中文字幕| 日本与韩国留学比较| 少妇熟女欧美另类| 国产成人精品无人区| 一级毛片我不卡| 国产成人一区二区在线| 精品第一国产精品| 午夜福利乱码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人妻| 又大又黄又爽视频免费| 中文字幕亚洲精品专区| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 青春草国产在线视频| 中文欧美无线码| 美女视频免费永久观看网站| 国产一区二区在线观看日韩| 三上悠亚av全集在线观看| 一区二区av电影网| 极品少妇高潮喷水抽搐| av免费在线看不卡| 国产又爽黄色视频| 国产精品三级大全| 久久久久久久久久久免费av| 亚洲人与动物交配视频| 日韩制服骚丝袜av| 97超碰精品成人国产| 欧美日韩国产mv在线观看视频| 国产精品 国内视频| 久久久久久人人人人人| 国产男女内射视频| 女性生殖器流出的白浆| 狂野欧美激情性bbbbbb| 成人国产麻豆网| 国产av一区二区精品久久| 精品少妇内射三级| 这个男人来自地球电影免费观看 | av卡一久久| 一级,二级,三级黄色视频| 韩国精品一区二区三区 | 国产在线免费精品| 曰老女人黄片| 最黄视频免费看| 成人综合一区亚洲| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 久久精品国产a三级三级三级| 激情五月婷婷亚洲| 精品国产一区二区三区久久久樱花| 麻豆精品久久久久久蜜桃| 最近最新中文字幕免费大全7| 国产成人一区二区在线| 欧美国产精品va在线观看不卡| 欧美精品一区二区免费开放| 国产日韩欧美在线精品| 久久97久久精品| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 9色porny在线观看| 最近最新中文字幕大全免费视频 | 国产成人91sexporn| 蜜桃在线观看..| 国语对白做爰xxxⅹ性视频网站| 国产精品成人在线| 国产免费又黄又爽又色| 一区二区三区四区激情视频| 久久久亚洲精品成人影院| 精品亚洲乱码少妇综合久久| 美女xxoo啪啪120秒动态图| 永久网站在线| 欧美 日韩 精品 国产| 夫妻午夜视频| 欧美最新免费一区二区三区| 天堂俺去俺来也www色官网| 亚洲精品色激情综合| 看免费成人av毛片| 51国产日韩欧美| 国产成人91sexporn| 深夜精品福利| a级毛片黄视频| 亚洲av成人精品一二三区| 国产精品不卡视频一区二区| 亚洲四区av| 久久精品久久久久久噜噜老黄| 热99久久久久精品小说推荐| 又黄又粗又硬又大视频| 成人黄色视频免费在线看| 久久这里有精品视频免费| 丰满少妇做爰视频| 一区在线观看完整版| 人妻 亚洲 视频| 国精品久久久久久国模美| 视频在线观看一区二区三区| 国产高清三级在线| 黄色毛片三级朝国网站| 丝袜人妻中文字幕| 国产色爽女视频免费观看| 亚洲精品av麻豆狂野| 丝袜人妻中文字幕| 巨乳人妻的诱惑在线观看| 亚洲成人手机| 亚洲精品自拍成人| 在线观看人妻少妇| 久久99热这里只频精品6学生| 一级,二级,三级黄色视频| 少妇精品久久久久久久| 91精品国产国语对白视频|