• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    2014-03-24 07:55:09FangfangLiFanpingMengQuanxinJinChangyuanSunYingxinLiHonghuaLiSongzhuJin

    Fangfang Li, Fanping Meng, Quanxin Jin, Changyuan Sun, Yingxin Li, Honghua Li, Songzhu Jin

    Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China

    Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    Fangfang Li, Fanping Meng, Quanxin Jin, Changyuan Sun, Yingxin Li, Honghua Li, Songzhu Jin

    Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China

    Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion protein was expressed in Pichia pastoris. The af fi nity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immuno fl uorescence staining. The ability of the fusion protein to block myasthenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speci fi c immunosuppressive therapy of myasthenia gravis.

    nerve regeneration; myasthenia gravis; acetylcholine receptor; anti-acetylcholine receptor antibody; single-chain variable domain fragment; human serum albumin; fusion protein; immunosuppressive therapy; autoimmune disease; NSFC grant; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 30360100, 30760234, 30860260, 81160373, 81360458.

    Li FF, Meng FP, Jin QX, Sun CY, Li YX, Li HH, Jin SZ. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis. Neural Regen Res. 2014;9(8):851-856.

    Introduction

    Myasthenia gravis is an autoimmune disease associated with autoantibodies directed against the nicotinic acetylcholine receptor at neuromuscular junctions (De Baets and Stasson, 2002; Po?a-Guyon et al., 2005; Nikolic et al., 2012). These antibodies interfere with synaptic transmission by reducing the number of functional receptors or by impeding interactions between acetylcholine and its receptors. Acetylcholine is the sole transmitter at the neuromuscular junction. Anti-acetylcholine receptor antibody was detected in 85-90% of myasthenia gravis patients (Lagoumintzis et al., 2010; Higuchi et al., 2011; Cossins et al., 2012; Zhang et al., 2012). Approximately 65% of anti-acetylcholine receptor antibodies directed against the main immunogenic region (residues 67-76 of α-subunit of acetylcholine receptor) are highly pathogenic (Protopapadakis et al., 2005; Konstantakaki et al., 2007; Luo et al., 2009). Therefore, pathogenic antibodies to the main immunogenic region of the anti-acetylcholine receptor have a crucial role in the pathogenesis of myasthenia gravis (Sun et al., 2010).

    Single-chain variable domain fragment 637 (scFv637), a human scFv directed against the main immunogenic region of the human acetylcholine receptor, is constructed from its parental Fab637, which is isolated from thymus-derived phage display library of a myasthenia gravis patient (Graus et al., 1997). ScFv637 prevents antibodies to the main immunogenic region of the anti-acetylcholine receptor from the sera of myasthenia gravis patients binding to the human acetylcholine receptor, indicating it might be an alternative candidate for specific immunosuppressive therapy. Furthermore, it should have low immunogenicity in myasthenia gravis patients owing to its human origin (Meng et al., 2002). However, scFvs have disadvantages including a short half-life and instability. In addition, the characterization of scFv in animal models in vivo is difficult because of their rapid clearance from the bloodstream owing to their small size (Huston et al., 1996; Li et al., 1998; Kang et al., 1999; Kenanova et al., 2005).

    It is well known that human serum albumin (HSA), the most abundant protein in plasma, is a potent carrier protein with a substantial circulatory half-life (up to 19 days in the human blood) and is widely distributed in vivo (Huang et al., 2008; Liu et al., 2012; Zhu et al., 2012; Ding et al., 2013). The association of immunoglobulin fragments with serum albumin, whether by conjugation, fusion or noncovalent binding, results in extended persistence in plasma (Smith et al., 2001; de Bold et al., 2012; Zhao et al., 2012). In this study, we aimed to prepare a conjugate by linking scFv with HSA to increase its half-life and improve its stability in blood.

    Materials and Methods

    Construction of plasmid pPIC9K-scFv637-HSA

    The VH and VL genes of scFv637 were amplified from pComb3H-Fab637 by PCR, and cloned into NcoI and NotI sites of vector pHEN2 to construct recombinant vector pHEN2-scFv637 (Meng et al., 2002). The HSA gene was ampli fi ed from pUC18-HSA using primers 1-7 amino acid residues of HSA (NCBI GenBank: AF190168) (5′-AAGAAT-TCGCGGCCGCAGGTGGAGGCGGTTCAGATGCACACAAGAGTGAGG-3′) and 581-585 amino acid residues of HSA (5′-ATGGATCCTGCGGCCGCTAAGCCTAAGGCAGC-3′), which append a NotI site (underlined) and a (Gly)4-Ser linker (italic) into the 5′ and 3′ ends of the PCR fragment, respectively. Tis PCR product was digested with NotI, and inserted into NotI-digested pHEN2-scFv637 to generate the final construct, pHEN2-scFv637-HSA. Purified pHEN2-scFv637-HSA from E. coli DH5α (preserved in our laboratory) was subsequently transformed into E. coli HB2151 for expression of scFv637-HSA. The fusion gene of scFv637-HSA was ampli fi ed from pHEN2-scFv637-HSA using primers “VH” (5′-GACTTACGTAGA-GGTGCAGCTGCTGGAG-3′) and “c-myc” (5′-CGGAATTCATTCAGATCCTCTTCTGAG ATG-3′), which append SnaBI and EcoRI sites (underlined) into the 5′ and 3′ ends of the PCR fragment, respectively. The PCR fragment was subcloned into pMD18-T Simple Vector after puri fi cation and addition of A-Tailing. The scFv637-HSA-T Vector fragment was cloned into pPIC9K vector after restriction digestion of the SnaBI and EcoRI sites. Competent cells of E. coli DH5α were prepared and transformed with pPIC9K-scFv637-HSA. The recombinant vector was sequenced to con fi rm the right sequence of scFv637-HSA and an open reading frame.

    Expression of plasmid pPIC9K-scFv637-HSA in Pichia pastoris

    Electroporation

    Pichia pastoris strain GS115 (preserved in our laboratory) was transformed by electroporation. Plasmid pPIC9K-scFv637-HSA (10 μg) was linearized with SalI, phenol-chloroform extracted, ethanol precipitated, and dissolved in 10 μL of dH2O. Preparation of electrocompetent Pichia pastoris strain GS115 was performed using Pichia Expression Kit (Invitrogen, Carlsbad, CA, USA). Eighty microliters of competent cells were mixed with 10 μg of linearized pPIC9K-scFv637-HSA DNA in a 0.2 cm electroporation cuvette, incubated on ice for 5 minutes, and electroporated in an Electroporation Generator (BTX, A Division of Genetronics Inc., San Diego, CA, USA). Electroporation conditions were C = 25 μF, PC = 200 Ω, V = 1.5 kV. After pulsing, 1 mL of ice-cold 1 mol/L sterilized sorbitol was added immediately to the cuvette, and the cells transferred to a sterile 1.5 mL centrifuge tube on ice again. Electroporated cells (400 μL) were spread onto MD plate and incubated for 2 days at 30°C. A number of colonies were then restreaked onto MD plates to isolate single colonies for PCR analysis and expression studies.

    PCR analysis and selection of positive transformants

    GS115 positive transformants were analyzed for the presence of pPIC9K-scFv637-HSA constructs using PCR with primers (5′ VH, GAC TTA CGT AGA GGT GCA GCT GCT GGA G, 3′ c-myc, CGG AAT TCA TTC AGA TCC TCT TCT GAG ATG). PCR components and conditions were as follows: 20 × MgCl2-Free buffer, 1 Unit Taq polymerase, 1 Unit Pfu polymerase and 15 pmol/L each primer 5′ VH and 3′ c-myc, at 94°C for 5 minutes, 1 cycle; at 94°C for 1 minute, at 55°C for 1 minute, at 72°C for 4 minutes, 30 cycles; and at 72°C for 5 minutes, 1 cycle. Positive transformants were selected and spread onto yeast extract peptone dextrose medium plates containing 2.0, 3.0 and 4.0 mg/mL G418 respectively, and incubated for 2-3 days at 30°C.

    Expression and screening of scFv637-HSA

    G418-resistant transformants were grown overnight in buffered methanol-complex medium at 30°C and shaking at 280 r/min in 50 mL centrifuge tubes until the absorbance at 600 nm was 2-6. The cells were recovered by centrifugation and resuspended in buffered methanol-complex medium to 1.0 of an absorbance for induction, and grown again at 30°C, 280 r/min in 250 mL glass culture tubes. Fresh methanol was added to a total of 1% to maintain induction every 24 hours. Fusion proteins were measured at 24, 48, 72, 96, and 132 hours post-induction in 1 mL media by centrifugation. After 132 hours, the supernatants were concentrated 25 times by lyophilization. Samples of the supernatants were analyzed by electrophoresis on NEXT GEL? 10% (Amresco, Solon, OH, USA) followed by Coomassie brilliant blue (Sigma, St. Louis, MO, USA) staining and western blot analysis. Western blot analysis was achieved using a wet blotting method with the MINI-TRANS-BLOT electrophoretic transfer system (Bio-RAD, Hercules, CA, USA), with NEXT GEL? electrophoretic buffer (Amresco) at 90 V for 2 hours. The protein samples were detected using a mouse anti-c-myc monoclonal antibody (1 μg/mL; Santa Cruz Biotechnology, Dallas, TX, USA) and goat anti-mouse IgG conjugated with horseradish peroxidase (0.08 μg/mL; Jackson ImmunoResearch, West Grove, PA, USA). The horseradish peroxidase activity was visualized with DAB.

    Immuno fl uorescence staining of scFv637-HSA expression in human intercostal muscle

    Binding of scFv637-HSA to acetylcholine receptor in situ at the neuromuscular junction was verified by immunohistochemical staining on human intercostal muscle frozen sections (Yanbian University, Yanji, Jilin Province, China). Slides were incubated with supernatants of media above for 60 minutes at 37°C, and then washed three times with 0.01 mol/L PBS (pH 7.4) for 5 minutes each time. Subsequently, sections were incubated with 1:100 diluted mouse anti-c-myc mAb together with rhodamine-labeled α-bungarotoxin (Sigma), and fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG (1:1,000; Sino-American Biotechnology, Beijing, China) for 30 minutes at 37°C after washing with PBS. As a negative control, sections were incubated with PBS instead of primary antibody. This study was in accordance with the guideline established by the Ethical Review Committee at Yanbian University, China.

    Inhibition of scFv637-HSA on the binding of myasthenia gravis patient sera to human acetylcholine receptor

    The capacity of scFv-HSA to inhibit the binding of serum anti-human acetylcholine receptor antibodies from myasthenia gravis patients in vitro was measured using a competitiveELISA kit (Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China). Twelve cases of myasthenia gravis patient sera with positive anti-acetylcholine receptor antibodies (Yanbian Wenhuan Ma Institute of Myasthenia Gravis, Yanji, Jilin Province, China) were tested. One hundred microliters of concentrated samples were added to wells of a human acetylcholine receptor-coated ELISA plate and incubated for 1 hour at 37°C. After rinsing, 100 μL myasthenia gravis patient sera was added and incubated for 1 hour at 37°C. After rinsing, the inhibition of scFv-HSA was measured by incubation with goat anti-human IgG conjugated with horseradish peroxidase (1:1,000; Jackson ImmunoResearch, West Grove, PA, USA). o-Phenylenediamine and H2O2in buffer were then added and the absorbance values at 492 nm were recorded (Microplate reader, Thermo Electron Corporation, Vantaa, Finland). The result was expressed as a percentage of inhibition of myasthenia gravis patient sera binding. This study was performed in accordance with the guidelines established by the Local Ethical Review Committee at Yanbian University, China.

    Stability of scFv637-HSA in static healthy sera

    Concentrated supernatants containing fusion protein scFv637-HSA were mixed and preserved in sterilized healthy sera for 7 days at 37°C water-bath. Mixed sample (100 μL) was stored at 4°C everyday to detect its inhibition by competitive ELISA as above.

    Statistical analysis

    All data presented were expressed as mean ± SEM. Graphpad Prism 5.0 statistical software (GraphPad Software, San Diego, CA, USA) was used for statistical analysis of experimental data.

    Results

    Construction and expression of ScFv637-HSA

    scFv637-HSA was cloned and purified from E. coli, DH5α by PCR. The size of scFv637-HSA-His-c-myc was 2,607 bp including scFv637, Linker1, HSA, Linker2, His, Linker3 and c-myc, as checked by gene sequencing. A band of about 2,600 bp appeared after digestion of recombinant T Simple Vector by SnaBI, EcoRI and PvuI (Figure 1). Since the sizes of T Vector and insert (scFv637-HSA-His-c-myc) are similar, it is dif fi cult to distinguish them by electrophoresis. However, only T Simple Vector has a PvuI site, but no insert. The scFv construct was successfully inserted into the SnaBI and EcoRI sites of pPIC9K as shown by PCR (Figure 2).

    Pichia pastoris was chosen to express the fusion protein to increase the expression quantity and improve its functions. The eukaryotic kanamycin resistance gene confers resistance to the related antibiotic G418. The level of G418 resistance can be roughly correlated to vector copy number (Scorer et al., 1994). Pichia pastoris must be fi rst transformed to His+prototrophy; then multicopy transformants are screened by replica-plating to plates containing G418. There were 10, 8 and 2 positive transformants on the yeast extract peptone dextrose medium plates containing 2.0, 3.0 and 4.0 mg/mL G418, respectively. The molecular weight of the fusion protein was 89 kDa as shown by western blot analysis (Figure 3).

    Binding of ScFv637-HSA to acetylcholine receptor in human intercostal muscle

    ScFv637-HSA could bind to acetylcholine receptor in situ at the neuromuscular junction of human intercostal muscles, indicated by immunohistochemical staining (Figure 4).

    Inhibition of scFv637-HSA in myasthenia gravis patient seraIn the sera from 12 myasthenia gravis patients, the inhibition rate of binding to acetylcholine receptor was 2.0-77.4% (Figure 5). The mean inhibition rate was 31.4%.

    Stability of scFv637-HSA in static healthy sera

    The stability of scFv637-HSA in static healthy sera was maintained for about 3 days. The inhibition rate was 65.1%, 32.8% and 31.3% per day, respectively (Figure 6). From the fourth day, the inhibition rate decreased to zero and the fusion protein had no activity.

    Discussion

    Small recombinant antibody molecules such as scFv are rapidly cleared from the circulation. Usually, the chemical conjugation of small recombinant proteins to polyethylene glycol (PEG) is an established strategy to extend their typically short circulation times to a therapeutically useful range (Schlapschy et al., 2007; Noberini et al., 2011; Danial et al., 2012; Kumagai et al., 2012). Biologically active peptides or low molecular weight protein can be fused genetically to HSA, which has a longer plasma half-life so the short peptide half-life can be extended (Kenanova et al., 2010; Furukawa et al., 2011; Lee et al., 2011; Lei et al., 2012; Yang et al., 2012). For example, extended plasma half-life of bispecific single-chain diabodies (scDb) possessing a molecular mass of approximately 55 kDa have been achieved by various strategies including PEGylation, N-glycosylation and fusion to an albumin-binding domain (ABD) from streptococcal protein G (Stork et al., 2009).

    In this study, we describe a strategy to successfully yield recombinant scFv637-HSA against the main immunogenic region of acetylcholine receptor using Pichia pastoris expression technology. The aim of this study was to produce an anti-acetylcholine receptor scFv637-HSA. The binding of anti-acetylcholine receptor scFv to acetylcholine receptor could block pathogenic antibodies from binding to acetylcholine receptors. Accordingly, acetylcholine receptors were protected. An approximately 89 kDa protein band was con fi rmed via western blot analysis using anti-c-myc monoclonal antibodies, suggesting the secreted fusion protein was intact. By immuno fl uorescence analysis, green staining was observed around human intercostal muscles, revealing that the character of the fusion protein binding to human acetylcholine receptor was retained. Furthermore, the ability of scFv to bind to acetylcholine receptors was not affected by conjunction with the HSA gene. Inhibition of the binding of pathogenic antibodies from myasthenia gravis patient serato human acetylcholine receptors was 77.4% (maximum) by ELISA. The fusion protein from scFv637-HSA was effective in protecting acetylcholine receptors. However, the inhibition was only 2.0% in the fifth case, probably owing to the very high af fi nity of pathogenic antibodies to human acetylcholine receptors. The inhibition rate of the scFv637-HSA was still 31.3% in static healthy sera at day 3. However, from the fourth day, the inhibition rate decreased to zero. Thus, activity of the fusion protein was maintained for about 3 days. This result was similar with the observation by Stork (Stork et al., 2009) where PEGylated scDb and scDb-ABD were present in high concentrations in the blood, which resulted in increased levels in other organs. Tumorto-blood ratios of scDb-A′-PEG40kand scDb-ABD in CEA+tumors were weaker and gradually increased to a value of 1.5 and 3, respectively, at day 4. Its stability is lower than the half-life of HSA (19 days). This short half-life observed was different from the result by Smith (Smith et al., 2001), but it was higher than the half-life of scFv.

    Figure 1 PCR results of recombinant plasmid pMD18-T Simple Vector-single-chain variable domain fragmeng 637-human serum albumin digested with SnaBI/EcoRI/PvuI.

    Figure 2 PCR detection of recombinant vector after electroporation into GS115.

    Figure 3 Western blot analysis of fusion protein scFv637-HSA.

    The scFv637-HSA fusion protein was successfully expressed in Pichia pastoris, indicating it might be a potential candidate for speci fi c immunosuppressive therapy of myasthenia gravis.

    Author contributions:Meng FP designed and revised the manuscript. Li FF performed the experiments and wrote the manuscript. Jin QX, Sun CY, Li YX, Li HH and Jin SZ provided technological support. All authors approved the final version of the paper.

    Con fl icts of interest:None declared.

    Cossins J, Belaya K, Zoltowska K, Koneczny I, Maxwell S, Jacobson L, Leite MI, Waters P, Vincent A, Beeson D (2012) Te search for new antigenic targets in myasthenia gravis. Ann N Y Acad Sci 1275:123-128.

    Danial M, van Dulmen TH, Aleksandrowicz J, P?tgens AJ, Klok HA (2012) Site-speci fi c PEGylation of HR2 peptides: e ff ects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug Chem 23:1648-1660.

    Figure 4 Binding of single-chain single-chain variable domain fragment 637-human serum albumin (scFv637-HSA) to acetylcholine receptor (AChR) in situ at neuromuscular junctions of human intercostal (immunohistochemical staining, × 200).

    Figure 5 Competitive inhibition of binding to acetylcholine receptor (AChR) in myasthenia gravis (MG) patient sera by single-chain single-chain variable domain fragment 637-human serum albumin (scFv637-HSA).

    Figure 6 The stability of single-chain variable domain fragment 637-human serum albumin (scFv637-HSA) in static healthy sera.

    De Baets M, Stassen MH (2002) Te role of antibodies in myasthenia gravis. J Neurol Sci 202:5-11.

    de Bold MK, She ffield WP, Martinuk A, Bhakta V, Eltringham-Smith L, de Bold AJ (2012) Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris. Regul Pept 175:7-10.

    Ding Y, Fan J, Li W, Yang R, Peng Y, Deng L, Wu Y, Fu Q (2013) Te effect of albumin fusion patterns on the production and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris. Appl Biochem Biotechnol 170:1637-1648.

    Furukawa M, Tanaka R, Chuang VT, Ishima Y, Taguchi K, Watanabe H, Maruyama T, Otagiri M (2011) Human serum albumin-thioredoxin fusion protein with long blood retention property is e ff ective in suppressing lung injury. J Control Release 154:189-195.

    Graus YF, de Baets MH, Parren PW, Berrih-Aknin S, Wokke J, van Breda Vriesman PJ, Burton DR (1997) Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J Immunol 158:1919-1929.

    Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418-422.

    Huang YJ, Lundy PM, Lazaris A, Huang Y, Baldassarre H, Wang B, Turcotte C, C?té M, Bellemare A, Bilodeau AS, Brouillard S, Touati M, Herskovits P, Bégin I, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, et al. (2008) Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin. BMC Biotechnol 8:50.

    Huston JS, George AJ, Adams GP, Sta ff ord WF, Jamar F, Tai MS, Mc-Cartney JE, Oppermann H, Heelan BT, Peters AM, Houston LL, Bookman MA, Wolf EJ, Weiner LM (1996) Single-chain Fv radioimmunotargeting. Q J Nucl Med 40:320-333.

    Kang NV, Hamilton S, Sanders R, Wilson GD, Kupsch JM (1999) Effi cient in vivo targeting of malignant melanoma by single-chain Fv antibody fragments. Melanoma Res 9:545-556.

    Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65:622-631.

    Kenanova VE, Olafsen T, Salazar FB, Williams LE, Knowles S, Wu AM (2010) Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins. Protein Eng Des Sel 23:789-798.

    Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E (2007) Molecular modeling of the complex between Torpedo acetylcholine receptor and anti-MIR Fab198. Biochem Biophys Res Commun 356:569-575. Kumagai M, Shimoda S, Wakabayashi R, Kunisawa Y, Ishii T, Osada K, Itaka K, Nishiyama N, Kataoka K, Nakano K (2012) E ff ective transgene expression without toxicity by intraperitoneal administration of PEG-detachable polyplex micelles in mice with peritoneal dissemination. J Control Release 160:542-551.

    Lagoumintzis G, Zisimopoulou P, Kordas G, Lazaridis K, Poulas K, Tzartos SJ (2010) Recent approaches to the development of antigen-speci fi c immunotherapies for myasthenia gravis. Autoimmunity 43:436-445.

    Lee MS, Kim YH, Kim YJ, Kwon SH, Bang JK, Lee SM, Song YS, Hahm DH, Shim I, Han D, Her S (2011) Pharmacokinetics and biodistribution of human serum albumin-TIMP-2 fusion protein using near-infrared optical imaging. J Pharm Pharm Sci 14:368-377.

    Lei J, Guan B, Li B, Duan Z, Chen Y, Li H, Jin J (2012) Expression, purification and characterization of recombinant human interleukin-2-serum albumin (rhIL-2-HSA) fusion protein in Pichia pastoris. Protein Expr Purif 84:154-160.

    Li Q, Hudson W, Wang D, Berven E, Uckun FM, Kersey JH (1998) Pharmacokinetics and biodistribution of radioimmunoconjugates of anti-CD19 antibody and single-chain Fv for treatment of human B-cell malignancy. Cancer Immunol Immunother 47:121-130.

    Liu M, Huang Y, Hu L, Liu G, Hu X, Liu D, Yang X (2012) Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol 12:68.

    Luo J, Taylor P, Losen M, de Baets MH, Shelton GD, Lindstrom J (2009) Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 29:13898-13908.

    Meng F, Stassen MH, Schillberg S, Fischer R, De Baets MH (2002) Construction and characterization of a single-chain antibody fragment derived from thymus of a patient with myasthenia gravis. Autoimmunity 35:125-133.

    Nikolic A, Djukic P, Basta I, Hajdukovic Lj, Stojanovic VR, Stevic Z, Nikolic D, Bozic V, Lavrnic S, Lavrnic D (2013) Te predictive value of the presence of di ff erent antibodies and thymus pathology to the clinical outcome in patients with generalized myasthenia gravis. Clin Neurol Neurosurg 115:432-437.

    Noberini R, Mitra S, Salvucci O, Valencia F, Duggineni S, Prigozhina N, Wei K, Tosato G, Huang Z, Pasquale EB (2011) PEGylation potentiates the e ff ectiveness of an antagonistic peptide that targets the EphB4 receptor with nanomolar a ffi nity. PLoS One 6:e28611.

    Po?a-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, Bidault J, Tzartos S, Berrih-Aknin S (2005) E ff ects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941-5949.

    Protopapadakis E, Kokla A, Tzartos SJ, Mamalaki A (2005) Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci. Eur J Immunol 35:1960-1968.

    Schlapschy M, Teobald I, Mack H, Schottelius M, Wester HJ, Skerra A (2007) Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: e ff ects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel 20:273-284.

    Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (N Y) 12:181-184.

    Smith BJ, Popplewell A, Athwal D, Chapman AP, Heywood S, West SM, Carrington B, Nesbitt A, Lawson AD, Antoniw P, Eddelston A, Suitters A (2001) Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug Chem 12:750-756.

    Stork R, Campigna E, Robert B, Müller D, Kontermann RE (2009) Biodistribution of a bispeci fi c single-chain diabody and its half-life extended derivatives. J Biol Chem 284:25612-25619.

    Sun C, Meng F, Li Y, Jin Q, Li H, Li F (2010) Antigen-speci fi c immunoadsorption of anti-acetylcholine receptor antibodies from sera of patients with myastenia gravis. Artif Cells Blood Substit Immobil Biotechnol 38:99-102.

    Yang M, Hoppmann S, Chen L, Cheng Z (2012) Human serum albumin conjugated biomolecules for cancer molecular imaging. Curr Pharm Des 18:1023-1031.

    Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, Xiong WC, Lisak RP, Tzartos SJ, Mei L (2012) Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 69:445-451.

    Zhao T, Cheng YN, Tan HN, Liu JF, Xu HL, Pang GL, Wang FS (2012) Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice. Biol Pharm Bull 35:280-288.

    Zhu RY, Xin X, Dai HY, Li Q, Lei JY, Chen Y, Jin J (2012) Expression and puri fi cation of recombinant human serum albumin fusion protein with VEGF165b in Pichia pastoris. Protein Expr Purif 85:32-37.

    Copyedited by Croxford L, Norman C, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.131611

    Fanping Meng, Ph.D., Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian

    University, 977# Gongyuan Road,

    Yanji 133002, Jilin Province, China, fpmeng@ybu.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-03-01

    亚洲欧美中文字幕日韩二区| 久久国产乱子免费精品| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 免费看不卡的av| 极品少妇高潮喷水抽搐| 亚洲国产成人一精品久久久| 亚洲av电影在线观看一区二区三区 | 国产在线男女| 特大巨黑吊av在线直播| 女人十人毛片免费观看3o分钟| 国产成年人精品一区二区| 黄片无遮挡物在线观看| 日日啪夜夜撸| .国产精品久久| 国产欧美亚洲国产| 国产精品99久久久久久久久| 日本一本二区三区精品| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 欧美zozozo另类| 免费av毛片视频| 在线观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产老妇女一区| 精品酒店卫生间| 免费黄频网站在线观看国产| 国产精品蜜桃在线观看| 最近最新中文字幕大全电影3| 一区二区三区乱码不卡18| 99热网站在线观看| 久久久亚洲精品成人影院| 天天一区二区日本电影三级| 国产大屁股一区二区在线视频| 直男gayav资源| 精品99又大又爽又粗少妇毛片| 热re99久久精品国产66热6| 真实男女啪啪啪动态图| 亚洲在线观看片| 中文字幕人妻熟人妻熟丝袜美| 国产大屁股一区二区在线视频| 亚洲精品一区蜜桃| 欧美丝袜亚洲另类| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 日韩电影二区| 午夜视频国产福利| a级一级毛片免费在线观看| a级一级毛片免费在线观看| 18+在线观看网站| 国产精品国产av在线观看| 秋霞伦理黄片| 亚洲电影在线观看av| 日韩欧美一区视频在线观看 | 久久人人爽人人爽人人片va| 蜜臀久久99精品久久宅男| 麻豆久久精品国产亚洲av| 老司机影院毛片| 精品视频人人做人人爽| 内地一区二区视频在线| 少妇人妻久久综合中文| 伊人久久国产一区二区| 国产伦精品一区二区三区视频9| 香蕉精品网在线| 国产亚洲5aaaaa淫片| 国产精品久久久久久精品电影小说 | 成年女人在线观看亚洲视频 | 精品人妻视频免费看| 黄色视频在线播放观看不卡| 精品国产一区二区三区久久久樱花 | 国产色婷婷99| 成人国产av品久久久| 黄色怎么调成土黄色| 免费看不卡的av| 亚洲内射少妇av| 亚洲精品国产av蜜桃| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 久久精品熟女亚洲av麻豆精品| 免费av毛片视频| 老司机影院成人| h日本视频在线播放| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| eeuss影院久久| 亚洲久久久久久中文字幕| 你懂的网址亚洲精品在线观看| 一级二级三级毛片免费看| 亚洲成人久久爱视频| 亚洲精品国产色婷婷电影| 一区二区三区乱码不卡18| 亚洲国产日韩一区二区| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影小说 | 亚洲图色成人| freevideosex欧美| 性色av一级| av播播在线观看一区| 成人鲁丝片一二三区免费| 2022亚洲国产成人精品| 91午夜精品亚洲一区二区三区| 日韩不卡一区二区三区视频在线| 久久久久久久久大av| 国精品久久久久久国模美| 乱系列少妇在线播放| 久久久久精品性色| 亚洲欧洲日产国产| 男人爽女人下面视频在线观看| 亚洲熟女精品中文字幕| 久久精品熟女亚洲av麻豆精品| 大香蕉久久网| 久热这里只有精品99| 69av精品久久久久久| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 在线 av 中文字幕| 日本黄大片高清| 卡戴珊不雅视频在线播放| 亚洲最大成人中文| 一级a做视频免费观看| 另类亚洲欧美激情| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 热re99久久精品国产66热6| 五月天丁香电影| 在线观看国产h片| 午夜福利在线在线| 免费看光身美女| 国产久久久一区二区三区| 三级国产精品片| 午夜日本视频在线| 中文字幕免费在线视频6| 草草在线视频免费看| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷| 色5月婷婷丁香| 亚洲国产最新在线播放| 汤姆久久久久久久影院中文字幕| 欧美极品一区二区三区四区| 久久久久久久国产电影| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区国产| 校园人妻丝袜中文字幕| av又黄又爽大尺度在线免费看| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃 | 人妻系列 视频| 99久久精品国产国产毛片| 哪个播放器可以免费观看大片| 又黄又爽又刺激的免费视频.| 日本爱情动作片www.在线观看| 国产黄频视频在线观看| 男女那种视频在线观看| 国产成人福利小说| 亚洲色图av天堂| 国产黄色视频一区二区在线观看| 午夜激情久久久久久久| 久久久久久久久久成人| 能在线免费看毛片的网站| 亚洲真实伦在线观看| 久久久久久久久久久丰满| 免费大片18禁| 精品少妇久久久久久888优播| 大话2 男鬼变身卡| 极品教师在线视频| 新久久久久国产一级毛片| 亚洲精品国产成人久久av| 欧美日韩综合久久久久久| 国产美女午夜福利| a级毛片免费高清观看在线播放| av福利片在线观看| 天堂俺去俺来也www色官网| 综合色av麻豆| 欧美亚洲 丝袜 人妻 在线| 人妻一区二区av| 国产精品久久久久久精品古装| 亚洲精品久久午夜乱码| 日本色播在线视频| 在线观看美女被高潮喷水网站| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 波野结衣二区三区在线| 欧美高清性xxxxhd video| 性插视频无遮挡在线免费观看| 一区二区av电影网| 三级男女做爰猛烈吃奶摸视频| 伊人久久国产一区二区| 春色校园在线视频观看| 一边亲一边摸免费视频| 国产乱人视频| 午夜视频国产福利| 日韩一区二区三区影片| 亚洲精品久久午夜乱码| 草草在线视频免费看| 国产av码专区亚洲av| 亚洲人成网站高清观看| 在现免费观看毛片| 97在线视频观看| 日本与韩国留学比较| 日本熟妇午夜| 精品99又大又爽又粗少妇毛片| 国产一级毛片在线| 亚洲四区av| 国产av不卡久久| 身体一侧抽搐| 18+在线观看网站| 亚洲av不卡在线观看| 亚洲婷婷狠狠爱综合网| 国产欧美另类精品又又久久亚洲欧美| 亚洲av欧美aⅴ国产| 人妻一区二区av| av线在线观看网站| 日本欧美国产在线视频| 色哟哟·www| 成人黄色视频免费在线看| 伦理电影大哥的女人| 最近最新中文字幕大全电影3| 亚洲成人久久爱视频| 国产黄片视频在线免费观看| 搡女人真爽免费视频火全软件| 国产成人精品久久久久久| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品古装| 一区二区三区免费毛片| 久久人人爽人人爽人人片va| 日本与韩国留学比较| 大陆偷拍与自拍| 看黄色毛片网站| 国产精品久久久久久久久免| 丰满少妇做爰视频| 欧美少妇被猛烈插入视频| 3wmmmm亚洲av在线观看| 制服丝袜香蕉在线| 特级一级黄色大片| 最近最新中文字幕大全电影3| 亚洲精品成人av观看孕妇| 日韩成人av中文字幕在线观看| 亚洲伊人久久精品综合| 国产精品av视频在线免费观看| 免费观看无遮挡的男女| 大香蕉97超碰在线| 国产精品国产三级国产专区5o| 女的被弄到高潮叫床怎么办| 中文在线观看免费www的网站| 80岁老熟妇乱子伦牲交| 国产一区有黄有色的免费视频| 亚洲成人久久爱视频| 国产精品久久久久久av不卡| 国产精品爽爽va在线观看网站| 久久久成人免费电影| 午夜日本视频在线| 欧美区成人在线视频| 波多野结衣巨乳人妻| 免费黄网站久久成人精品| 麻豆成人午夜福利视频| 一区二区三区四区激情视频| 麻豆国产97在线/欧美| 免费观看性生交大片5| 97精品久久久久久久久久精品| 免费黄网站久久成人精品| 秋霞伦理黄片| 亚洲国产日韩一区二区| 大话2 男鬼变身卡| 国产 一区精品| 日韩大片免费观看网站| 美女内射精品一级片tv| 18禁在线播放成人免费| 又粗又硬又长又爽又黄的视频| 亚洲精品日韩av片在线观看| 久久久久久久精品精品| 久久99热6这里只有精品| 久久久久九九精品影院| 国产av国产精品国产| 国国产精品蜜臀av免费| 亚洲av.av天堂| 久久久久精品久久久久真实原创| 国产黄色免费在线视频| 国产免费福利视频在线观看| 亚洲色图av天堂| 伦精品一区二区三区| 久久精品熟女亚洲av麻豆精品| av黄色大香蕉| 国产一级毛片在线| 免费在线观看成人毛片| 久久久久网色| 18禁裸乳无遮挡免费网站照片| 嫩草影院新地址| 男女边吃奶边做爰视频| 99热网站在线观看| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久久久按摩| 日本黄大片高清| 亚洲成人av在线免费| 岛国毛片在线播放| 国产又色又爽无遮挡免| 男女无遮挡免费网站观看| 蜜桃久久精品国产亚洲av| 啦啦啦啦在线视频资源| 亚洲国产色片| 午夜福利视频1000在线观看| 好男人视频免费观看在线| 99九九线精品视频在线观看视频| 国产黄a三级三级三级人| 免费不卡的大黄色大毛片视频在线观看| 免费播放大片免费观看视频在线观看| 国产精品无大码| 自拍偷自拍亚洲精品老妇| 亚洲激情五月婷婷啪啪| 纵有疾风起免费观看全集完整版| 一级毛片黄色毛片免费观看视频| 亚洲色图av天堂| 成人高潮视频无遮挡免费网站| 免费看不卡的av| 18+在线观看网站| 看黄色毛片网站| 小蜜桃在线观看免费完整版高清| 成年女人在线观看亚洲视频 | 欧美精品一区二区大全| 日韩欧美 国产精品| 制服丝袜香蕉在线| 日本-黄色视频高清免费观看| 女人久久www免费人成看片| 十八禁网站网址无遮挡 | 精华霜和精华液先用哪个| 97人妻精品一区二区三区麻豆| 精品人妻视频免费看| 欧美日韩在线观看h| 亚洲熟女精品中文字幕| 免费观看a级毛片全部| 97人妻精品一区二区三区麻豆| 亚洲精品日韩av片在线观看| 国产一区二区三区av在线| 国产 一区精品| 3wmmmm亚洲av在线观看| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 亚洲成人精品中文字幕电影| 亚洲精品,欧美精品| 亚洲熟女精品中文字幕| 五月伊人婷婷丁香| 日韩不卡一区二区三区视频在线| 国产精品av视频在线免费观看| 亚洲美女视频黄频| 国产伦精品一区二区三区视频9| 菩萨蛮人人尽说江南好唐韦庄| 搡女人真爽免费视频火全软件| 日韩制服骚丝袜av| 亚洲国产精品专区欧美| 爱豆传媒免费全集在线观看| 中文精品一卡2卡3卡4更新| 在线观看三级黄色| 国产av不卡久久| 97在线视频观看| 美女xxoo啪啪120秒动态图| 欧美一区二区亚洲| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| av卡一久久| 2021少妇久久久久久久久久久| 简卡轻食公司| 99热这里只有是精品在线观看| 亚洲精品成人久久久久久| 欧美日韩在线观看h| 男女下面进入的视频免费午夜| 九九久久精品国产亚洲av麻豆| 日韩大片免费观看网站| 麻豆国产97在线/欧美| 免费大片18禁| 毛片一级片免费看久久久久| 性色avwww在线观看| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 日韩大片免费观看网站| 久久韩国三级中文字幕| 中文字幕免费在线视频6| 九草在线视频观看| 日韩中字成人| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| av福利片在线观看| 亚洲最大成人av| 亚洲高清免费不卡视频| 一级黄片播放器| 又爽又黄a免费视频| kizo精华| 色网站视频免费| 午夜福利在线在线| 男男h啪啪无遮挡| 人妻系列 视频| 精品人妻一区二区三区麻豆| 免费少妇av软件| 高清视频免费观看一区二区| 国产熟女欧美一区二区| av在线观看视频网站免费| 五月伊人婷婷丁香| 国产亚洲91精品色在线| 色视频在线一区二区三区| 91精品国产九色| av天堂中文字幕网| 中国三级夫妇交换| 一本一本综合久久| 国产综合懂色| 肉色欧美久久久久久久蜜桃 | 国产乱来视频区| 搞女人的毛片| 九色成人免费人妻av| 六月丁香七月| 美女高潮的动态| 成人综合一区亚洲| 白带黄色成豆腐渣| 亚洲精品自拍成人| 亚洲国产精品专区欧美| 欧美性猛交╳xxx乱大交人| 禁无遮挡网站| 中文字幕亚洲精品专区| 久热这里只有精品99| 老司机影院毛片| 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 久久久久网色| 亚洲精品一区蜜桃| 久久亚洲国产成人精品v| 天堂中文最新版在线下载 | 国产欧美另类精品又又久久亚洲欧美| 精品少妇久久久久久888优播| 久久久久精品性色| 97在线人人人人妻| 特级一级黄色大片| 成人毛片a级毛片在线播放| 国产伦精品一区二区三区视频9| 国产一区二区 视频在线| 国产片特级美女逼逼视频| 999久久久国产精品视频| 亚洲欧美成人精品一区二区| 肉色欧美久久久久久久蜜桃| 99精品久久久久人妻精品| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 狠狠婷婷综合久久久久久88av| 美女主播在线视频| 国产日韩一区二区三区精品不卡| 曰老女人黄片| 丝袜喷水一区| 亚洲中文av在线| 国产一区二区三区av在线| 久久久精品94久久精品| 亚洲综合精品二区| 999久久久国产精品视频| 午夜福利,免费看| 视频在线观看一区二区三区| 亚洲av日韩精品久久久久久密 | 熟女少妇亚洲综合色aaa.| 老司机深夜福利视频在线观看 | 狠狠婷婷综合久久久久久88av| 亚洲国产av新网站| 丁香六月欧美| 中文字幕亚洲精品专区| 亚洲国产日韩一区二区| 成人黄色视频免费在线看| 国产精品女同一区二区软件| 亚洲欧美日韩另类电影网站| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 99国产精品免费福利视频| 香蕉国产在线看| 亚洲精品久久午夜乱码| 亚洲成人一二三区av| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 中文欧美无线码| 久久久久久久精品精品| 18禁动态无遮挡网站| 伦理电影大哥的女人| 久久久精品国产亚洲av高清涩受| 好男人视频免费观看在线| 精品亚洲成a人片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一级一片aⅴ在线观看| av不卡在线播放| 欧美在线黄色| 久久免费观看电影| 久久久精品94久久精品| 99热全是精品| 久久av网站| 日韩伦理黄色片| 久久韩国三级中文字幕| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 多毛熟女@视频| 天堂俺去俺来也www色官网| 免费看不卡的av| 免费观看a级毛片全部| 国产一区二区 视频在线| 久久青草综合色| 国产片特级美女逼逼视频| 欧美av亚洲av综合av国产av | 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 国产99久久九九免费精品| 国产片特级美女逼逼视频| 亚洲视频免费观看视频| 亚洲av中文av极速乱| 国产男女内射视频| 日韩 亚洲 欧美在线| 黄色 视频免费看| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 丁香六月天网| 日本午夜av视频| 欧美国产精品va在线观看不卡| 亚洲欧美成人精品一区二区| 少妇的丰满在线观看| 亚洲精品成人av观看孕妇| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 中国国产av一级| 国产 精品1| 一本一本久久a久久精品综合妖精| 免费人妻精品一区二区三区视频| 国产激情久久老熟女| 亚洲精品国产区一区二| 老汉色av国产亚洲站长工具| 国产麻豆69| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产a三级三级三级| 久久99一区二区三区| 国产男女内射视频| 美女视频免费永久观看网站| 啦啦啦 在线观看视频| 日本wwww免费看| 午夜日韩欧美国产| 国产探花极品一区二区| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡 | 爱豆传媒免费全集在线观看| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 99久久综合免费| 亚洲精品一二三| 夫妻午夜视频| 久热这里只有精品99| 午夜av观看不卡| 老司机亚洲免费影院| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 不卡视频在线观看欧美| 最黄视频免费看| 九色亚洲精品在线播放| 精品酒店卫生间| 最新在线观看一区二区三区 | 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 高清欧美精品videossex| 久久婷婷青草| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 国产又色又爽无遮挡免| e午夜精品久久久久久久| 五月天丁香电影| 国产成人精品福利久久| 日日撸夜夜添| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 男女高潮啪啪啪动态图| 最近2019中文字幕mv第一页| 国产色婷婷99| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| www.av在线官网国产| 日韩制服骚丝袜av| 999精品在线视频| 亚洲国产欧美一区二区综合| 国产免费又黄又爽又色| 日本午夜av视频| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 人妻人人澡人人爽人人| 嫩草影视91久久| 亚洲av日韩在线播放| 一级毛片我不卡| 精品人妻熟女毛片av久久网站| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 国产免费一区二区三区四区乱码| 亚洲第一青青草原| 欧美日韩福利视频一区二区| 免费看av在线观看网站| 午夜日本视频在线| av国产久精品久网站免费入址|