• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a diffusion tensor imaging study

    2014-03-24 09:09:40YongHyunKwon,SungHoJang,SangSeokYeo

    Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a diffusion tensor imaging study

    Introduction

    Aging is the accumulation of multidimensional deterioration of processing of biological, psychological, and social changes with expansion over time (Bowen and Atwood, 2004; Grady, 2012). Aging-related changes are typically accompanied by decline in cognitive function, urinary control, sensory-motor function, and gait ability (Bradley et al., 1991; Bowen and Atwood, 2004; Hedden and Gabrieli, 2004; Grady, 2012; Moran et al., 2012). In addition, a number of studies have suggested changes in brain structure with normal aging, such as decrease in cortical thickness or increase in ventricular width (Blatter et al., 1995; Tang et al., 1997; Uylings and de Brabander, 2002; Preul et al., 2006; Apostolova et al., 2012). In particular, ventricular enlargement has been suggested as a structural biomarker for normal aging and progression of some illnesses, such as Alzheimer’s disease (Blatter et al., 1995; Tang et al., 1997; Uylings and de Brabander, 2002; Preul et al., 2006; Apostolova et al., 2012). However, the question of how this structural change in the brain in normal elderly affects change of white matters remains a topic of interest and concern. Diffusion tensor imaging allows for evaluation of white matter due to its ability to capture and quantify water diffusion characteristics (Mori et al., 1999; Assaf and Pasternak, 2008; Neil, 2008). In normal white matter, water molecules move relatively freely in a direction parallel to nerve fi ber tracts, however, their movements are restricted across tracts, which cause diffusion anisotropy in white matter. This selective restriction of water molecule movement allows for exploration of physical changes in white matter caused by normal aging using diffusion anisotropy. Some studies using DTI have reported on changes in periventricular white matter in patients with stroke or other brain injuries (Yeo et al., 2011; Hattori et al., 2012; Jang et al., 2013). In the current study, using DTI, we investigated ventricular enlargement with normal aging, and its effect on periventricular white matter.

    Subjects and Methods

    Subjects

    Sixty subjects (31 males, 29 females; mean age, 49.1 ± 17.6 years; range, 20-78 years) with no history of neurologic or psychiatric disease and head trauma were recruited by advertisements in a regional daily newspaper for the study. All subjects provided written informed consent prior to the study. This study was approved by the Institutional Review Board of Yeungnam University Medical Center in South Korea.

    Diffusion tensor image

    Diffusion tensor imaging data were acquired using a 1.5T Philips Gyroscan Intera system (Hoffman-LaRoche, Mijdrecht, the Netherlands) equipped with a Synergy-L Sensitivity Encoding head coil using a single-shot spin echo-planar imaging sequence. For each of the 32 noncollinear and noncoplanar diffusion-sensitizing gradients, we acquired 60 contiguous slices parallel to the anterior commissure-posterior commissure line. The imaging parameters used were: matrix = 128 × 128; fi eld of view = 221 × 221 mm2; echo time = 76 ms; repetition time = 10,726 ms; sensitivity encoding factor = 2; echo planar imaging factor = 67; b = 1,000 s/mm2; number of excitations = 1; and a slice thickness of 2.3 mm.

    Eddy current-induced image distortions and motion artifacts were reduced using affine multi scale two-dimensional registration (Smith et al., 2004). Diffusion tensor imaging datasets were preprocessed using the Oxford Centre for Functional Magnetic Resonance Imaging of Brain Software Library. White matter was evaluated using DTI-Studio software (CMRM, Johns Hopkins Medical Institute, Baltimore, MD, USA).

    Diffusion tensor imaging parameters were estimated in the following four regions of interest in periventricular white matter, which is concerned with cognitive function, urinary control, sensory-motor function, and gait ability (Newton et al., 2006; Jang, 2009; Han et al., 2010; Hong et al., 2010; Klein et al., 2010; Tadic et al., 2010; Yeo et al., 2012); the anterior corona radiata, the posterior corona radiata, genu of the corpus callosum, and splenium of the corpus callosum (Figure 1). In the anterior corona radiata, we placed a region of interest in the area de fi ned by the medial half of the line drawn from the most lateral point of the anterior horn of the lateral ventricle to the most lateral point of the white matter horizontally and the middle third of the line drawn from the most anterior point of the anterior horn of the lateral ventricle to the middle point of the lateral ventricle vertically. In the posterior corona radiata, we placed a region of interest in an area de fi ned by the medial half of the line drawn from the most lateral point of the posterior horn of the lateral ventricle to the most lateral point of the white matter horizontally and the middle third of the line drawn from the middle point of the lateral ventricle to the most posterior point of the posterior horn of the lateral ventricle. In the corpus callosum, we placed a region of interest on the middle third of the genu of the corpus callosum, the splenium of the corpus callosum (Yeo et al., 2011; Jang et al., 2013). We measured fractional anisotropy and apparent diffusion coef fi cient in each region of interest.

    Measurement of ventricular width

    We used the ventricular body index, anterior horn index, and posterior horn index, which could estimate the effects of hydrocephalus on the lateral ventricle (Jang et al., 2013) (Figure 1). The relative width ratios for the ventricular body index, anterior horn index, and posterior horn index were de fi ned as follows: the ratio between the maximum distance of the ventricular walls at the body of the ventricle level and the maximum width of the brain on the axial image, the ratio between the maximum widths of tips on both anterior horns and maximum width of the brain at the same level on the coronal image, and the ratio between the maximum widths of tips on both posterior horns and the maximum width of the brain at the same level on the coronal image were de fi ned as the ventricular body index, anterior horn index, and posterior horn index, respectively.

    Statistical analysis

    Spearman’s correlation test was used for determination of correlation between age, diffusion tensor imaging parameters of each region of interest, and each index of ventricular width. Bonferroni correction was used to correct for multiple comparisons of correlation test. Software (version 15.0; SPSS, Chicago, IL, USA) was used in performance of statistical analyses, and statistical signi fi cance was set at P < 0.001.

    Results

    Correlation between ventricular parameters and age

    Regarding the ventricular parameters, we found signi fi cant correlation with age in all indexes for ventricular width. In particular, ventricular body index (P < 0.001) and anterior horn index (P < 0.001) showed strong positive correlation with age. In addition, the posterior horn index showed moderate positive correlation with age (P < 0.001; Table 1 and Figure 2).

    Correlation between diffusion tensor imaging parameters and age

    In the anterior corona radiata, we observed weak to moderate positive correlation between fractional anisotropy and age (P < 0.001), and apparent diffusion coef fi cient and age (P < 0.001). In addition, posterior corona radiata also showed moderate positive correlation between fractional anisotropy and age (P < 0.001). In contrast, apparent diffusion coef fi cient value of posterior corona radiata and diffusion tensor imaging parameters of the genu and splenium of the corpus callosum did not show signi fi cant correlation with age (P > 0.001) (Table 2; Figure 3).

    Correlation between diffusion tensor imaging parameters in white matter and ventricular parameters

    In terms of correlation between ventricular parameters and regions ofFA: Fractional anistrophy; ADC: apparent diffusion coef fi cient; CR: corona radiate; CC: corpus callosum.aP < 0.001.white matter, we found mild to moderate positive correlation between ventricular parameters and fractional anisotropy value of anterior corona radiata (P < 0.001), and fractional anisotropy value of posterior corona radiata (P < 0.001). In addition, apparent diffusion coefficient value of anterior corona radiata also showed mild to moderate positive correlation with each ventricular parameter (P < 0.001). On the other hand, apparent diffusion coefficient value of posterior corona radiata, and fractional anisotropy and apparent diffusion coef fi cient value of the genu and splenium of the corpus callosum did not show signi fi cant correlation with ventricular parameters (P > 0.001; Table 3).

    Table 2 Correlation between diffusion tensor imaging parameters in each region of white matter and age

    Table 3 Correlation between diffusion tensor imaging parameters in each region of white matter and ventricular index

    Table 1 Correlation between each ventricular index and age

    Discussion

    In the current study, we investigated the effects of ventricular enlargement in normal aging on periventricular white matter. We found that the fractional anisotropy and apparent diffusion coef fi cient values of the anterior corona radiata and posterior corona radiata showed positive correlation with age and its related ventricular enlargement. Fractional anisotropy value, which is the most widely used diffusion tensor imaging parameter, represents the degree of directionality of the microstructures (e.g., axons, myelin, microtubules), and the apparent diffusion coef fi cient value indicates the magnitude of water diffusion (Mori et al., 1999; Assaf and Pasternak, 2008; Neil, 2008). Therefore, mechanical pressure by ventricular enlargement appeared to cause higher packing of fi bers and increased fiber density per unit area, resulting in increased fractional anisotropy and apparent diffusion coef fi cient values of anterior and posterior corona radiata. According to our result, ventricular enlargement with normal aging appears to have the greatest effect on anterior and posterior periventricular white matter. Consequently, this characteristic might be vulnerable to pressure by ventricular enlargement.

    Decline of cognitive function, urinary control, sensory-motor function, and gait ability are well-known as aging related changes of normal elderly (Bradley et al., 1991; Bowen and Atwood, 2004; Hedden and Gabrieli, 2004; Grady, 2012; Moran et al., 2012). Many neural tracts from the frontal lobe, such as thalamocortical tracts between the thalamus and the prefrontal cortex, corticoreticulospinal tract, and the neural tract for urinary control are known to pass through the anterior corona radiata (Newton et al., 2006; Klein et al., 2010; Tadic et al., 2010; Yeo et al., 2012). By contrast, somatosensory and motor neural tracts, such as the corticospinal tract, spinothalamic tract, and medial lemniscus are known to ascend or descend through the posterior corona radiata (Jang, 2009; Han et al., 2010; Hong et al., 2010). In the current study, although the discrimination of neural tract on the anterior and posterior corona radiata was not available using region of interest based measure technique, we think that our results, which showed compression of the anterior corona radiata by ventricular enlargement, might be related to the above clinical manifestations of frontal lobe function. In addition, decline of fi ne motor function and sensory perception might be related to compression in the posterior corona radiata by ventricular enlargement. These results appear to be compatible with the results of the previous studies, which showed changing of white matter with cognitive impairments in aging (Vernooij et al., 2009; Ziegler et al., 2010; Bennett et al., 2011; Borghesani et al., 2013). By contrast, genu and splenium of the corpus callosum, which facilitate inter-hemispheric communication, showed correlation with some cognitive and sensory function, respectively, however, were not responsible for these functions (Bogousslavsky, 2005; Jea et al., 2008; Jang et al., 2012). In addition, the corpus callosum is a colossal commissure between cerebral hemispheres, consequently (Bogousslavsky, 2005; Jea et al., 2008), genu and splenium of the corpus callosum might be less affected by age-related ventricular enlargement.

    Several previous studies have reported ventricular enlargement with Alzheimer’s disease and hydrocephalus due to stroke or other brain injury (Uylings and de Brabander, 2002; Yeo et al., 2011; Hattori et al., 2012; Jang et al., 2013). On the other hand, even without exact estimation of change of periventricular white matter, only a few studies have demonstrated ventricular enlargement with normal aging (Preul et al., 2006; Apostolova et al., 2012). Using MRI and 3D multi slice modi fi ed driven equilibrium Fourier transform, Preul et al. (2006) evaluated corticalthickness and ventricular width throughout normal aging. They demonstrated that an increase in ventricular width occurs in normal aging, accompanied by a decrease in cortical thickness. Recently, Apostolova et al. (2012) reported an association of normal aging with hippocampal atrophy and ventricular enlargement. However, they suggested that progression of ventricular enlargement over time was relatively slow compared to patients with Alzheimer’s disease.

    Figure 1 Measurement of ventricular width and regions of interest in the four regions of periventricular white matter in normal subjects.

    Figure 3 Scatter diagram for correlation test between diffusion tensor imaging parameters and age.

    Figure 2 Scatter diagram for correlation test between ventricular index and age.

    In conclusion, we observed ventricular enlargement with normal aging and its related changes in periventricular white matter. We believe that our results are likely to be useful for diagnosis and management of normal aging. However, some limitations to this study should be considered in the interpretation of the results. First, current region of interest approach technique is operator-dependent and it is dif fi cult to full re fl ect the underlying neural fi ber. Therefore, region of interest approach may underestimate the fi ber tracts. Second, we could not evaluate declination of cognitive functions and motor functions concerned with aging. Additional studies are needed to report clinical correlation between changes of periventricular white matter and normal aging.

    Yong Hyun Kwon1, Sung Ho Jang2, Sang Seok Yeo3

    1 Department of Physical Therapy, Yeungnam University College, Namgu, Daegu, Republic of Korea

    2 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namgu, Daegu, Republic of Korea

    3 Department of Physical Therapy, College of Health Sciences, Dankook University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea

    Accepted: 2014-02-21

    Acknowledgments: This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, No. 2012R1A1B4003477. Author contributions: Jang SH interpreted clinical, radiologic data and supported technical and material assistance. Kwon YH analyzed the data, performed statistical anlaysis, interpreted the data and wrote the manuscript. Yeo SS designed the study, performed data collection, interpreted the data, wrote the manuscript, provided critical revision of the manuscript for intellectual content and supervised the article. All authors approved the fi nal version of the paper.

    Con fl icts of interest: None declared.

    Kwon YH, Jang SH, Yeo SS. Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a diffusion tensor imaging study. Neural Regen Res. 2014;9(9):986-989.

    Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou YY, Toga AW, Thompson PM (2012) Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease. Alzheimer Dis Assoc Disord 26:17-27.

    Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51-61.

    Bennett IJ, Madden DJ, Vaidya CJ, Howard JH Jr, Howard DV (2011) White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol Aging 32:2317.e1-12.

    Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson CV, Burnett BM, Parker N, Kurth S, Horn SD (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. AJNR Am J Neuroradiol 16:241-251.

    Bogousslavsky J (2005) Stroke syndromes: relevance for therapy. J Neurol Sci 238:S35-35.

    Borghesani PR, Madhyastha TM, Aylward EH, Reiter MA, Swarny BR, Schaie KW, Willis SL (2013) The association between higher order abilities, processing speed, and age are variably mediated by white matter integrity during typical aging. Neuropsychologia 51:1435-1444.

    Bowen RL, Atwood CS (2004) Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50:265-290.

    Bradley WG, Daroff RB, Fenichel GM, Marsden CD (1991) Neurology in Clinical Practice. Stoneham, MA: Butterworth-Heinemann.

    Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491-505.

    Han BS, Hong JH, Hong C, Yeo SS, Lee D, Cho HK, Jang SH (2010) Location of the corticospinal tract at the corona radiata in human brain. Brain Res 1326:75-80.

    Hattori T, Ito K, Aoki S, Yuasa T, Sato R, Ishikawa M, Sawaura H, Hori M, Mizusawa H (2012) White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. AJNR Am J Neuroradiol 33:97-103.

    Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87-96.

    Hong JH, Son SM, Jang SH (2010) Identi fi cation of spinothalamic tract and its related thalamocortical fi bers in human brain. Neurosci Lett 468:102-105.

    Jang SH (2009) A review of corticospinal tract location at corona radiata and posterior limb of the internal capsule in human brain. Neurorehabilitation 24:279-283.

    Jang SH, Lee J, Yeo SS, Chang MC (2013) Callosal disconnection syndrome after corpus callosum infarct: a diffusion tensor tractography study. J Stroke Cerebrovasc Dis 22:e240-244.

    Jang SH, Choi BY, Chang CH, Jung YJ, Byun WM, Kim SH, Yeo SS (2013) The effects of hydrocephalus on the periventricular white matter in intracerebral hemorrhage: a diffuser tensor imaging study. Int J Neurosci 123:420-424.

    Jea A, Vachhrajani S, Widjaja E, Nilsson D, Raybaud C, Shroff M, Rutka JT (2008) Corpus callosotomy in children and the disconnection syndromes: a review. Childs Nerv Syst 24:685-692.

    Klein JC, Rushworth MF, Behrens TE, Mackay CE, de Crespigny AJ, D’Arceuil H, Johansen-Berg H (2010) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 51:555-564.

    Moran JM, Jolly E, Mitchell JP (2012) Social-cognitive de fi cits in normal aging. J Neurosci 32:5553-5561.

    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265-269.

    Neil JJ (2008) Diffusion imaging concepts for clinicians. J Magn Reson Imaging 27:1-7.

    Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fi bres from multiple motor areas--relevance to stroke recovery. Brain 129:1844-1858.

    Preul C, Hund-Georgiadis M, Forstmann BU, Lohmann G (2006) Characterization of cortical thickness and ventricular width in normal aging: a morphometric study at 3 Tesla. J Magn Reson Imaging 24:513-519.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.

    Tadic SD, Grif fi ths D, Murrin A, Schaefer W, Aizenstein HJ, Resnick NM (2010) Brain activity during bladder filling is related to white matter structural changes in older women with urinary incontinence. Neuroimage 51:1294-1302.

    Tang Y, Nyengaard JR, Pakkenberg B, Gundersen HJ (1997) Age-induced white matter changes in the human brain: a stereological investigation. Neurobiol Aging 18:609-615.

    Uylings HB, de Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49:268-276.

    Vernooij MW, Ikram MA, Vrooman HA, Wielopolski PA, Krestin GP, Hofman A, Niessen WJ, Van der Lugt A, Breteler MM (2009) White matter microstructural integrity and cognitive function in a general elderly population. Arch Gen Psychiatry 66:545-553.

    Yeo SS, Chang MC, Kwon YH, Jung YJ, Jang SH (2012) Corticoreticular pathway in the human brain: diffusion tensor tractography study. Neurosci Lett 508:9-12.

    Yeo SS, Choi BY, Chang CH, Jung YJ, Ahn SH, Son SM, Byun WM, Jang SH (2011) Periventricular white matter injury by primary intraventricular hemorrhage: a diffusion tensor imaging study. Eur Neurol 66:235-241.

    Ziegler DA, Piguet O, Salat DH, Prince K, Connally E, Corkin S (2010) Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol Aging 31:1912-1926.

    Copyedited by Wang J, Li CH, Song LP, Zhao M

    Sang Seok Yeo, Ph.D., Department of Physical Therapy, College of Health Sciences, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea, yeopt@dankook.ac.kr.

    10.4103/1673-5374.133152 http://www.nrronline.org/

    超碰97精品在线观看| av女优亚洲男人天堂| 午夜精品在线福利| 国产黄片视频在线免费观看| 国产精品女同一区二区软件| 久久久久久久久久黄片| 91av网一区二区| 日韩精品青青久久久久久| 亚洲精品久久久久久婷婷小说 | 日韩国内少妇激情av| 国产欧美日韩精品一区二区| 精品久久久久久久人妻蜜臀av| 中文字幕久久专区| 91狼人影院| 欧美高清成人免费视频www| 91精品一卡2卡3卡4卡| 黄色日韩在线| 国产极品天堂在线| 五月玫瑰六月丁香| 欧美一区二区国产精品久久精品| 成人午夜高清在线视频| 美女内射精品一级片tv| 久久精品91蜜桃| 国产精品一区二区三区四区免费观看| 国产精品嫩草影院av在线观看| 啦啦啦啦在线视频资源| 亚洲美女搞黄在线观看| 99久久精品一区二区三区| 国产伦理片在线播放av一区| 91精品一卡2卡3卡4卡| 亚洲经典国产精华液单| 91午夜精品亚洲一区二区三区| 亚洲激情五月婷婷啪啪| 久久99精品国语久久久| 精品久久久久久久久亚洲| 美女国产视频在线观看| 成人一区二区视频在线观看| 久久久久久久国产电影| 亚洲美女搞黄在线观看| 在线播放国产精品三级| 日韩一区二区视频免费看| 成人欧美大片| 午夜精品一区二区三区免费看| 久久久欧美国产精品| 国产精品国产高清国产av| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美精品v在线| 亚洲精品乱码久久久久久按摩| 日本wwww免费看| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 日韩国内少妇激情av| 国产精品福利在线免费观看| 亚洲av一区综合| 国产精华一区二区三区| 午夜精品一区二区三区免费看| 大话2 男鬼变身卡| 亚洲自偷自拍三级| 精品欧美国产一区二区三| 在线播放国产精品三级| 日本免费在线观看一区| 亚洲18禁久久av| 日韩亚洲欧美综合| 真实男女啪啪啪动态图| 日本黄大片高清| 长腿黑丝高跟| 日韩欧美精品免费久久| 男女那种视频在线观看| av.在线天堂| 日韩大片免费观看网站 | 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 婷婷六月久久综合丁香| 性插视频无遮挡在线免费观看| 直男gayav资源| 国产毛片a区久久久久| eeuss影院久久| 欧美激情在线99| 九九爱精品视频在线观看| av天堂中文字幕网| 精品午夜福利在线看| 亚洲国产色片| 18+在线观看网站| 日本免费一区二区三区高清不卡| 一级毛片电影观看 | 欧美日韩综合久久久久久| 日日撸夜夜添| 国产精品一区www在线观看| 成人午夜精彩视频在线观看| 男人舔奶头视频| 中国国产av一级| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 国产午夜精品久久久久久一区二区三区| 日韩成人av中文字幕在线观看| 麻豆精品久久久久久蜜桃| 尾随美女入室| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 美女黄网站色视频| 日韩欧美三级三区| 午夜福利在线观看免费完整高清在| 日韩高清综合在线| 一级毛片久久久久久久久女| 村上凉子中文字幕在线| 日韩av在线免费看完整版不卡| 国产不卡一卡二| 久久人人爽人人爽人人片va| 综合色丁香网| 毛片女人毛片| 美女高潮的动态| 一级爰片在线观看| 少妇熟女aⅴ在线视频| 夜夜看夜夜爽夜夜摸| 亚洲精品日韩在线中文字幕| 少妇被粗大猛烈的视频| 床上黄色一级片| 美女内射精品一级片tv| 久热久热在线精品观看| 日韩视频在线欧美| 色网站视频免费| 国产真实伦视频高清在线观看| 黄色一级大片看看| 久久欧美精品欧美久久欧美| 免费观看性生交大片5| 在线免费观看不下载黄p国产| 欧美+日韩+精品| 村上凉子中文字幕在线| 18禁在线无遮挡免费观看视频| 国产综合懂色| 亚洲精品日韩在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久久久久久| av.在线天堂| 成年女人永久免费观看视频| 色视频www国产| 国内精品一区二区在线观看| 美女黄网站色视频| 乱系列少妇在线播放| 伦精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 草草在线视频免费看| 日本欧美国产在线视频| 日本黄色片子视频| 欧美日韩综合久久久久久| 床上黄色一级片| 51国产日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看| 爱豆传媒免费全集在线观看| 国产精品一区www在线观看| 高清视频免费观看一区二区 | 最近最新中文字幕免费大全7| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 日本与韩国留学比较| 一个人观看的视频www高清免费观看| 日韩欧美精品免费久久| 欧美97在线视频| 久久精品人妻少妇| 免费搜索国产男女视频| 秋霞伦理黄片| 日韩精品有码人妻一区| 老司机影院成人| 免费观看精品视频网站| 久久国产乱子免费精品| 亚洲欧美日韩高清专用| 黄色配什么色好看| 在线免费观看的www视频| 在线免费观看不下载黄p国产| 黄色配什么色好看| 色哟哟·www| 亚洲欧美精品综合久久99| 国产熟女欧美一区二区| 免费观看人在逋| 老女人水多毛片| 男人舔奶头视频| 91精品伊人久久大香线蕉| 联通29元200g的流量卡| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 成人鲁丝片一二三区免费| 亚洲成色77777| 99在线人妻在线中文字幕| 久久久久网色| 国产av一区在线观看免费| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 欧美高清性xxxxhd video| 99热精品在线国产| 久久久久久久久久成人| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 亚洲va在线va天堂va国产| 久久精品国产亚洲av天美| 国产精品乱码一区二三区的特点| 2022亚洲国产成人精品| 国产亚洲午夜精品一区二区久久 | 黄片无遮挡物在线观看| 中文字幕熟女人妻在线| 秋霞在线观看毛片| 看片在线看免费视频| 91久久精品电影网| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 国产色爽女视频免费观看| 黄色日韩在线| 亚洲伊人久久精品综合 | 内地一区二区视频在线| 日本熟妇午夜| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区三区| 精品无人区乱码1区二区| 亚洲人成网站高清观看| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱| 久久久久网色| 国内精品一区二区在线观看| 亚洲内射少妇av| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 大香蕉97超碰在线| 久久久久久久久久久免费av| 欧美一区二区亚洲| 真实男女啪啪啪动态图| 男人舔女人下体高潮全视频| 免费黄色在线免费观看| 免费观看在线日韩| av卡一久久| 观看免费一级毛片| 91av网一区二区| 欧美色视频一区免费| 成年版毛片免费区| 噜噜噜噜噜久久久久久91| 又爽又黄a免费视频| 亚洲精品,欧美精品| 性色avwww在线观看| 麻豆成人av视频| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品| 国产av在哪里看| 大香蕉97超碰在线| 人妻制服诱惑在线中文字幕| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| eeuss影院久久| 狂野欧美白嫩少妇大欣赏| 一级黄色大片毛片| 成人午夜高清在线视频| av在线亚洲专区| 国产高清视频在线观看网站| 在线播放国产精品三级| 26uuu在线亚洲综合色| 午夜激情福利司机影院| 1000部很黄的大片| 午夜老司机福利剧场| 伦精品一区二区三区| 国产av不卡久久| 久久久久久久久久久丰满| 亚洲精品亚洲一区二区| 天堂√8在线中文| 一本一本综合久久| 久久鲁丝午夜福利片| 白带黄色成豆腐渣| 亚洲不卡免费看| 色5月婷婷丁香| 国产高清不卡午夜福利| 少妇人妻一区二区三区视频| 亚洲av电影在线观看一区二区三区 | 亚洲天堂国产精品一区在线| 在线观看av片永久免费下载| 亚洲av熟女| 国产成人精品一,二区| 纵有疾风起免费观看全集完整版 | 国产极品天堂在线| 成人漫画全彩无遮挡| 中文字幕制服av| 亚洲成av人片在线播放无| 日本黄大片高清| 五月玫瑰六月丁香| 99久久精品国产国产毛片| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 69人妻影院| 老女人水多毛片| 国产精品综合久久久久久久免费| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 三级男女做爰猛烈吃奶摸视频| 长腿黑丝高跟| 中文字幕亚洲精品专区| 我的老师免费观看完整版| 男人舔奶头视频| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 国产精品一区二区三区四区久久| 久久精品国产亚洲网站| 少妇熟女aⅴ在线视频| 黑人高潮一二区| 非洲黑人性xxxx精品又粗又长| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久av不卡| 女的被弄到高潮叫床怎么办| 熟女电影av网| 国产不卡一卡二| 青青草视频在线视频观看| 色播亚洲综合网| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 日本猛色少妇xxxxx猛交久久| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 少妇熟女aⅴ在线视频| 免费电影在线观看免费观看| 国产免费视频播放在线视频 | 级片在线观看| 久久精品91蜜桃| 亚洲自偷自拍三级| 毛片一级片免费看久久久久| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 精品酒店卫生间| 亚洲av免费在线观看| 亚洲人与动物交配视频| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 精品久久久久久电影网 | 亚洲在久久综合| 日韩中字成人| 亚洲国产最新在线播放| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 日韩视频在线欧美| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 三级经典国产精品| 亚洲内射少妇av| av黄色大香蕉| 国产av在哪里看| 禁无遮挡网站| 波野结衣二区三区在线| 嫩草影院新地址| 国产一区有黄有色的免费视频 | 三级男女做爰猛烈吃奶摸视频| 亚洲一级一片aⅴ在线观看| 毛片女人毛片| 内射极品少妇av片p| 亚洲av.av天堂| 人妻系列 视频| 国产白丝娇喘喷水9色精品| 少妇的逼好多水| 亚洲不卡免费看| 中文天堂在线官网| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品 | 国内精品一区二区在线观看| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产高清在线一区二区三| 一级二级三级毛片免费看| 国产一区有黄有色的免费视频 | 欧美最新免费一区二区三区| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| 国产三级在线视频| 在线免费十八禁| 欧美日本视频| 国产成人福利小说| 欧美极品一区二区三区四区| 在线天堂最新版资源| av视频在线观看入口| 观看免费一级毛片| 2021天堂中文幕一二区在线观| 性色avwww在线观看| 亚洲无线观看免费| 久久久成人免费电影| 久久久国产成人精品二区| 成人毛片60女人毛片免费| 91久久精品国产一区二区成人| 99久久精品一区二区三区| 七月丁香在线播放| 国产麻豆成人av免费视频| 黄色日韩在线| 淫秽高清视频在线观看| 国产乱人偷精品视频| 久久久午夜欧美精品| 美女cb高潮喷水在线观看| www.av在线官网国产| 国产一区二区在线av高清观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 欧美激情久久久久久爽电影| 草草在线视频免费看| 青春草国产在线视频| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| eeuss影院久久| 国产黄色视频一区二区在线观看 | 中国国产av一级| 日韩视频在线欧美| 久久这里只有精品中国| 久久草成人影院| 久久99蜜桃精品久久| 99热6这里只有精品| 日韩精品青青久久久久久| 三级毛片av免费| 日本免费一区二区三区高清不卡| 亚洲四区av| 国产成人freesex在线| 床上黄色一级片| 国产色爽女视频免费观看| 国产私拍福利视频在线观看| 中文字幕免费在线视频6| 汤姆久久久久久久影院中文字幕 | 国产精品日韩av在线免费观看| 高清在线视频一区二区三区 | 午夜福利在线观看吧| 亚洲欧美日韩东京热| 久久久久久国产a免费观看| 国产在线一区二区三区精 | 国产亚洲av嫩草精品影院| 国产精品蜜桃在线观看| 波多野结衣高清无吗| 一级毛片我不卡| 伊人久久精品亚洲午夜| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 婷婷色麻豆天堂久久 | 波野结衣二区三区在线| av在线播放精品| 老司机影院毛片| 欧美色视频一区免费| 麻豆久久精品国产亚洲av| 毛片女人毛片| 日本免费在线观看一区| 一区二区三区四区激情视频| 成人欧美大片| 国产一区二区在线观看日韩| 又爽又黄无遮挡网站| 一区二区三区高清视频在线| 亚洲va在线va天堂va国产| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 午夜亚洲福利在线播放| 成人综合一区亚洲| 丰满人妻一区二区三区视频av| 亚洲国产精品久久男人天堂| 久久精品夜夜夜夜夜久久蜜豆| 热99re8久久精品国产| 国产极品精品免费视频能看的| 日韩欧美精品免费久久| 大香蕉久久网| 一级二级三级毛片免费看| 在线播放无遮挡| 亚洲av电影在线观看一区二区三区 | 免费观看性生交大片5| 中文字幕制服av| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 免费观看性生交大片5| 91狼人影院| 中国国产av一级| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩| 欧美成人免费av一区二区三区| 色综合亚洲欧美另类图片| 老女人水多毛片| 亚洲精品国产成人久久av| 国产免费男女视频| av在线天堂中文字幕| 秋霞伦理黄片| 高清av免费在线| 99久久成人亚洲精品观看| 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| 精品国产三级普通话版| 亚洲图色成人| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 亚洲熟妇中文字幕五十中出| av在线老鸭窝| 最近最新中文字幕免费大全7| 老女人水多毛片| 国产亚洲91精品色在线| 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 91精品国产九色| av播播在线观看一区| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 自拍偷自拍亚洲精品老妇| 国产真实乱freesex| 老司机影院毛片| 国产精华一区二区三区| ponron亚洲| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 又爽又黄无遮挡网站| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 免费电影在线观看免费观看| 亚洲在线自拍视频| av免费在线看不卡| 成人美女网站在线观看视频| 欧美一区二区国产精品久久精品| 99热精品在线国产| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲欧美日韩东京热| 国产黄片视频在线免费观看| 国产成人freesex在线| 欧美zozozo另类| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 黄色日韩在线| 成人无遮挡网站| 大话2 男鬼变身卡| 中文字幕精品亚洲无线码一区| 亚洲自拍偷在线| 久久草成人影院| 国产午夜精品久久久久久一区二区三区| 久久草成人影院| 久久久久精品久久久久真实原创| 亚洲天堂国产精品一区在线| 有码 亚洲区| kizo精华| 国产精品精品国产色婷婷| 九草在线视频观看| 一本久久精品| 日韩av在线免费看完整版不卡| 国产单亲对白刺激| 亚洲欧洲国产日韩| 男女那种视频在线观看| 成年女人永久免费观看视频| 国产伦在线观看视频一区| 性插视频无遮挡在线免费观看| 麻豆久久精品国产亚洲av| 国产亚洲一区二区精品| 国产不卡一卡二| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 人妻夜夜爽99麻豆av| 99热全是精品| 亚洲精品乱久久久久久| 免费看光身美女| 乱系列少妇在线播放| 精品一区二区免费观看| 伦精品一区二区三区| 精品一区二区三区视频在线| 日本wwww免费看| 国产伦理片在线播放av一区| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 欧美日韩国产亚洲二区| 亚洲av免费高清在线观看| 最新中文字幕久久久久| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 亚洲成人中文字幕在线播放| 亚洲丝袜综合中文字幕| 国模一区二区三区四区视频| 亚洲国产精品sss在线观看| 一级毛片aaaaaa免费看小| 一区二区三区免费毛片| 自拍偷自拍亚洲精品老妇| 亚洲三级黄色毛片| 国产精品久久视频播放| 2021天堂中文幕一二区在线观| 大又大粗又爽又黄少妇毛片口| 亚洲五月天丁香| 2022亚洲国产成人精品| 精品久久久噜噜| 六月丁香七月| 91aial.com中文字幕在线观看| 精品久久久噜噜| 美女内射精品一级片tv| 日韩欧美精品v在线| 国产伦精品一区二区三区四那| av卡一久久| 2021天堂中文幕一二区在线观| 精品国内亚洲2022精品成人| 久久午夜福利片| 免费观看a级毛片全部|