• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXPONENTIAL PROPERTY OF SOLUTIONS BOUNDED FROM BELOW TO DEGENERATE EQUATIONS IN UNBOUNDED DOMAINS*

    2022-03-12 10:22:10LidanWANG王麗丹

    Lidan WANG (王麗丹)

    School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China E-mail:wanglidan@sjtu.edu.cn

    Abstract This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum principles,the global boundary H?lder estimates and the boundary Harnack inequalities of the equations,we show that all solutions bounded from below are linear combinations of two special solutions (exponential growth at one end and exponential decay at the other) with a bounded solution to the degenerate equations.

    Key words degenerate elliptic equations;unbounded domains;boundary Harnack inequalities

    1 Introduction

    In this paper,we study the behavior of solutions bounded from below to degenerate elliptic equations with mixed boundary conditions in unbounded domains.A series of papers,see for example[4-6,9,12],have established a systematic theory for degenerate elliptic operators.In addition,degenerate elliptic equations with mixed boundary conditions also have been studied by many authors;we refer to[2,8,14,17].The references above provide us with useful tools for studying degenerate equations further.The main motivations for studying degenerate elliptic equations are twofold.It is well known that Caffarelli and Silvestre[3]obtained an extension theorem through a Dirichlet-Neumann map.The Caffarelli-Silvestre extension,because of its local nature,is very often used to prove qualitative properties of solutions to problems involving the fractional Laplacian.With the same purpose,we plan to study the behavior of solutions to extension formulations for the fractional Laplacian established by Caffarelli and Silvestre[3],and hope to obtain the corresponding behavior of solutions to a fractional Laplacian.The other motivation comes from the fact that we previously considered the linear uniformly elliptic equations Lu=Di(aij(x) Dju)+bi(x) Diu+c (x) u=f or Lu=aij(x) Diju+bi(x) Diu+cu=f in unbounded cylinders in[15],followed by the fully nonlinear uniformly elliptic equations F (D2u (x))=0 in unbounded cylinders in[16].In the first paper,we established that all solutions bounded from below are linear combinations of two special solutions with a bounded solution to the term f,and in the later one,we showed results similar to but not exactly like the results in[1]under some conditions.Based on these,it is natural to attempt to develop a degenerate elliptic counterpart of the structure of solutions to uniformly elliptic equations.Therefore,our main objective here is to obtain analogous results for the degenerate elliptic equations.

    This paper will follow the lines of[1]and[15].As in[15],if we obtain three fundamental tools-the weak maximum principle in bounded domains and unbounded domains,the boundary H?lder estimates and the boundary Harnack inequalities,of the degenerate elliptic equations with mixed boundary values-then we will get a similar structure of solutions bounded from above.Therefore,we will address these three problems separately.

    More precisely,we will consider the following problem,motivated by the realization of fractional elliptic operators,as Dirichlet-to-Neumann maps of degenerate elliptic equations:

    We consider these in an unbounded domain C×(0,R0)?Rn+1,where C=D×R?Rnis an unbounded cylinder,D is a bounded Lipschitz domain in Rn-1(n≥2) and R0∈R is a positive constant.

    We would like to say that although the degenerate elliptic equations we studied arise from the Caffarelli-Silvestre extension[3]of the Dirichlet problem for the fractional Laplacian,the results obtained in this paper do not hold in the fractional setting.We cannot simply make the trace u (x)=U (x,0) and conclude that the results of problem (1.1) hold for the following fractional order linear equations:

    Actually,it is easy to check that the problem (1.1) and the fractional order linear equations (1.2) are not equivalent.Hence,we cannot analyze problem (1.2) through problem (1.1).We also would like to say that we will study problem (1.2) further in the later paper.

    We always assume that the coefficient and inhomogeneous term satisfy

    Before we state our main results,we give some notations for the reader’s convenience.Let X=(x,t)∈Rn×R,where x=(x′,y)=(x1,···,xn-1,y)∈Rn-1×R,n≥2.For E?R,CE:=D×E={(x′,y)∈Rn|x′∈D,y∈E},?bCE:=?D×E={(x′,y)∈Rn|x′∈?D,y∈E}.For any y∈R,write Cy:=C{y},:=C(y,+∞)and:=C(-∞,y).For simplicity,we denote that C+:=,C-:=.

    In addition,we use~S to denote the set of solutions bounded from below to problem (1.1).If b=0,we denote S as the set of positive solutions to problem (1.1)(we will see that=S with b=0).

    Theorem 1.1Suppose that condition (1.3) holds.Then the boundary problem

    has a unique bounded solution U in H (t1-2σ,C×[0,R0])∩C (C×(0,R0)).

    The following theorem is about the exponential decay of solutions bounded from above in C+×[0,R0]:

    Theorem 1.2Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Following from Theorem 1.2,we obtain a corollary in C-×[0,R0]:

    Corollary 1.3Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Next,we pursue further the structure of solutions to (1.1):

    Theorem 1.4For the problem (1.1),if b=0,then the positive solution sets S+and Sare well defined.Furthermore,S is a linear combination of S+and S-,that is,for any U∈S+and V∈S-,we have that

    S=S++S-={pU+qV|p,q≥0,p+q>0}.

    Theorem 1.5For the problem (1.1),the set of solutions bounded from below can be presented by,for any U∈S+,V∈S-,

    where S0={U0}is the unique bounded solution to (1.4).

    Our paper is organized as follows.In Section 2,we collect some auxiliary results.In Section 3,we prove the weak the maximum principle in bounded domains.In Section 4,we mainly study the global boundary H?lder estimate in bounded domains.In Section 5,we prove the weak maximum principle in unbounded domains.In Section 6,we prove the existence and uniqueness of a bounded solution and the exponential decay of bounded solutions.In the last Section,we analyze the structure theorem with an inhomogeneous term.

    2 Preliminary Results

    In this section,we will collect some basic results which will be used throughout the rest of the paper.First,we present some important inequalities with general A2weights.Then we introduce weighted Sobolev spaces.

    Denote that QR=BR×(0,R)?Rn×R+,?′QR=BR,?′′QR=?QR?′QR,where BRis a ball centered at the origin with the radius R.

    Recalling the definition of the Muckenhoupt A2class in Rn+1,that is,if there exists a constant Cωsuch that,for any ball B?Rn+1,

    we say that ω(X) belongs to the class A2,where ω(X) is a nonnegative measurable function in Rn+1.

    Now we quote some inequalities related to A2weights;these results can be found in[14]or[6].

    Lemma 2.1(Weighted embedding inequality) Let f (X)∈and ω(X)∈A2.Then there exist positive constants C and δ depending only on n and Cwsuch that,for all 1≤k≤+δ,

    where ω(QR)=.

    Lemma 2.2(Weighted Poincaré inequality) Let f (X)∈C1(QR) and ω(X)∈A2.Then there exist positive constants C and δ such that,for all 1≤k≤+δ,

    Lemma 2.3(Trace embedding inequality) Let f (X)∈and α∈(-1,1).Then there exists a positive constant δ depending only on α such that,for any ε>0,

    Next,we introduce weighted Sobolev spaces.Assume that σ∈(0,1) and that t∈R.According to the definition of A2,we see that|t|1-2σbelongs to the class A2.

    Suppose that D is an open domain in Rn+1,and denote L2(|t|1-2σ,D) as the Banach space of all measurable functions U,defined on D,which satisfies

    Now we can define

    with the norm

    Clearly,H (|t|1-2σ,D) is a Hilbert space and C∞(D) is dense in H (|t|1-2σ,D).Moreover,if D is a Lipschitz domain,then there exists a bounded linear extension operator from H (|t|1-2σ,D) to H (|t|1-2σ,Rn+1).

    Suppose that Ω is an open domain in Rn.Recall that Hσ(Ω) is the fractional Sobolev space defined as

    with the norm

    Then C∞(Ω) is dense in Hσ(Ω).What’s more,if Ω is a Lipschitz domain,then there exists a bounded linear extension operator from Hσ(Ω) to Hσ(Rn).If Ω=Rn,Hσ(Rn) can also be expressed by

    Hσ(Rn)={u∈L2(Rn):|ξ|σ(Fu)(ξ)∈L2(Rn)},

    where F denotes the Fourier transform operator.By a result in[11],it is known that the space Hσ(Rn) coincides with the trace on,that is,every U∈H (t1-2σ,) has a well-defined trace u=U (·,0)∈Hσ(Rn).

    The following results follow from results in[8]:

    Lemma 2.4Suppose that D=Ω×(0,R)?Rn×R+,?′D=Ω,?′′D=?D?′D,where Ω is a Lipschitz domain.Then

    (i) If U∈H (t1-2σ,D)∩C (D∪?′D),then u (x)=U (x,0)∈Hσ(Ω),and

    where C is a positive constant depending only on n,σ,R and Ω.Hence,every U∈H (t1-2σ,D) has a well-defined trace U (·,0)∈Hσ(Ω) on?′D.Furthermore,there exists a constant Cn,σdepending only on n and σ such that

    (ii) If u∈Hσ(Ω),then there exists U∈H (t1-2σ,D) such that the trace of U on Ω equals u and

    where C is a positive constant depending only on n,σ,R and Ω.

    3 Weak Maximum Principle in Bounded Domains

    In this section,we assume that D=Ω×(0,R*)?Rn×R+,?′D=Ω?Rn,?′′D=?D?′D,where D is a bounded domain in Rn+1.We will consider the maximum principle of the following boundary value problem:

    Set φ∈H (t1-2σ,D) and H0={U∈H (t1-2σ,D):(U-φ)|?′′D=0 in the trace sense}.

    Definition 3.1We say that U∈H0is a weak solution (supersolution,subsolution) of (3.1) in D.If,for every non-negative Φ∈,

    Lemma 3.2(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    then we have that U (x,t)≥0 in D.

    ProofSince U is a weak supersolution,we have,for any nonnegative Φ∈,that

    By a density argument,we can take U-as a test function.Therefore,we obtain

    By using U=U+-U-and U+U-=0,we have that

    Therefore,U-=0 in D,and consequently we have that U≥0 in D. □

    Theorem 3.3(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω and that φ(x,t)∈C (?′′D).If U (x,t)∈H (t1-2σ,D) is a solution of the problem

    then we have that

    where C depends only on n,σ and R*.

    ProofSet Φ=,B=‖b‖L∞(Ω).Since a (x)≤0 on?′D,obviously,we have that

    We construct an auxiliary function V (x,t)=Φ+(μ-) B for (x,t)∈,where μ=.By a straightforward calculation,we have that

    Therefore,

    By Lemma 3.2,we obtain that

    U (x,t)≤V (x,t),(x,t)∈D.

    This yields the desired result:

    Notice that the above weak maximum principle holds under the assumptions of a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If we reduce the integrability of a (x),b (x)∈L∞(Ω) to a (x)∈Lp(Ω),b (x)∈for p>,we have the following weak maximum principle:

    Theorem 3.4(Weak maximum principle) Suppose that a (x)∈Lp(Ω),b (x)∈and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    ProofLet L=,and assume furthermore that>L.For any K>L,choosing a test function Φ=(U-K)+with support in D∪?′D,by the definition of a weak subsolution,we have that

    It follows that

    Since a∈Lp(Ω) for some p>,by H?lder’s inequality,we have that

    By Lemma 2.4,there exists a constant C>0 depending only on n,σ such that

    By Lemma 2.3,there exist η,C>0 both depending on n and σ such that

    Substituting the above inequalities into (3.5),we obtain

    By using H?lder’s inequality and Lemma 2.4 again,we have that

    where A (K)={(x,t)∈D|U (x,t)>K}.Combining (3.4),(3.6) with (3.7),and taking,we have that

    For the second term on the right hand side in (3.8),we use the ε-Cauchy inequality to get that

    If there exists K0≥L such that

    then,for any K≥K0,we have,from (3.9),that

    By using Lemma 2.1 again,we have that

    Noting that Φ=(U-K)+,when H>K,we have that

    Combining this with (3.11),when H>K≥K0,we have that

    By Lemma 4.1 in[13],we obtain

    Next we estimate K0.We divide things into two steps to estimate K0.

    Step 1Since

    we can choose K0≥and.Thus (3.10) holds.In combination with (3.12),this gives that

    Step 2U has an upper bound from (3.13);the difficulty is to eliminate the second term of the right hand side in (3.13).Therefore,for any ε>0,we consider the function

    Noticing that Φ∈H (t1-σ,D) with compact support in D∪?′D,we put Φ into (3.3).For the left hand side of (3.3),we have that

    For the right hand side of (3.3),we have that

    Combined with (3.3),(3.14) and (3.15),this gives us that

    Therefore,by Lemma 2.1,we have that

    For any K>L,from (3.16),we have that

    Taking K0-L=(1-ξ)(M+ε+B0),where ξ>0 is small and to be determined later,we get that

    It is easy to see that there exists ξ>0 such that (3.10) holds.Therefore,from (3.12),we have that

    4 Global Boundary H?lder Estimates

    In this section,we will prove the global boundary H?lder estimate of solutions to (3.1).For this purpose,we assume further that Ω?Rnis a bounded Lipschitz domain and that Ω satisfies a uniform exterior cone condition.Let a,b∈Lp(Ω) for some p>,and let φ(x,t)∈.

    We denote that QR(x)=BR(x)×(0,R) for R<R*,where?′QR(x)=BR(x),?′′QR(x)=?QR(x)?′QR(x) and BR(x) is a ball centered at x∈Rnwith the radius R.What’s more,we denote that Q1(0)=Q1.

    Lemma 4.1Let U∈H0be a weak subsolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0 and q≥1,we have that

    where

    and C depends only on n,σ,p,q and.Here we have extended a and b to zero outside?′D=Ω.

    ProofWithout loss of generality,we can assume that x0is the origin and that R=1.The general case can be recovered by means of the coordinate transform (x,t)→.We consider q=2 first.

    as the nonnegative test function,where β>0 and η∈is a non-negative function.A direct calculation yields that

    Since U is a weak subsolution of (3.1) in D,it is easy to knowsatisfies

    where we have used the ε-Cauchy inequality and the fact thatand K≤.Hence,we have that

    Now we can rewrite (4.2) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),(4.3) can be rewritten as

    Due to a,b∈Lp(B1) for some p>,it follows from H?lder’s inequality that

    By Lemma 2.4,there exists a C>0 depending only on n and σ such that

    By Lemma 2.3,there exist ξ,C>0 both depending on n and σ such that

    By choosing ε small and substituting the above inequalities into (4.4),we obtain

    By Lemma 2.1 and (4.5),we have that

    By the definition of W,we obtain

    Set γ=β+1.Then γ>1,and we get that

    Therefore,we obtain

    By Moser’s iteration,we then obtain that

    This finishes the proof of q=2.This also holds for any q≥1,by standard arguments.Finally,through a simple coordinate transformation (x,t)→,we obtain the desired the result:

    Lemma 4.2Let U∈H0be a nonnegative weak supersolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0,0<q≤and 0<θ<?<1,we have that

    ProofWithout loss of generality,we assume that x0is the origin and that R=1.We set+K with K>0.Then.We also choose

    as the nonnegative test function,where β<0 and where η∈is a nonnegative function.A direct calculation yields that

    Since U is a weak supersolution of (3.1) in D,we know thatsatisfies

    Applying the above test function Φ to (4.6),we obtain that

    where we have used the ε-Cauchy inequality (0<ε≤1) and the fact thatand K≤.By choosing ε=min (1,),we obtain that

    where C (β) is bounded if|β|is bounded away from zero.Now we define W as

    Letting γ=β+1,we rewrite (4.7) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),we can rewrite the first inequality (when β-1) of (4.8) as

    The next proof is similar to that of Lemma 4.1.Hence,for any 0<r<τ≤1,we obtain that

    If we can show that there exists some q0>0 such that,for any 0<μ<1,

    where C depends on n,σ and μ,then the desired result will be obtained from (4.10) after finitely many iterations (Moser’s iteration).

    In order to establish (4.11),we turn to the second inequality of (4.8).It follows from the H?lder’s inequality and the Sobolev inequality that

    Therefore,by Lemma 2.2,the H?lder’s inequality and (4.13),we get that

    where Wx,rdenotes the weighted averageof W in Qr(x).Hence,we see that W∈BMO (t1-2σ,Q1).Then,by similar arguments to those of the John-Nirenberg type lemma in[10],we can show that≤C for any μ<1.Recalling the definition of W,we obtain the estimate (4.11),and consequently establish the desired result. □

    Lemma 4.3Let U∈H0be a weak solution of (3.1) in D.Then,for any x0∈?′D∩?′′D and any 0<R≤R0,there exist positive constants C and α depending on n,σ,p,R0andsuch that

    ProofLet x0∈?′D∩?′′D.By the uniform cone condition,we know that|Q2R(x0)D|≥ξ|Q2R(x0)|for some R1>0,some ξ>0,and any Q2R(x0) with R≤R1.

    We may assume,without loss of generality,that R≤.Writing

    Then M4-U is a nonnegative solution of the equations

    while U-m4is a nonnegative solution of the equations

    Since Ω satisfies a uniform exterior cone condition,we know that Q2R(x0)D contains a uniform exterior cone∩Q2R(x0).Then we can apply Lemma 4.2 to the functions M4-U and U-m4in Q4R(x0) by taking q=1,and obtain that

    By addition,we obtain that

    where γ=1-1/C<1 and where C depends on n,σ,p and R0.

    Then the desired result follows from Lemma 8.23 in[7]. □

    Theorem 4.4Let U∈H0be a weak solution of (3.1) in D.Then there exist constants κ,α0such that,for any x0∈?′D and R>0,we have that

    where C,α both depend on n,σ,p and α0.

    ProofIt is easy to obtain (4.15) from Lemma 4.3.From the H?lder continuity at the boundary?′′D,one can con firm Theorem 2.4.6(Dirichlet boundary problem) in[6].Combining the interior H?lder estimate of Proposition 2.6 in[8]with the boundary H?lder estimate (4.15) on?′D,we can obtain our result. □

    5 Weak Maximum Principle in Unbounded Domains

    In this section,we mainly prove the weak maximum principle in unbounded domains.That is,we will consider the domain C×[0,R0]?Rn+1,where C=D×R?Rnis an unbounded cylinder,and assume that C×[0,R0]satisfies a uniform exterior cone condition.We note that the diameter of C(k,k+2)only depends on n and diam (D),i.e.diam (C(k,k+2)) is independent of k and can be denoted by diam (C(k,k+2))=C (n,diam (D)).Therefore,the diameter of the domain C×[0,R0]satisfies diam (C×[0,R0])=C (n,R0,diam (D)).

    Lemma 5.1There are constants 0<ε0,δ<1 such that,if U (x,t) satisfies

    ProofLet U+(x,t) be the solution of

    By the weak maximum principle (Lemma 3.2 and Theorem 3.3),we have that

    where C depends only on n,σ,R0and diam (D).

    By Theorem 4.4,there exists C0depending only on n,σ and D such that

    We apply the weak Harnack inequality (Proposition 2.6) in[8]to (1+Cε0-U+) in×(0,R0),and we obtain,for some η>0,that

    Remark 5.2To prove Lemma 5.1,one key is the weak maximum principle.If we use the weak maximum principle (Theorem 3.4),the result in Lemma 5.1 also holds.

    Now we use Lemma 5.1 to prove the weak maximum principle in unbounded domains C×[0,R0].

    Theorem 5.3(Weak maximum principle) Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    Therefore,we only need to prove that

    Suppose that U (x,t)≤M since U is bounded from above.Also,let B=.In order to apply Lemma 5.1,we consider the function

    Then,by iteration,we have,for any k∈Z and t∈[0,R0],that

    By applying Theorem 3.3,for any y∈[k-1,k+1]and t∈[0,R0]with k∈Z,we have that

    Corollary 5.4Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C+×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    6 Boundary Harnack Inequality

    In this section,we mainly prove the boundary Harnack inequalities in bounded domains.The method of proofs mainly follows the idea of Lemma 4.9 in[2].The boundary Harnack inequality and a comparison theorem are crucial for the proof of our theorems.

    Let ψ(x′) be a Lipschitz function in Rn-1(n≥2) with a Lipschitz constant,such that

    For r>0,denote

    Fix R0≥1,Qr×(-R0,R0)?Rn×R and Qr×(0,R0)?Rn×R+.Assume,for any X=(x,t)∈?(Qr×(-R0,R0)),that there exists X0=(x0,t0)∈Qr×(-R0,R0) such that|X-X0|<Cr and Br/C(X0)?Qr×(-R0,R0),where C>1,0<r<r0are constants.

    Lemma 6.1(Boundary Harnack inequality) Suppose that U∈H (t1-2σ,Q4r×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ and.

    ProofBy scaling,we assume that r=1.For some A>0 to be determined later,set

    The function VA(x,t) satisfies

    We consider the even extension of VAacross{t=0}on Q4,defined by

    Denote by LAthe operator

    We introduce the solution h±Aof

    These solutions are obtained from the solutions of the Dirichlet problem (Theorem 2.2) in[6].Hence,we have that

    By the weak maximum principle (for the Dirichlet problem also holds;see of Remark 4.2 in[2]),we have that

    then according to Remark 1 in[5],we have that

    Therefore,we obtain that

    Using (6.2) and (6.3),we have that

    Therefore,(6.4) and (6.5) lead immediately to the desired result:

    Lemma 6.2(Comparison theorem) Suppose that Ui∈H (t1-2σ,Q4r×(0,R0)),i=1,2,satisfy

    Then we have that

    ProofSimilarly,we use the same method as to that of Lemma 6.1 and combine with the boundary Harnarck inequality in[5]to obtain our conclusion.Here,we omit the proof. □

    7 The Exponential Decay of Bounded Solutions

    In this section,we first prove the existence and uniqueness of a bounded solution in unbounded domains;this plays an important role in proving the structure theorem.Then we show that the exponential decay of bounded solutions.

    Proof of Theorem 1.1First,we consider the equations in the bounded domain:

    Here N∈Z+.By Proposition 2.4 in[8],for this problem (7.1),there exists a unique solution UN(x,t)∈H (t1-2σ,C(-N,N)×(0,R0)).By Theorem 3.3,we have that

    where CNdepends only on n,σ,R0and N.

    We will prove that there exists a constant C0>0 not depending on N such that

    For convenience,we denote M=.

    For any ξ satisfying-N+1≤ξ≤N-1,it is clear that C(ξ-1,ξ+1)×(0,R0)?C(-N,N)×(0,R0).By using arguments similar to that in the proof of Theorem 5.3 in C(ξ-1,ξ+1)×(0,R0),we get that

    Then we obtain

    We have,furthermore,that

    For any (x,t)∈C(-N,-N+1)×(0,R0),by Theorem 3.3 again,we have that

    where C2=+C1depending only on n,σ,R0and diam (D).

    For any (x,t)∈C(N-1,N)×(0,R0),similarly,we have that

    Therefore,for any (x,t)∈C(-N,N)×(0,R0),we have that

    where C3=max{C2,},which depends only on n,σ,R0and diam (D).That is,from the definition of M,we have that M≤(1-δ) M+.Thus we obtain

    where C0=,which depends only on n,σ,R0and diam (D).

    Then,by Theorem 4.4,there exists a constant C*>0 depending only on n,σ,D such that

    Thus,for any bounded domain C[-l,l]×[0,R0]with l>0,there exists a subsequence of{UN(x,t)}which uniformly converges in C[-l,l]×[0,R0]by the Arzela-Ascoli theorem.Without loss of generality,we assume that there exists a function U (x,t) such that UN(x,t) uniformly converges to U (x,t) in C0(C×(0,R0)).Therefore,U (x,t) is bounded in C×(0,R0) and satisfies (1.4) in the weak sense.By Theorem 5.3,we know that U is the desired unique bounded solution. □

    Next,we give a proof of the exponential decay of bounded solutions (Theorem 1.2) with general b.

    Proof of Theorem 1.2Assume that=B.Since U is bounded from above,Corollary 5.4 leads to that

    Applying Lemma 5.1,there exists a constant δ∈(0,1) such that

    Similarly,we have that

    By induction,we obtain

    Therefore,we have the following estimate for (x,t)=(x′,y,t)∈C+×[0,R0]:

    where α=-ln (1-δ)>0.Since B=,we have,for any (x,t)∈C+×[0,R0],that

    8 The Structure Theorems of Solutions

    In this section,we show that the structure theorems of solutions with inhomogeneous term b.In the case of b=0,since we have proved the weak maximum principle in unbounded domains (Theorem 5.3) and the boundary Harnack inequalities for the mixed boundary problem (Lemma 6.1 and Lemma 6.2),we can classify all positive solutions and consider the asymptotic behaviors of the solutions to get the proof of Theorem 1.4.The details of the proofs for these results are very similar to those of[1,15,16],so we are not going to give them.Here,we only give the proof of the structure Theorem 1.5.

    Proof of Theorem 1.5Applying Theorem 1.1,we take V such that V is the unique bounded solution of the following problem:

    Then we know that there exists a constant C>0 such that U-V>-C and U-V satisfies

    Since U-V is bounded below,by applying Theorem 5.3,we obtain U-V≥0.

    Thus,either U≡V or U-V>0.If U=V,then our conclusion clearly holds (taking p=q=0).If U-V>0,by applying Theorem 1.4,we derive that there exist W∈S+,Z∈Ssuch that U-V=pW+qZ;that is,U=V+pW+qZ,where V is the bounded solution.Therefore,we obtain our conclusion:

    Here S0={V}is the unique bounded solution of the problem (1.4). □

    AcknowledgementsThe author would like to take this opportunity to express gratitude to her advisors,Professor Chunqin Zhou and Lihe Wang,for their constant encouragements,inspiring discussions and helpful suggestions,without which this work would be impossible to be carried out.

    毛片女人毛片| 日韩 亚洲 欧美在线| 日本一二三区视频观看| 日韩亚洲欧美综合| 一二三四中文在线观看免费高清| av在线天堂中文字幕| 免费搜索国产男女视频| 国产高清国产精品国产三级 | 久久精品夜色国产| 1024手机看黄色片| 麻豆成人午夜福利视频| 嘟嘟电影网在线观看| 亚洲丝袜综合中文字幕| 啦啦啦韩国在线观看视频| 久久久久久久久中文| 天堂网av新在线| 免费观看精品视频网站| 日本熟妇午夜| 亚洲国产高清在线一区二区三| 日韩人妻高清精品专区| 色噜噜av男人的天堂激情| АⅤ资源中文在线天堂| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 欧美成人免费av一区二区三区| 女的被弄到高潮叫床怎么办| 级片在线观看| 日韩,欧美,国产一区二区三区 | 淫秽高清视频在线观看| 国产精品久久久久久精品电影| 亚洲国产精品sss在线观看| 长腿黑丝高跟| 午夜亚洲福利在线播放| 日本免费a在线| 九九热线精品视视频播放| 深夜a级毛片| 欧美不卡视频在线免费观看| 久久精品国产亚洲av涩爱| 欧美日韩国产亚洲二区| 亚洲国产高清在线一区二区三| 26uuu在线亚洲综合色| 97在线视频观看| 日韩高清综合在线| 搡老妇女老女人老熟妇| 国产人妻一区二区三区在| 2021少妇久久久久久久久久久| av卡一久久| 天美传媒精品一区二区| 青春草亚洲视频在线观看| 又粗又硬又长又爽又黄的视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91久久精品国产一区二区成人| 99九九线精品视频在线观看视频| 精品久久国产蜜桃| 淫秽高清视频在线观看| 国产亚洲一区二区精品| 亚洲国产精品合色在线| 精品一区二区免费观看| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 汤姆久久久久久久影院中文字幕 | 一夜夜www| 欧美3d第一页| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 三级经典国产精品| 亚洲伊人久久精品综合 | 伦精品一区二区三区| 人人妻人人澡欧美一区二区| 日韩成人av中文字幕在线观看| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 国产乱人偷精品视频| 免费av不卡在线播放| 久久久成人免费电影| 成人无遮挡网站| 直男gayav资源| 亚洲av二区三区四区| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品| 成年版毛片免费区| 色综合亚洲欧美另类图片| 性色avwww在线观看| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| av卡一久久| 又爽又黄a免费视频| 中文亚洲av片在线观看爽| 丰满人妻一区二区三区视频av| 亚洲最大成人手机在线| 18+在线观看网站| 亚洲精品久久久久久婷婷小说 | 久久久精品大字幕| 亚洲精品日韩在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 国内精品美女久久久久久| 高清av免费在线| 亚洲人与动物交配视频| www.av在线官网国产| 国产精品av视频在线免费观看| 国模一区二区三区四区视频| 免费观看精品视频网站| 日本色播在线视频| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 日本wwww免费看| 春色校园在线视频观看| 麻豆一二三区av精品| 国产亚洲5aaaaa淫片| 免费观看人在逋| 18禁动态无遮挡网站| h日本视频在线播放| 亚洲国产精品专区欧美| 国产精品美女特级片免费视频播放器| 麻豆成人av视频| eeuss影院久久| 亚洲精品影视一区二区三区av| 老女人水多毛片| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 久久久久久久国产电影| 亚洲中文字幕日韩| 中国国产av一级| 如何舔出高潮| 国产精品一区二区性色av| 色哟哟·www| 国产麻豆成人av免费视频| 色5月婷婷丁香| 五月伊人婷婷丁香| 亚洲最大成人手机在线| 日本熟妇午夜| 黑人高潮一二区| 久99久视频精品免费| 国产精品人妻久久久久久| 国产一区二区三区av在线| 色播亚洲综合网| 老女人水多毛片| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 欧美97在线视频| av在线观看视频网站免费| 国产免费视频播放在线视频 | 亚洲第一区二区三区不卡| 长腿黑丝高跟| 一卡2卡三卡四卡精品乱码亚洲| 99视频精品全部免费 在线| 九色成人免费人妻av| 少妇熟女欧美另类| 色网站视频免费| 久久精品影院6| 韩国av在线不卡| 国内精品一区二区在线观看| 七月丁香在线播放| 干丝袜人妻中文字幕| 国产黄片美女视频| 国产成人精品婷婷| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 变态另类丝袜制服| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx在线观看| 99久国产av精品| 美女脱内裤让男人舔精品视频| 男女边吃奶边做爰视频| 久久久久久久国产电影| 91午夜精品亚洲一区二区三区| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| av在线蜜桃| 欧美性感艳星| 中文在线观看免费www的网站| 国产乱人视频| 国产精品久久视频播放| kizo精华| 美女国产视频在线观看| 国产精品一区www在线观看| 91狼人影院| 草草在线视频免费看| 亚洲国产色片| 黄色配什么色好看| 久久久久久国产a免费观看| 成人二区视频| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 直男gayav资源| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 欧美97在线视频| 亚洲国产精品sss在线观看| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 久久久成人免费电影| 久久精品夜色国产| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 99热精品在线国产| 国产伦精品一区二区三区视频9| 午夜爱爱视频在线播放| 久久久久国产网址| 国国产精品蜜臀av免费| 欧美成人免费av一区二区三区| 日本黄大片高清| 日本av手机在线免费观看| 亚洲天堂国产精品一区在线| 久久国产乱子免费精品| 能在线免费观看的黄片| 亚洲国产高清在线一区二区三| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说 | 日韩国内少妇激情av| 国产高清视频在线观看网站| av线在线观看网站| 国产乱人视频| 大香蕉97超碰在线| .国产精品久久| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 汤姆久久久久久久影院中文字幕 | 最近2019中文字幕mv第一页| 在线天堂最新版资源| 激情 狠狠 欧美| 国产在视频线在精品| 国产极品天堂在线| 2021少妇久久久久久久久久久| 内射极品少妇av片p| 久久久久久久久大av| 国产麻豆成人av免费视频| 三级经典国产精品| a级毛片免费高清观看在线播放| 欧美成人午夜免费资源| 村上凉子中文字幕在线| 国产精品一区www在线观看| 亚洲色图av天堂| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| 天堂网av新在线| 亚洲精品成人久久久久久| 久久久国产成人免费| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 婷婷色av中文字幕| 亚洲中文字幕一区二区三区有码在线看| 18禁在线播放成人免费| 99热这里只有是精品50| 免费看a级黄色片| 亚洲va在线va天堂va国产| 亚洲性久久影院| 最近最新中文字幕免费大全7| 色视频www国产| 人体艺术视频欧美日本| 成人午夜高清在线视频| 久久久久免费精品人妻一区二区| 日日撸夜夜添| 成人二区视频| 国产极品天堂在线| 国产精品一区www在线观看| 免费无遮挡裸体视频| 激情 狠狠 欧美| 男女那种视频在线观看| 亚洲欧洲国产日韩| 久久久国产成人精品二区| 永久网站在线| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 亚洲国产欧美人成| 丝袜喷水一区| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频 | 成人鲁丝片一二三区免费| 天堂中文最新版在线下载 | 国产成人精品久久久久久| 狠狠狠狠99中文字幕| 成人一区二区视频在线观看| 99久久中文字幕三级久久日本| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 成年版毛片免费区| 狠狠狠狠99中文字幕| 精品久久久久久久人妻蜜臀av| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩高清专用| 国产免费福利视频在线观看| 午夜老司机福利剧场| 人妻制服诱惑在线中文字幕| 九九热线精品视视频播放| 久久久久久久国产电影| 国产一级毛片七仙女欲春2| 久久精品人妻少妇| 两个人的视频大全免费| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 菩萨蛮人人尽说江南好唐韦庄 | 一个人看视频在线观看www免费| 亚洲精品,欧美精品| av卡一久久| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 69人妻影院| 直男gayav资源| 日本一本二区三区精品| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 天堂中文最新版在线下载 | 美女被艹到高潮喷水动态| 2022亚洲国产成人精品| 99国产精品一区二区蜜桃av| 真实男女啪啪啪动态图| 欧美一区二区精品小视频在线| 视频中文字幕在线观看| 欧美成人午夜免费资源| 两个人的视频大全免费| 一区二区三区乱码不卡18| 大香蕉久久网| av卡一久久| 久久久久国产网址| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 精品免费久久久久久久清纯| 不卡视频在线观看欧美| 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 人人妻人人看人人澡| 天堂√8在线中文| 男女那种视频在线观看| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 夜夜爽夜夜爽视频| 国产私拍福利视频在线观看| 国产一区有黄有色的免费视频 | 男女边吃奶边做爰视频| 中文字幕久久专区| 亚洲国产欧美人成| 国产精品人妻久久久久久| 久久久久久大精品| 18+在线观看网站| 久久久精品94久久精品| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 亚洲丝袜综合中文字幕| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片| 一个人免费在线观看电影| 免费av观看视频| 久久久久久久午夜电影| 国产精品人妻久久久久久| 综合色av麻豆| 97超碰精品成人国产| 色综合站精品国产| 中文资源天堂在线| 天美传媒精品一区二区| 少妇高潮的动态图| 欧美成人a在线观看| 亚洲成色77777| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 毛片女人毛片| 欧美一区二区精品小视频在线| 成人性生交大片免费视频hd| 日韩av在线免费看完整版不卡| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 免费看日本二区| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 国产不卡一卡二| 成年av动漫网址| 色噜噜av男人的天堂激情| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 成年av动漫网址| 国产精品av视频在线免费观看| 国产久久久一区二区三区| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 亚洲av免费在线观看| 男女那种视频在线观看| 亚洲国产欧美人成| 色5月婷婷丁香| 嫩草影院新地址| 少妇高潮的动态图| 久久久久九九精品影院| 亚洲av日韩在线播放| 久久久久网色| 日韩av不卡免费在线播放| 中文字幕精品亚洲无线码一区| 日产精品乱码卡一卡2卡三| 麻豆av噜噜一区二区三区| 婷婷色麻豆天堂久久 | 美女国产视频在线观看| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 一二三四中文在线观看免费高清| 插逼视频在线观看| 久久久国产成人免费| 男女啪啪激烈高潮av片| 亚洲一区高清亚洲精品| 久久精品久久久久久噜噜老黄 | 久久久久久久午夜电影| 伦精品一区二区三区| 一区二区三区四区激情视频| 国产精品1区2区在线观看.| 久久久久九九精品影院| 午夜福利高清视频| 干丝袜人妻中文字幕| 欧美bdsm另类| 真实男女啪啪啪动态图| 国国产精品蜜臀av免费| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 一个人看的www免费观看视频| 性色avwww在线观看| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 久久99蜜桃精品久久| 老司机福利观看| 亚洲国产精品专区欧美| 国产精品电影一区二区三区| 深爱激情五月婷婷| 亚洲成色77777| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 免费看av在线观看网站| 久久久成人免费电影| 亚洲在线观看片| 色哟哟·www| 亚洲性久久影院| 亚洲aⅴ乱码一区二区在线播放| 小说图片视频综合网站| 国产精品久久久久久精品电影小说 | 26uuu在线亚洲综合色| 日韩av不卡免费在线播放| 99热全是精品| 欧美bdsm另类| 国产成人精品一,二区| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 日本免费a在线| 人人妻人人澡人人爽人人夜夜 | 中文字幕精品亚洲无线码一区| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 亚洲国产精品成人综合色| 久久精品91蜜桃| 三级毛片av免费| 日本色播在线视频| 久久久a久久爽久久v久久| 床上黄色一级片| 伦精品一区二区三区| 亚洲精品影视一区二区三区av| 国内精品美女久久久久久| 久久久久性生活片| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 国产精品一区二区在线观看99 | 日本黄色片子视频| 小说图片视频综合网站| 免费搜索国产男女视频| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 高清午夜精品一区二区三区| 亚洲五月天丁香| 亚洲经典国产精华液单| 亚洲aⅴ乱码一区二区在线播放| 国产免费男女视频| 亚洲av一区综合| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 国产成人精品婷婷| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| a级毛色黄片| 亚洲美女视频黄频| 日韩一区二区视频免费看| 91在线精品国自产拍蜜月| 日本黄色视频三级网站网址| 在线免费观看不下载黄p国产| 免费播放大片免费观看视频在线观看 | 日韩国内少妇激情av| 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说 | 亚洲乱码一区二区免费版| 国产精品永久免费网站| a级毛片免费高清观看在线播放| 黄色一级大片看看| 在线免费十八禁| 亚洲精品成人久久久久久| 国产成人a区在线观看| 超碰av人人做人人爽久久| 插逼视频在线观看| 韩国高清视频一区二区三区| 色吧在线观看| 亚洲成av人片在线播放无| 久久午夜福利片| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜撸| 久久久久性生活片| 婷婷色综合大香蕉| 高清毛片免费看| 亚洲av男天堂| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 久久人人爽人人爽人人片va| 成人欧美大片| 综合色av麻豆| 97超碰精品成人国产| 嫩草影院精品99| 国产又色又爽无遮挡免| 国产精品爽爽va在线观看网站| 国产亚洲精品av在线| 少妇裸体淫交视频免费看高清| 免费看光身美女| 一个人观看的视频www高清免费观看| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 日日啪夜夜撸| 国产单亲对白刺激| 久久久久精品久久久久真实原创| 亚洲久久久久久中文字幕| 99热精品在线国产| 亚洲精品久久久久久婷婷小说 | 精品久久久久久成人av| 亚洲乱码一区二区免费版| 如何舔出高潮| 看非洲黑人一级黄片| 国产久久久一区二区三区| 99热网站在线观看| 久久精品国产亚洲av天美| 国产精品,欧美在线| 国产成人精品一,二区| 精品久久国产蜜桃| 中文资源天堂在线| 欧美zozozo另类| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 国产乱来视频区| 91av网一区二区| 亚洲精品一区蜜桃| 亚洲av福利一区| 久久久久久久久中文| 一夜夜www| 三级男女做爰猛烈吃奶摸视频| 国产精品嫩草影院av在线观看| 久久久亚洲精品成人影院| 桃色一区二区三区在线观看| 看非洲黑人一级黄片| 老女人水多毛片| 国产精品日韩av在线免费观看| 欧美人与善性xxx| 午夜福利在线观看吧| 亚洲乱码一区二区免费版| 日韩视频在线欧美| av卡一久久| 久久99蜜桃精品久久| 联通29元200g的流量卡| 精品久久久久久久末码| 国产亚洲5aaaaa淫片| 久久久精品大字幕| 毛片一级片免费看久久久久| 国产精品国产三级专区第一集| 久久人妻av系列| 国产高清有码在线观看视频| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 校园人妻丝袜中文字幕| 国产乱人视频| 丝袜喷水一区| 丝袜美腿在线中文| 2022亚洲国产成人精品| 夜夜爽夜夜爽视频| 亚洲五月天丁香| 深夜a级毛片| 麻豆一二三区av精品| 午夜福利视频1000在线观看| 在线观看一区二区三区| 亚洲精华国产精华液的使用体验| 男人和女人高潮做爰伦理|