• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    2014-03-24 07:55:09FangfangLiFanpingMengQuanxinJinChangyuanSunYingxinLiHonghuaLiSongzhuJin

    Fangfang Li, Fanping Meng, Quanxin Jin, Changyuan Sun, Yingxin Li, Honghua Li, Songzhu Jin

    Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China

    Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    Fangfang Li, Fanping Meng, Quanxin Jin, Changyuan Sun, Yingxin Li, Honghua Li, Songzhu Jin

    Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China

    Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion protein was expressed in Pichia pastoris. The af fi nity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immuno fl uorescence staining. The ability of the fusion protein to block myasthenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speci fi c immunosuppressive therapy of myasthenia gravis.

    nerve regeneration; myasthenia gravis; acetylcholine receptor; anti-acetylcholine receptor antibody; single-chain variable domain fragment; human serum albumin; fusion protein; immunosuppressive therapy; autoimmune disease; NSFC grant; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 30360100, 30760234, 30860260, 81160373, 81360458.

    Li FF, Meng FP, Jin QX, Sun CY, Li YX, Li HH, Jin SZ. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis. Neural Regen Res. 2014;9(8):851-856.

    Introduction

    Myasthenia gravis is an autoimmune disease associated with autoantibodies directed against the nicotinic acetylcholine receptor at neuromuscular junctions (De Baets and Stasson, 2002; Po?a-Guyon et al., 2005; Nikolic et al., 2012). These antibodies interfere with synaptic transmission by reducing the number of functional receptors or by impeding interactions between acetylcholine and its receptors. Acetylcholine is the sole transmitter at the neuromuscular junction. Anti-acetylcholine receptor antibody was detected in 85-90% of myasthenia gravis patients (Lagoumintzis et al., 2010; Higuchi et al., 2011; Cossins et al., 2012; Zhang et al., 2012). Approximately 65% of anti-acetylcholine receptor antibodies directed against the main immunogenic region (residues 67-76 of α-subunit of acetylcholine receptor) are highly pathogenic (Protopapadakis et al., 2005; Konstantakaki et al., 2007; Luo et al., 2009). Therefore, pathogenic antibodies to the main immunogenic region of the anti-acetylcholine receptor have a crucial role in the pathogenesis of myasthenia gravis (Sun et al., 2010).

    Single-chain variable domain fragment 637 (scFv637), a human scFv directed against the main immunogenic region of the human acetylcholine receptor, is constructed from its parental Fab637, which is isolated from thymus-derived phage display library of a myasthenia gravis patient (Graus et al., 1997). ScFv637 prevents antibodies to the main immunogenic region of the anti-acetylcholine receptor from the sera of myasthenia gravis patients binding to the human acetylcholine receptor, indicating it might be an alternative candidate for specific immunosuppressive therapy. Furthermore, it should have low immunogenicity in myasthenia gravis patients owing to its human origin (Meng et al., 2002). However, scFvs have disadvantages including a short half-life and instability. In addition, the characterization of scFv in animal models in vivo is difficult because of their rapid clearance from the bloodstream owing to their small size (Huston et al., 1996; Li et al., 1998; Kang et al., 1999; Kenanova et al., 2005).

    It is well known that human serum albumin (HSA), the most abundant protein in plasma, is a potent carrier protein with a substantial circulatory half-life (up to 19 days in the human blood) and is widely distributed in vivo (Huang et al., 2008; Liu et al., 2012; Zhu et al., 2012; Ding et al., 2013). The association of immunoglobulin fragments with serum albumin, whether by conjugation, fusion or noncovalent binding, results in extended persistence in plasma (Smith et al., 2001; de Bold et al., 2012; Zhao et al., 2012). In this study, we aimed to prepare a conjugate by linking scFv with HSA to increase its half-life and improve its stability in blood.

    Materials and Methods

    Construction of plasmid pPIC9K-scFv637-HSA

    The VH and VL genes of scFv637 were amplified from pComb3H-Fab637 by PCR, and cloned into NcoI and NotI sites of vector pHEN2 to construct recombinant vector pHEN2-scFv637 (Meng et al., 2002). The HSA gene was ampli fi ed from pUC18-HSA using primers 1-7 amino acid residues of HSA (NCBI GenBank: AF190168) (5′-AAGAAT-TCGCGGCCGCAGGTGGAGGCGGTTCAGATGCACACAAGAGTGAGG-3′) and 581-585 amino acid residues of HSA (5′-ATGGATCCTGCGGCCGCTAAGCCTAAGGCAGC-3′), which append a NotI site (underlined) and a (Gly)4-Ser linker (italic) into the 5′ and 3′ ends of the PCR fragment, respectively. Tis PCR product was digested with NotI, and inserted into NotI-digested pHEN2-scFv637 to generate the final construct, pHEN2-scFv637-HSA. Purified pHEN2-scFv637-HSA from E. coli DH5α (preserved in our laboratory) was subsequently transformed into E. coli HB2151 for expression of scFv637-HSA. The fusion gene of scFv637-HSA was ampli fi ed from pHEN2-scFv637-HSA using primers “VH” (5′-GACTTACGTAGA-GGTGCAGCTGCTGGAG-3′) and “c-myc” (5′-CGGAATTCATTCAGATCCTCTTCTGAG ATG-3′), which append SnaBI and EcoRI sites (underlined) into the 5′ and 3′ ends of the PCR fragment, respectively. The PCR fragment was subcloned into pMD18-T Simple Vector after puri fi cation and addition of A-Tailing. The scFv637-HSA-T Vector fragment was cloned into pPIC9K vector after restriction digestion of the SnaBI and EcoRI sites. Competent cells of E. coli DH5α were prepared and transformed with pPIC9K-scFv637-HSA. The recombinant vector was sequenced to con fi rm the right sequence of scFv637-HSA and an open reading frame.

    Expression of plasmid pPIC9K-scFv637-HSA in Pichia pastoris

    Electroporation

    Pichia pastoris strain GS115 (preserved in our laboratory) was transformed by electroporation. Plasmid pPIC9K-scFv637-HSA (10 μg) was linearized with SalI, phenol-chloroform extracted, ethanol precipitated, and dissolved in 10 μL of dH2O. Preparation of electrocompetent Pichia pastoris strain GS115 was performed using Pichia Expression Kit (Invitrogen, Carlsbad, CA, USA). Eighty microliters of competent cells were mixed with 10 μg of linearized pPIC9K-scFv637-HSA DNA in a 0.2 cm electroporation cuvette, incubated on ice for 5 minutes, and electroporated in an Electroporation Generator (BTX, A Division of Genetronics Inc., San Diego, CA, USA). Electroporation conditions were C = 25 μF, PC = 200 Ω, V = 1.5 kV. After pulsing, 1 mL of ice-cold 1 mol/L sterilized sorbitol was added immediately to the cuvette, and the cells transferred to a sterile 1.5 mL centrifuge tube on ice again. Electroporated cells (400 μL) were spread onto MD plate and incubated for 2 days at 30°C. A number of colonies were then restreaked onto MD plates to isolate single colonies for PCR analysis and expression studies.

    PCR analysis and selection of positive transformants

    GS115 positive transformants were analyzed for the presence of pPIC9K-scFv637-HSA constructs using PCR with primers (5′ VH, GAC TTA CGT AGA GGT GCA GCT GCT GGA G, 3′ c-myc, CGG AAT TCA TTC AGA TCC TCT TCT GAG ATG). PCR components and conditions were as follows: 20 × MgCl2-Free buffer, 1 Unit Taq polymerase, 1 Unit Pfu polymerase and 15 pmol/L each primer 5′ VH and 3′ c-myc, at 94°C for 5 minutes, 1 cycle; at 94°C for 1 minute, at 55°C for 1 minute, at 72°C for 4 minutes, 30 cycles; and at 72°C for 5 minutes, 1 cycle. Positive transformants were selected and spread onto yeast extract peptone dextrose medium plates containing 2.0, 3.0 and 4.0 mg/mL G418 respectively, and incubated for 2-3 days at 30°C.

    Expression and screening of scFv637-HSA

    G418-resistant transformants were grown overnight in buffered methanol-complex medium at 30°C and shaking at 280 r/min in 50 mL centrifuge tubes until the absorbance at 600 nm was 2-6. The cells were recovered by centrifugation and resuspended in buffered methanol-complex medium to 1.0 of an absorbance for induction, and grown again at 30°C, 280 r/min in 250 mL glass culture tubes. Fresh methanol was added to a total of 1% to maintain induction every 24 hours. Fusion proteins were measured at 24, 48, 72, 96, and 132 hours post-induction in 1 mL media by centrifugation. After 132 hours, the supernatants were concentrated 25 times by lyophilization. Samples of the supernatants were analyzed by electrophoresis on NEXT GEL? 10% (Amresco, Solon, OH, USA) followed by Coomassie brilliant blue (Sigma, St. Louis, MO, USA) staining and western blot analysis. Western blot analysis was achieved using a wet blotting method with the MINI-TRANS-BLOT electrophoretic transfer system (Bio-RAD, Hercules, CA, USA), with NEXT GEL? electrophoretic buffer (Amresco) at 90 V for 2 hours. The protein samples were detected using a mouse anti-c-myc monoclonal antibody (1 μg/mL; Santa Cruz Biotechnology, Dallas, TX, USA) and goat anti-mouse IgG conjugated with horseradish peroxidase (0.08 μg/mL; Jackson ImmunoResearch, West Grove, PA, USA). The horseradish peroxidase activity was visualized with DAB.

    Immuno fl uorescence staining of scFv637-HSA expression in human intercostal muscle

    Binding of scFv637-HSA to acetylcholine receptor in situ at the neuromuscular junction was verified by immunohistochemical staining on human intercostal muscle frozen sections (Yanbian University, Yanji, Jilin Province, China). Slides were incubated with supernatants of media above for 60 minutes at 37°C, and then washed three times with 0.01 mol/L PBS (pH 7.4) for 5 minutes each time. Subsequently, sections were incubated with 1:100 diluted mouse anti-c-myc mAb together with rhodamine-labeled α-bungarotoxin (Sigma), and fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG (1:1,000; Sino-American Biotechnology, Beijing, China) for 30 minutes at 37°C after washing with PBS. As a negative control, sections were incubated with PBS instead of primary antibody. This study was in accordance with the guideline established by the Ethical Review Committee at Yanbian University, China.

    Inhibition of scFv637-HSA on the binding of myasthenia gravis patient sera to human acetylcholine receptor

    The capacity of scFv-HSA to inhibit the binding of serum anti-human acetylcholine receptor antibodies from myasthenia gravis patients in vitro was measured using a competitiveELISA kit (Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China). Twelve cases of myasthenia gravis patient sera with positive anti-acetylcholine receptor antibodies (Yanbian Wenhuan Ma Institute of Myasthenia Gravis, Yanji, Jilin Province, China) were tested. One hundred microliters of concentrated samples were added to wells of a human acetylcholine receptor-coated ELISA plate and incubated for 1 hour at 37°C. After rinsing, 100 μL myasthenia gravis patient sera was added and incubated for 1 hour at 37°C. After rinsing, the inhibition of scFv-HSA was measured by incubation with goat anti-human IgG conjugated with horseradish peroxidase (1:1,000; Jackson ImmunoResearch, West Grove, PA, USA). o-Phenylenediamine and H2O2in buffer were then added and the absorbance values at 492 nm were recorded (Microplate reader, Thermo Electron Corporation, Vantaa, Finland). The result was expressed as a percentage of inhibition of myasthenia gravis patient sera binding. This study was performed in accordance with the guidelines established by the Local Ethical Review Committee at Yanbian University, China.

    Stability of scFv637-HSA in static healthy sera

    Concentrated supernatants containing fusion protein scFv637-HSA were mixed and preserved in sterilized healthy sera for 7 days at 37°C water-bath. Mixed sample (100 μL) was stored at 4°C everyday to detect its inhibition by competitive ELISA as above.

    Statistical analysis

    All data presented were expressed as mean ± SEM. Graphpad Prism 5.0 statistical software (GraphPad Software, San Diego, CA, USA) was used for statistical analysis of experimental data.

    Results

    Construction and expression of ScFv637-HSA

    scFv637-HSA was cloned and purified from E. coli, DH5α by PCR. The size of scFv637-HSA-His-c-myc was 2,607 bp including scFv637, Linker1, HSA, Linker2, His, Linker3 and c-myc, as checked by gene sequencing. A band of about 2,600 bp appeared after digestion of recombinant T Simple Vector by SnaBI, EcoRI and PvuI (Figure 1). Since the sizes of T Vector and insert (scFv637-HSA-His-c-myc) are similar, it is dif fi cult to distinguish them by electrophoresis. However, only T Simple Vector has a PvuI site, but no insert. The scFv construct was successfully inserted into the SnaBI and EcoRI sites of pPIC9K as shown by PCR (Figure 2).

    Pichia pastoris was chosen to express the fusion protein to increase the expression quantity and improve its functions. The eukaryotic kanamycin resistance gene confers resistance to the related antibiotic G418. The level of G418 resistance can be roughly correlated to vector copy number (Scorer et al., 1994). Pichia pastoris must be fi rst transformed to His+prototrophy; then multicopy transformants are screened by replica-plating to plates containing G418. There were 10, 8 and 2 positive transformants on the yeast extract peptone dextrose medium plates containing 2.0, 3.0 and 4.0 mg/mL G418, respectively. The molecular weight of the fusion protein was 89 kDa as shown by western blot analysis (Figure 3).

    Binding of ScFv637-HSA to acetylcholine receptor in human intercostal muscle

    ScFv637-HSA could bind to acetylcholine receptor in situ at the neuromuscular junction of human intercostal muscles, indicated by immunohistochemical staining (Figure 4).

    Inhibition of scFv637-HSA in myasthenia gravis patient seraIn the sera from 12 myasthenia gravis patients, the inhibition rate of binding to acetylcholine receptor was 2.0-77.4% (Figure 5). The mean inhibition rate was 31.4%.

    Stability of scFv637-HSA in static healthy sera

    The stability of scFv637-HSA in static healthy sera was maintained for about 3 days. The inhibition rate was 65.1%, 32.8% and 31.3% per day, respectively (Figure 6). From the fourth day, the inhibition rate decreased to zero and the fusion protein had no activity.

    Discussion

    Small recombinant antibody molecules such as scFv are rapidly cleared from the circulation. Usually, the chemical conjugation of small recombinant proteins to polyethylene glycol (PEG) is an established strategy to extend their typically short circulation times to a therapeutically useful range (Schlapschy et al., 2007; Noberini et al., 2011; Danial et al., 2012; Kumagai et al., 2012). Biologically active peptides or low molecular weight protein can be fused genetically to HSA, which has a longer plasma half-life so the short peptide half-life can be extended (Kenanova et al., 2010; Furukawa et al., 2011; Lee et al., 2011; Lei et al., 2012; Yang et al., 2012). For example, extended plasma half-life of bispecific single-chain diabodies (scDb) possessing a molecular mass of approximately 55 kDa have been achieved by various strategies including PEGylation, N-glycosylation and fusion to an albumin-binding domain (ABD) from streptococcal protein G (Stork et al., 2009).

    In this study, we describe a strategy to successfully yield recombinant scFv637-HSA against the main immunogenic region of acetylcholine receptor using Pichia pastoris expression technology. The aim of this study was to produce an anti-acetylcholine receptor scFv637-HSA. The binding of anti-acetylcholine receptor scFv to acetylcholine receptor could block pathogenic antibodies from binding to acetylcholine receptors. Accordingly, acetylcholine receptors were protected. An approximately 89 kDa protein band was con fi rmed via western blot analysis using anti-c-myc monoclonal antibodies, suggesting the secreted fusion protein was intact. By immuno fl uorescence analysis, green staining was observed around human intercostal muscles, revealing that the character of the fusion protein binding to human acetylcholine receptor was retained. Furthermore, the ability of scFv to bind to acetylcholine receptors was not affected by conjunction with the HSA gene. Inhibition of the binding of pathogenic antibodies from myasthenia gravis patient serato human acetylcholine receptors was 77.4% (maximum) by ELISA. The fusion protein from scFv637-HSA was effective in protecting acetylcholine receptors. However, the inhibition was only 2.0% in the fifth case, probably owing to the very high af fi nity of pathogenic antibodies to human acetylcholine receptors. The inhibition rate of the scFv637-HSA was still 31.3% in static healthy sera at day 3. However, from the fourth day, the inhibition rate decreased to zero. Thus, activity of the fusion protein was maintained for about 3 days. This result was similar with the observation by Stork (Stork et al., 2009) where PEGylated scDb and scDb-ABD were present in high concentrations in the blood, which resulted in increased levels in other organs. Tumorto-blood ratios of scDb-A′-PEG40kand scDb-ABD in CEA+tumors were weaker and gradually increased to a value of 1.5 and 3, respectively, at day 4. Its stability is lower than the half-life of HSA (19 days). This short half-life observed was different from the result by Smith (Smith et al., 2001), but it was higher than the half-life of scFv.

    Figure 1 PCR results of recombinant plasmid pMD18-T Simple Vector-single-chain variable domain fragmeng 637-human serum albumin digested with SnaBI/EcoRI/PvuI.

    Figure 2 PCR detection of recombinant vector after electroporation into GS115.

    Figure 3 Western blot analysis of fusion protein scFv637-HSA.

    The scFv637-HSA fusion protein was successfully expressed in Pichia pastoris, indicating it might be a potential candidate for speci fi c immunosuppressive therapy of myasthenia gravis.

    Author contributions:Meng FP designed and revised the manuscript. Li FF performed the experiments and wrote the manuscript. Jin QX, Sun CY, Li YX, Li HH and Jin SZ provided technological support. All authors approved the final version of the paper.

    Con fl icts of interest:None declared.

    Cossins J, Belaya K, Zoltowska K, Koneczny I, Maxwell S, Jacobson L, Leite MI, Waters P, Vincent A, Beeson D (2012) Te search for new antigenic targets in myasthenia gravis. Ann N Y Acad Sci 1275:123-128.

    Danial M, van Dulmen TH, Aleksandrowicz J, P?tgens AJ, Klok HA (2012) Site-speci fi c PEGylation of HR2 peptides: e ff ects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug Chem 23:1648-1660.

    Figure 4 Binding of single-chain single-chain variable domain fragment 637-human serum albumin (scFv637-HSA) to acetylcholine receptor (AChR) in situ at neuromuscular junctions of human intercostal (immunohistochemical staining, × 200).

    Figure 5 Competitive inhibition of binding to acetylcholine receptor (AChR) in myasthenia gravis (MG) patient sera by single-chain single-chain variable domain fragment 637-human serum albumin (scFv637-HSA).

    Figure 6 The stability of single-chain variable domain fragment 637-human serum albumin (scFv637-HSA) in static healthy sera.

    De Baets M, Stassen MH (2002) Te role of antibodies in myasthenia gravis. J Neurol Sci 202:5-11.

    de Bold MK, She ffield WP, Martinuk A, Bhakta V, Eltringham-Smith L, de Bold AJ (2012) Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris. Regul Pept 175:7-10.

    Ding Y, Fan J, Li W, Yang R, Peng Y, Deng L, Wu Y, Fu Q (2013) Te effect of albumin fusion patterns on the production and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris. Appl Biochem Biotechnol 170:1637-1648.

    Furukawa M, Tanaka R, Chuang VT, Ishima Y, Taguchi K, Watanabe H, Maruyama T, Otagiri M (2011) Human serum albumin-thioredoxin fusion protein with long blood retention property is e ff ective in suppressing lung injury. J Control Release 154:189-195.

    Graus YF, de Baets MH, Parren PW, Berrih-Aknin S, Wokke J, van Breda Vriesman PJ, Burton DR (1997) Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J Immunol 158:1919-1929.

    Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418-422.

    Huang YJ, Lundy PM, Lazaris A, Huang Y, Baldassarre H, Wang B, Turcotte C, C?té M, Bellemare A, Bilodeau AS, Brouillard S, Touati M, Herskovits P, Bégin I, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, et al. (2008) Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin. BMC Biotechnol 8:50.

    Huston JS, George AJ, Adams GP, Sta ff ord WF, Jamar F, Tai MS, Mc-Cartney JE, Oppermann H, Heelan BT, Peters AM, Houston LL, Bookman MA, Wolf EJ, Weiner LM (1996) Single-chain Fv radioimmunotargeting. Q J Nucl Med 40:320-333.

    Kang NV, Hamilton S, Sanders R, Wilson GD, Kupsch JM (1999) Effi cient in vivo targeting of malignant melanoma by single-chain Fv antibody fragments. Melanoma Res 9:545-556.

    Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65:622-631.

    Kenanova VE, Olafsen T, Salazar FB, Williams LE, Knowles S, Wu AM (2010) Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins. Protein Eng Des Sel 23:789-798.

    Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E (2007) Molecular modeling of the complex between Torpedo acetylcholine receptor and anti-MIR Fab198. Biochem Biophys Res Commun 356:569-575. Kumagai M, Shimoda S, Wakabayashi R, Kunisawa Y, Ishii T, Osada K, Itaka K, Nishiyama N, Kataoka K, Nakano K (2012) E ff ective transgene expression without toxicity by intraperitoneal administration of PEG-detachable polyplex micelles in mice with peritoneal dissemination. J Control Release 160:542-551.

    Lagoumintzis G, Zisimopoulou P, Kordas G, Lazaridis K, Poulas K, Tzartos SJ (2010) Recent approaches to the development of antigen-speci fi c immunotherapies for myasthenia gravis. Autoimmunity 43:436-445.

    Lee MS, Kim YH, Kim YJ, Kwon SH, Bang JK, Lee SM, Song YS, Hahm DH, Shim I, Han D, Her S (2011) Pharmacokinetics and biodistribution of human serum albumin-TIMP-2 fusion protein using near-infrared optical imaging. J Pharm Pharm Sci 14:368-377.

    Lei J, Guan B, Li B, Duan Z, Chen Y, Li H, Jin J (2012) Expression, purification and characterization of recombinant human interleukin-2-serum albumin (rhIL-2-HSA) fusion protein in Pichia pastoris. Protein Expr Purif 84:154-160.

    Li Q, Hudson W, Wang D, Berven E, Uckun FM, Kersey JH (1998) Pharmacokinetics and biodistribution of radioimmunoconjugates of anti-CD19 antibody and single-chain Fv for treatment of human B-cell malignancy. Cancer Immunol Immunother 47:121-130.

    Liu M, Huang Y, Hu L, Liu G, Hu X, Liu D, Yang X (2012) Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol 12:68.

    Luo J, Taylor P, Losen M, de Baets MH, Shelton GD, Lindstrom J (2009) Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 29:13898-13908.

    Meng F, Stassen MH, Schillberg S, Fischer R, De Baets MH (2002) Construction and characterization of a single-chain antibody fragment derived from thymus of a patient with myasthenia gravis. Autoimmunity 35:125-133.

    Nikolic A, Djukic P, Basta I, Hajdukovic Lj, Stojanovic VR, Stevic Z, Nikolic D, Bozic V, Lavrnic S, Lavrnic D (2013) Te predictive value of the presence of di ff erent antibodies and thymus pathology to the clinical outcome in patients with generalized myasthenia gravis. Clin Neurol Neurosurg 115:432-437.

    Noberini R, Mitra S, Salvucci O, Valencia F, Duggineni S, Prigozhina N, Wei K, Tosato G, Huang Z, Pasquale EB (2011) PEGylation potentiates the e ff ectiveness of an antagonistic peptide that targets the EphB4 receptor with nanomolar a ffi nity. PLoS One 6:e28611.

    Po?a-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, Bidault J, Tzartos S, Berrih-Aknin S (2005) E ff ects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941-5949.

    Protopapadakis E, Kokla A, Tzartos SJ, Mamalaki A (2005) Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci. Eur J Immunol 35:1960-1968.

    Schlapschy M, Teobald I, Mack H, Schottelius M, Wester HJ, Skerra A (2007) Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: e ff ects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel 20:273-284.

    Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (N Y) 12:181-184.

    Smith BJ, Popplewell A, Athwal D, Chapman AP, Heywood S, West SM, Carrington B, Nesbitt A, Lawson AD, Antoniw P, Eddelston A, Suitters A (2001) Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug Chem 12:750-756.

    Stork R, Campigna E, Robert B, Müller D, Kontermann RE (2009) Biodistribution of a bispeci fi c single-chain diabody and its half-life extended derivatives. J Biol Chem 284:25612-25619.

    Sun C, Meng F, Li Y, Jin Q, Li H, Li F (2010) Antigen-speci fi c immunoadsorption of anti-acetylcholine receptor antibodies from sera of patients with myastenia gravis. Artif Cells Blood Substit Immobil Biotechnol 38:99-102.

    Yang M, Hoppmann S, Chen L, Cheng Z (2012) Human serum albumin conjugated biomolecules for cancer molecular imaging. Curr Pharm Des 18:1023-1031.

    Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, Xiong WC, Lisak RP, Tzartos SJ, Mei L (2012) Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 69:445-451.

    Zhao T, Cheng YN, Tan HN, Liu JF, Xu HL, Pang GL, Wang FS (2012) Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice. Biol Pharm Bull 35:280-288.

    Zhu RY, Xin X, Dai HY, Li Q, Lei JY, Chen Y, Jin J (2012) Expression and puri fi cation of recombinant human serum albumin fusion protein with VEGF165b in Pichia pastoris. Protein Expr Purif 85:32-37.

    Copyedited by Croxford L, Norman C, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.131611

    Fanping Meng, Ph.D., Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian

    University, 977# Gongyuan Road,

    Yanji 133002, Jilin Province, China, fpmeng@ybu.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-03-01

    亚洲天堂国产精品一区在线| 欧美精品啪啪一区二区三区| 搞女人的毛片| 国产视频一区二区在线看| 国产精品国产高清国产av| 在线天堂最新版资源| 亚洲精品在线观看二区| 国产三级中文精品| 国产精品福利在线免费观看| 久久人人爽人人爽人人片va| 亚洲狠狠婷婷综合久久图片| 婷婷精品国产亚洲av在线| 国产一区二区在线观看日韩| 日本色播在线视频| 精品午夜福利在线看| 91久久精品国产一区二区成人| 最后的刺客免费高清国语| 成人性生交大片免费视频hd| 性色avwww在线观看| 午夜激情欧美在线| 日本黄色片子视频| 天堂影院成人在线观看| 少妇人妻精品综合一区二区 | 国内精品久久久久精免费| 直男gayav资源| 色尼玛亚洲综合影院| 看黄色毛片网站| 欧美日韩国产亚洲二区| 在线观看舔阴道视频| 久久久久国产精品人妻aⅴ院| 麻豆久久精品国产亚洲av| 国产高潮美女av| 嫩草影视91久久| 波多野结衣高清无吗| 亚洲av.av天堂| 欧美日韩中文字幕国产精品一区二区三区| 国产成人福利小说| 在线观看美女被高潮喷水网站| 日韩强制内射视频| 婷婷六月久久综合丁香| 久久婷婷人人爽人人干人人爱| 亚州av有码| 国产一区二区激情短视频| 最近最新免费中文字幕在线| 可以在线观看的亚洲视频| 免费黄网站久久成人精品| 欧美绝顶高潮抽搐喷水| 欧美+亚洲+日韩+国产| 88av欧美| 欧美黑人巨大hd| 91麻豆av在线| 精品久久久久久久人妻蜜臀av| 欧美日韩黄片免| 亚洲成人久久爱视频| 亚洲最大成人av| 俺也久久电影网| 日韩欧美在线二视频| 伊人久久精品亚洲午夜| 大型黄色视频在线免费观看| 丰满人妻一区二区三区视频av| 国产精品久久久久久av不卡| 成熟少妇高潮喷水视频| 啦啦啦观看免费观看视频高清| 亚洲午夜理论影院| 成年女人看的毛片在线观看| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 久久久久九九精品影院| 国产单亲对白刺激| 天堂av国产一区二区熟女人妻| 欧美日韩综合久久久久久 | 亚洲专区中文字幕在线| 他把我摸到了高潮在线观看| 听说在线观看完整版免费高清| 给我免费播放毛片高清在线观看| 91精品国产九色| 久久久久久久久中文| 午夜福利在线观看免费完整高清在 | 久久久久久久久久黄片| 国产高清有码在线观看视频| 午夜激情欧美在线| 国产色爽女视频免费观看| 18+在线观看网站| 亚洲国产精品合色在线| 国产午夜精品论理片| 在线a可以看的网站| 欧美日本亚洲视频在线播放| 国产精品国产三级国产av玫瑰| 黄色视频,在线免费观看| 国产精华一区二区三区| 成人亚洲精品av一区二区| 窝窝影院91人妻| 欧美最新免费一区二区三区| 亚洲精品在线观看二区| 亚洲av美国av| 国产黄色小视频在线观看| av女优亚洲男人天堂| 直男gayav资源| 天天一区二区日本电影三级| 久久久久久九九精品二区国产| 国产亚洲91精品色在线| 亚洲va在线va天堂va国产| 一级av片app| 日日摸夜夜添夜夜添av毛片 | 99在线视频只有这里精品首页| 国产久久久一区二区三区| 欧美区成人在线视频| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 伦精品一区二区三区| 亚洲精品日韩av片在线观看| 俺也久久电影网| 啦啦啦韩国在线观看视频| 成人国产一区最新在线观看| 亚洲av熟女| 国内久久婷婷六月综合欲色啪| 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 国内精品久久久久久久电影| 国产伦一二天堂av在线观看| 久久久久久久久大av| 在现免费观看毛片| 国产探花极品一区二区| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 亚洲三级黄色毛片| 国产不卡一卡二| 中国美女看黄片| 欧美一级a爱片免费观看看| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 男人狂女人下面高潮的视频| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 亚洲综合色惰| 热99re8久久精品国产| 韩国av一区二区三区四区| 少妇丰满av| 禁无遮挡网站| 国产免费男女视频| 深夜精品福利| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| .国产精品久久| 亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 乱人视频在线观看| 男女那种视频在线观看| 色在线成人网| 午夜老司机福利剧场| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 99热只有精品国产| 美女 人体艺术 gogo| av在线亚洲专区| 男女做爰动态图高潮gif福利片| 99久久精品国产国产毛片| 亚洲中文日韩欧美视频| 男女下面进入的视频免费午夜| 午夜免费激情av| 波多野结衣巨乳人妻| 日本色播在线视频| 国产淫片久久久久久久久| 中文资源天堂在线| 日本精品一区二区三区蜜桃| 女人被狂操c到高潮| 在线a可以看的网站| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 欧美潮喷喷水| 午夜福利欧美成人| 热99re8久久精品国产| 黄色一级大片看看| a级毛片免费高清观看在线播放| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 嫩草影视91久久| 免费人成视频x8x8入口观看| netflix在线观看网站| 日本 av在线| 亚洲欧美日韩高清专用| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 深夜a级毛片| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 草草在线视频免费看| 春色校园在线视频观看| 99精品久久久久人妻精品| 久久精品综合一区二区三区| 中国美女看黄片| 直男gayav资源| 99久久九九国产精品国产免费| 一区二区三区激情视频| 久久精品国产清高在天天线| 日本 欧美在线| 成年免费大片在线观看| 国产精品野战在线观看| 国产免费一级a男人的天堂| 天堂动漫精品| 99国产精品一区二区蜜桃av| 日本爱情动作片www.在线观看 | 久久精品国产亚洲网站| 亚洲av中文字字幕乱码综合| 婷婷精品国产亚洲av在线| 午夜福利欧美成人| 亚洲精品久久国产高清桃花| 一本精品99久久精品77| 国产乱人伦免费视频| 18禁黄网站禁片免费观看直播| 国产69精品久久久久777片| 性插视频无遮挡在线免费观看| 日本一二三区视频观看| 久99久视频精品免费| 国内精品久久久久久久电影| 精品久久久噜噜| 亚洲中文字幕日韩| 国产一区二区在线观看日韩| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放| 成年人黄色毛片网站| 99久久精品国产国产毛片| 在线免费观看不下载黄p国产 | 亚洲色图av天堂| .国产精品久久| 精品一区二区三区人妻视频| 2021天堂中文幕一二区在线观| 亚洲精品色激情综合| 久久久久久大精品| 日本免费a在线| a在线观看视频网站| 国产美女午夜福利| 女人被狂操c到高潮| 亚洲男人的天堂狠狠| 黄色丝袜av网址大全| 有码 亚洲区| 最近在线观看免费完整版| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 久久久久久伊人网av| 国产精品一区二区三区四区久久| 日日干狠狠操夜夜爽| 十八禁网站免费在线| 一本一本综合久久| 中文字幕高清在线视频| 2021天堂中文幕一二区在线观| 最近中文字幕高清免费大全6 | 成年女人毛片免费观看观看9| 成人国产综合亚洲| 久久久久久伊人网av| 亚洲五月天丁香| 99热精品在线国产| 精华霜和精华液先用哪个| 一区二区三区免费毛片| 国产精品久久电影中文字幕| 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 特大巨黑吊av在线直播| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 免费看日本二区| 国产熟女欧美一区二区| a级毛片a级免费在线| 中出人妻视频一区二区| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 日韩高清综合在线| 国产综合懂色| 日本黄大片高清| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 亚州av有码| 深夜a级毛片| 99精品在免费线老司机午夜| 最近在线观看免费完整版| 国产精品无大码| 12—13女人毛片做爰片一| 亚洲 国产 在线| 国产精品福利在线免费观看| 久久精品国产清高在天天线| 久久久久久国产a免费观看| 我要看日韩黄色一级片| 欧美黑人巨大hd| 夜夜夜夜夜久久久久| 国产69精品久久久久777片| 又黄又爽又刺激的免费视频.| 在线播放无遮挡| 欧美不卡视频在线免费观看| 国产极品精品免费视频能看的| av中文乱码字幕在线| 国产私拍福利视频在线观看| 欧美zozozo另类| av女优亚洲男人天堂| 欧美高清性xxxxhd video| 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 日本与韩国留学比较| 久久久久久久久久黄片| 观看美女的网站| 春色校园在线视频观看| 99精品久久久久人妻精品| 九九爱精品视频在线观看| 国产成人aa在线观看| 级片在线观看| 国产高清不卡午夜福利| 内射极品少妇av片p| 免费无遮挡裸体视频| 久久热精品热| 99在线人妻在线中文字幕| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 午夜免费男女啪啪视频观看 | 国产毛片a区久久久久| 不卡一级毛片| 久久久成人免费电影| 久久久久久伊人网av| 亚洲国产精品成人综合色| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产 | 中文字幕av在线有码专区| 国产精品98久久久久久宅男小说| 变态另类成人亚洲欧美熟女| 我的老师免费观看完整版| 少妇被粗大猛烈的视频| 亚洲精品色激情综合| 禁无遮挡网站| 久久久色成人| 美女高潮的动态| 色综合婷婷激情| 22中文网久久字幕| 久久久久久大精品| 99精品久久久久人妻精品| 国产色婷婷99| 国产精品综合久久久久久久免费| 日韩精品青青久久久久久| 黄片wwwwww| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 婷婷丁香在线五月| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 99热这里只有是精品在线观看| 国产伦一二天堂av在线观看| 黄片wwwwww| 一边摸一边抽搐一进一小说| 老女人水多毛片| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 色视频www国产| 色综合色国产| 91麻豆精品激情在线观看国产| 久久久久国内视频| 天堂网av新在线| 日本五十路高清| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 搡老熟女国产l中国老女人| 国产av在哪里看| 18禁在线播放成人免费| 韩国av在线不卡| 黄色配什么色好看| 色噜噜av男人的天堂激情| 最近中文字幕高清免费大全6 | 精品一区二区三区视频在线| 老师上课跳d突然被开到最大视频| 精品一区二区三区人妻视频| 九色成人免费人妻av| 国产欧美日韩一区二区精品| 亚洲av电影不卡..在线观看| 搡老熟女国产l中国老女人| av.在线天堂| av国产免费在线观看| 我要搜黄色片| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 不卡一级毛片| 在线观看一区二区三区| 亚洲av熟女| 内地一区二区视频在线| 国产乱人伦免费视频| 久久亚洲精品不卡| 校园人妻丝袜中文字幕| 日韩大尺度精品在线看网址| 2021天堂中文幕一二区在线观| 制服丝袜大香蕉在线| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 天堂动漫精品| 免费观看的影片在线观看| 18+在线观看网站| 国产视频内射| 日韩,欧美,国产一区二区三区 | www.色视频.com| 听说在线观看完整版免费高清| 女人被狂操c到高潮| 在线a可以看的网站| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产 | 成年女人永久免费观看视频| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影| www日本黄色视频网| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 免费看a级黄色片| 亚洲av第一区精品v没综合| 一本精品99久久精品77| .国产精品久久| 变态另类丝袜制服| 国产麻豆成人av免费视频| 亚洲午夜理论影院| 久久久成人免费电影| 亚洲最大成人手机在线| 特级一级黄色大片| 国产精品一及| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 三级毛片av免费| 成人国产综合亚洲| 欧美日韩乱码在线| www.www免费av| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 国内精品宾馆在线| 国产精品不卡视频一区二区| 精品久久久久久,| 国产精品女同一区二区软件 | 村上凉子中文字幕在线| 久久午夜福利片| 99热精品在线国产| av天堂在线播放| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 精品人妻1区二区| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 不卡一级毛片| 少妇丰满av| 国产精品嫩草影院av在线观看 | 国产毛片a区久久久久| 亚洲精品成人久久久久久| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看 | 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 亚洲欧美激情综合另类| 国产老妇女一区| 亚洲av日韩精品久久久久久密| 日本三级黄在线观看| 亚洲精品亚洲一区二区| 在线天堂最新版资源| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 日韩强制内射视频| 国产日本99.免费观看| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| 亚洲精华国产精华精| 久久久久免费精品人妻一区二区| 黄色女人牲交| 91久久精品国产一区二区成人| 免费一级毛片在线播放高清视频| www日本黄色视频网| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| 日本 av在线| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 黄片wwwwww| 在线免费观看不下载黄p国产 | 婷婷色综合大香蕉| 精品一区二区三区视频在线| 一个人看的www免费观看视频| 日本a在线网址| 特级一级黄色大片| 成年女人永久免费观看视频| 级片在线观看| 亚洲精品成人久久久久久| 啦啦啦啦在线视频资源| 亚洲成人久久性| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 亚洲av一区综合| 国产成人a区在线观看| 精品人妻视频免费看| 国产精品一区www在线观看 | 99国产精品一区二区蜜桃av| 窝窝影院91人妻| 十八禁网站免费在线| 亚洲精品乱码久久久v下载方式| 在线天堂最新版资源| 男女视频在线观看网站免费| 搞女人的毛片| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 日本精品一区二区三区蜜桃| 久久精品国产鲁丝片午夜精品 | 国产亚洲av嫩草精品影院| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 级片在线观看| 日韩精品有码人妻一区| 美女高潮的动态| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 男人舔奶头视频| 国产麻豆成人av免费视频| 成人毛片a级毛片在线播放| 能在线免费观看的黄片| 91久久精品电影网| 一进一出抽搐动态| 国产熟女欧美一区二区| 亚洲va在线va天堂va国产| 亚洲精品一卡2卡三卡4卡5卡| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| av视频在线观看入口| 特级一级黄色大片| а√天堂www在线а√下载| 91狼人影院| 最近中文字幕高清免费大全6 | 久久亚洲精品不卡| 日韩欧美在线二视频| 日韩中字成人| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 欧美+亚洲+日韩+国产| 亚洲欧美清纯卡通| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 人妻制服诱惑在线中文字幕| 国内毛片毛片毛片毛片毛片| 欧美高清成人免费视频www| 国产精品一区二区三区四区久久| 久久久久久久久久久丰满 | 国内毛片毛片毛片毛片毛片| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影| 日本在线视频免费播放| 日本 av在线| 又爽又黄a免费视频| 免费av毛片视频| 久久人妻av系列| 色哟哟·www| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 国语自产精品视频在线第100页| 99riav亚洲国产免费| 亚洲第一区二区三区不卡| 亚洲四区av| 欧美+亚洲+日韩+国产| 亚洲欧美激情综合另类| 亚洲乱码一区二区免费版| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 国产视频内射| 2021天堂中文幕一二区在线观| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 成年人黄色毛片网站| 久久精品91蜜桃| 一本久久中文字幕| 亚洲人成网站在线播放欧美日韩| 一区二区三区免费毛片| 一个人看的www免费观看视频| 啪啪无遮挡十八禁网站| 不卡视频在线观看欧美| 免费大片18禁| 伊人久久精品亚洲午夜| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 中文资源天堂在线| 免费大片18禁| 亚洲欧美日韩东京热| 日本a在线网址| 黄色一级大片看看| 免费人成视频x8x8入口观看| 日韩精品中文字幕看吧| 亚洲黑人精品在线| av福利片在线观看| 亚洲欧美清纯卡通| 悠悠久久av| 韩国av在线不卡| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 日韩中字成人| 亚洲不卡免费看| 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美|