• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design formulas of transmission coefficients for permeable breakwaters

    2014-03-15 07:15:59SuxiangZHANGXiLI
    Water Science and Engineering 2014年4期

    Su-xiang ZHANG, Xi LI*

    1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

    2. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec H3A 2K6, Canada

    3. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China

    Design formulas of transmission coefficients for permeable breakwaters

    Su-xiang ZHANG1,2, Xi LI*3

    1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

    2. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec H3A 2K6, Canada

    3. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China

    New empirical formulas of the transmission coefficient for permeable breakwaters were suggested based on available experimental data regarding the low-crest structure (LCS), including the permeable rubble mound breakwater and pile-type breakwater. The rationality of the present formulas was verified by their comparison with existing empirical and analytical formulas. Numerical flume results were obtained by solving the modified Boussinessq-type wave equations (MBEs), and a new expression relating the friction coefficient α to the relative submerged depth RtHswas also derived. Comparative analysis shows that the results of the present formulas agree with the numerical flume results as well as available experimental data, and the present formulas are superior to the existing empirical and analytical expressions in estimating the transmission coefficient. The present formulas can provide references for estimation of the transmission coefficient in engineering practice.

    permeable breakwater; transmission coefficient; wave reflection; nonlinear wave; Boussinesq wave model; low-crest structure

    1 Introduction

    The main characteristic of a wave-permeable breakwater is that a wave can move through the breakwater without changing its profile, while wave diffraction is not dependent on whether the structure is permeable or not. Wave overtopping and transmission are the main modes of energy transportation for waves moving through the permeable breakwater, with some energy dissipated by wave breaking on the seaward side or by turbulence inside the breakwater, and some energy reflected in front of the structure. Thus, a detailed description of nearshore hydrodynamics is of engineering value in examining wave and structure interaction. Although the nonlinear wave theory has been widely developed, it is still difficult to apply it directly to engineering design because of the inconvenience in estimating the transmission coefficient. Linear theories and empirical equations have a practical advantage in analysis ofwave transformation, including an overall description of phenomena like wave breaking, run-up, and overtopping. Permeable breakwaters, especially the pile type, have been widely used in coastal protection, wave reduction, and ship berthing. It is useful for engineering design to predict the transmitted wave height and transmission coefficient with a simple and convenient empirical formula. In this study, the transmission coefficient of permeable breakwaters was analyzed based on available experimental data regarding the low-crest structure (LCS) (van der Meer et al. 2005; Chen et al. 2008; Li and Xie 2008; Peng et al. 2009), including an emergent porous rubble mound breakwater and a pile-type breakwater. Based on available data (Madsen 1983; Luth et al. 1994; Christou et al. 2008; van der Meer et al. 2005), two other permeable structures were also investigated: a porous rubble mound breakwater before a rigid wall and a submerged breakwater. For the purpose of design convenience, new empirical formulas of the transmission coefficient were suggested, and the rationality was verified by their comparison with existing formulas, e.g., the analytical formula of Wiegel (1961) and the empirical formulas of van der Meer and Daemen (1994) and d’Angremond et al. (1996). Then, numerical flume results obtained by solving the modified Boussinesq-type wave equations (MBEs) for pile-type breakwaters were analyzed and compared with the results of the present empirical formula and the analytical formula of Wiegel (1961), as well as physical model data (Madsen 1991; Li and Yan 2005; Fuhrman and Madsen 2008).

    2 Existing analytical and empirical formulas for transmission coefficients and present formulas

    The transmission coefficient is directly related to the type of wave-permeable structures. The two types primarily examined in this investigation were the emergent porous rubble mound type (Fig. 1(a)) and pile type (Fig. 1(b)).

    Fig. 1 Permeable breakwaters

    For a rubble mound breakwater, based on extensive experimental data, van der Meer and Daemen (1994) suggested the following expression using the medium diameter of breakwater body stones to describe the transmission coefficient:

    where Ktis the transmission coefficient, with Kt=HkHs; Hkis the height of the transmitted wave behind the permeable breakwater; Hsis the significant wave height of the incident wave; Rcis the crest freeboard; Dn50is the medium diameter; a and b are parameters, with a =0.031HsDn50? 0.024, and b =? 5.42 Sop+ 0.0323HsDn50? 0.017 (B Dn50)1.84+ 0.51; Sopis the wave steepness, withis the peak period of the incident wave; g is the gravitational acceleration; and B is the upper structure width.

    d’Angremond et al. (1996) related the transmission coefficient to RcHs, BHs, and breaker parameter ζop:

    where the breaker parameter or the Iribarren number ζop=hx(Sop)12, and hxis the seaward slope of the structure.

    For the rubble mound breakwater, laboratory test results are available from various studies (Kramer et al. 2005; Calabrese et al. 2008; Peng et al. 2009; Hur et al. 2012; Melito and Melby 2002; Laju et al. 2011). They were compared with the two formulas above in terms of function design of the crest freeboard Rcand upper structure width B. As a result, Eq. (1) can be applied to the rubble mound breakwater; Eq. (2) is not limited to the rubble mound breakwater, but a large deviation may occur when it is applied to other types of permeable breakwaters, especially those with a large transmission coefficient.

    Based on the small amplitude wave theory, the analytical solution of linear waves across a thin vertical pile interface was suggested by Wiegel (1961). The expression based on the linear theory neglects the nonlinear damping effect, and thus the equation provides a larger transmission coefficient:

    where the adjustment coefficient η is less than 1, and, usually, η=0.9 according to a simple correlation analysis considering energy dissipation; k is the wave number; d is the still water depth; and Rtis the submerged depth of a splashing board of pile-type breakwaters.

    The present investigation was performed based on available data and above analytical and empirical formulas. For the rubble mound breakwater, the crest freeboard Rcplays an important role in evaluating transmission effects, which is crucial in determining wave transmission, reflection, and overtopping, and has a linear relation with Ktin Eq. (2).

    Considering this factor, a better way to correlate Rcwith Ktusing a shape function is

    where α1(here α1RcHs≤ 1.0) and β1are two coefficients for the rubble mound breakwater. Since RcHsis usually closeto 1 in practice, with reference to the Code of Design and Construction of Breakwaters (MT PRC 2011), we determined that α1= 1.0 and β1= 0.90 by fitting the laboratory data from van der Meer et al. (2005) and conducting a simple correlation analysis, as shown in Fig. (2).

    Fig. 2 Determination of α1and β1for emergent porous rubble mound breakwater by fitting data extracted from van der Meer et al. (2005)

    For the pile-type permeable breakwater, the submerged depth of the splashing board Rtplays an important role in defining the transmission coefficient Kt. Replacing α1RcHsin Eq. (4) with α2RtHs, the following empirical formula is introduced:

    where α2and β2are two coefficients for the pile-type breakwater, which were determined to be 0.23 and 2.3, respectively, through analysis of the experimental data (Li and Yan 2005) provided in the next section.

    The submerged breakwater (Fig. 1(d)) is more similar to the pile-type breakwater than to the rubble mound breakwater in wave transmission effects, since both the pile type and the submerged type have a continuous water body. As shown in Fig. 3,2α and2β were determined to be 0.23 and 0.50, respectively, in Eq. (5) for the submerged breakwater, based on fitting of the laboratory data from van der Meer et al. (2005) and a simple correlation analysis.

    Fig. 3 Determination of α2and β2for submerged breakwater by fitting data extracted from van der Meer et al. (2005)

    3 Comparison of present and existing empirical formulas of transmission coefficients

    Based on 2337 LCS data sets from van der Meer et al. (2005) and Zanuttigh et al. (2008), Eq. (4) was compared with Eq. (2).As shown in Fig. 4(a), Eq. (4) has a wider range of application, especially for BHs>1 0. Fig.4(b) indicates that the transmission coefficient Ktdecreases exponentially with the increment of RcHsaccording to Eq. (4), which is more consistent with the measured data than the linear relation in Eq. (2).

    Fig. 4 Comparison of calculated results of Eq. (2) and Eq. (4) for rubble mound breakwater

    As described by Fig. 5, for a pile-type breakwater, the calculated results of Eq. (3) show larger values of the transmission coefficient Ktthan the results of Eq. (5) and laboratory data from Li and Yan (2005), because Eq. (3) does not consider energy dissipation by LCS. We determined that α2= 0.23 and β2=2.3 in Eq. (5) based on a simple correlation analysis. Fig. 5 shows that the calculated results ofEq. (5) are closer to the laboratory data from Li and Yan (2005). For larger values of relative submerged depth RtHs(i.e., smaller values of RcHs), overtopping less than 0.2Hsmay occur in the laboratory data, while, for smaller values of RtHs(i.e., larger values of RcHs), experimental data from Li and Yan (2005)show no overtopping effects. It is suggested that the overtopping effects for larger values of RtHsmay be considered by slightly increasing the value of coefficient β2in Eq. (5). In conclusion, Eq. (5) shows an acceptable accuracy in comparison with experimental data and can be used for estimating the transmission coefficient for pile-type breakwaters.

    Fig. 5 Comparison of experimental data (Li and Yan 2005) and calculated results of Eq. (3) and Eq. (5) for pile-type breakwater

    4 Numerical flume tests based on MBE model and verification of present empirical formula for pile-type breakwater

    4.1 MBE model

    In the numerical flume, the friction term of the porosity expression was added to governing equations to modify the classic Boussinesq-type wave equations (Madsen 1983). The nonlinear friction term inside the permeable structure (or the porous absorber) in shallow water can be linearized by using the following approximation:

    where Uis the velocity vector; αand β are the friction coefficients of permeable structures accounting for the laminar and turbulent friction losses, respectively; f is the friction factor independent of time t and space in x and y dimensions; ω is the incident wave angular frequency; and n is the porosity coefficient of structures. α and β are related to the porosity coefficient n from Engelund (1953):

    where υ is the kinetic viscosity, and α0and β0are constants.

    The expression on the right-hand side of Eq. (6) (Madsen 1983) was derived under one-dimensional shallow-water long-wave conditions by neglecting higher order nonlinear effects. Considering that this assumption causes uncertainty in understanding short wavetransmission, the items on the left-hand side of Eq. (6) are directly applied to MBE by setting β as a constant in numerical flume tests and α at a value less than 10. Eqs. (7) and (8) demonstrate the porosity effects on the hydrodynamic characteristic of permeable breakwaters by assuming a nominal Dn50value.

    Since the MBE model is based on the depth-averaged two-dimensional water flow, the corresponding mathematical formulation of permeable structures is similar to that used to solve the problem of waves passing through permeable screens, where the transmitted and reflected waves occur on both sides of the screen. In the numerical flume, the transmission coefficient can be determined by the friction factor α and the number of friction layers (Li and Yan 2005; Zhang and Li 2008). Different types of permeable structures, as shown in Fig. 1, were tested with the MBE model in this study.

    4.2 Comparison of numerical flume results with physical model data

    The wave attenuation effects were tested for four specific types of permeable breakwaters using the MBE model. The instant wave elevation distribution and wave height distribution for waves moving through different types of permeable breakwaters are illustrated in Fig. 6 and Fig. 7. A typical standing wave and a transmitted propagating wave form respectively in front of and behind thepermeable structures for all types of breakwaters except for the porous breakwater before a rigid wall. The numerical flume results using the MBE model and physical model data for different types of permeable breakwaters are listed in Table 1, where Kr=HrHs, with Hrindicating the reflected wave height in front of the breakwater. It can be concluded that the numerical flume results agree with the physical model data.

    Fig. 6 Wave envelopes in numerical flume

    Fig. 7 Wave height distributions in numerical flume

    Table 1 Comparison of numerical flume results using MBE model with physical model data for different types of permeable breakwaters

    4.3 Comparisons of numerical flume results with physical model data and results of analytical and empirical formulas for pile-type breakwater

    Numerical flume tests on the pile-type breakwater were performed using the MBE model. The data sets from P01 to P12 for the numerical flume are listed in Table 2, where BHsis determined to be 5 in accordance with the physical model tests (Chen et al. 2008).

    Table 2 Data sets for numerical flume tests

    The numerical flume results were compared with the calculated results of Eq. (5) and Eq. (3) as well as the physical model data from Chen et al. (2008), as shown in Fig. 8. A decaying trend of Ktis demonstrate d with the increment of RtHs, and the empirical curve of Eq. (5) agrees with the numerical flume results and the measured data. In general, the overtopping effects of the pile-type breakwater will lead to an increase of Kt. This is outside of the scope of the present investigation since these effects only occur in physical models. By fitting the data of α and RtHsin Table 2, as shown in Fig. 9, a new empirical relationrelating α to RtHswas obtained as follows:

    Comparisons of the transmission coefficient Ktobtained by the MBE model with those obtained by the formulas (Eq. (3) and Eq. (5)) and the physical model against the friction coefficient α and the porosity coefficient n, with the friction coefficient α obtained by Eq. (9), are shown in Fig. 10. The agreement between the results of the MBE model, the physical model, and Eq. (5) demonstrates that Eq. (9) has a strong fitting effect, and the numerical flume has a wide range of applicability. The results also show that Eq. (5) is superior to Eq. (3) in estimating the transmission coefficient for pile-type breakwaters.

    Fig. 8 Comparisons ofKtagainstR t H s

    Fig. 9 α versusR t Hs

    Fig. 10 Comparisons ofKtagainstαand n .

    4.4 Discussion

    In coastal engineering practice, RtHsmay exceed 2 for many reasons, such as reduction of the transmission coefficient Ktby increasing reflection and regulating tidal levels. In addition, damping effec ts of BHsplay an important role in breaking waves, which means that a close relationship exists between Ktand BHs: as RtHs→0 in Eq. (9), α→0.23, and, accordingly, Kt→ 2.3exp (? 0.18BHs)in Eq. (5). Considering that viscosity and nonlinearity are of great significance in the determination of BHs, especiallyfor three-dimensional shallow water, further verification and improvement regarding the nonlinearity should be focused on the relationship between BHsand the coefficient β in Eq. (6) in the future. Although numerical simulation tests are becoming more valuable with the development of computer capability and calculation speed, the MBE model can only be successfully applied to two-dimensional simulations, and three-dimensional simulations of wave phenomena are still difficult. Thus, physical models still play an important role in understanding basic mechanics of wave phenomena.

    5 Conclusions

    Based on the analysis of existing analytical and empirical formulas for the transmission coefficient of permeable breakwaters, new empirical formulas were developed, with their coefficients obtained by fitting laboratory data. These formulas were verified through comparison with numerical flume tests and physical model tests. It can be concluded that the present formula for rubble mound-type breakwaters has a wider application range than the existing empiricalformulas, and that the results of the present formula for pile-type breakwaters are more consistent with both the numerical flume results and the physical model data than those of the existing analytical formula. Moreover, an empirical formula relating the friction coefficient α to the relative submerged depth RtHswas also derived and verified, in which α is a vital factor in wave transmission simulation with the MBE model.

    Calabrese, M., Buccino, M., and Pasanisi, F. 2008. Wave breaking macrofeatures on a submerged rubble mound breakwater. Journal of Hydro-environment Research, 1(3-4), 216-225. [doi:10.1016/10.1016/ j.jher.2007. 11.003]

    Chen, D. C., Wang, Y. G., Li, X., Yang, Y., and Cai, H. 2008. Experimental Study of Wave Permeable Breakwater in Sansha Central Fishing Port. Nanjing: Hohai University. (In Chinese)

    Christou, M., Swan, C., and Gudmestad, O. T. 2008. The interaction of surface water waves with submerged breakwaters. Coastal Engineering, 55(12), 945-958. [doi:10.1016/j.coastaleng.2008.02.014]

    d’Angremond, K., van der Meer, J. W., and de Jong, R. J. 1996. Wave transmission at low crested structures. Proceedings of the 25th International Conference on Coastal Engineering, 2418-2427. Florida: ASCE.

    Engelund, F. 1953. On the laminar and turbulent flows of ground water through homogeneous sand. Transactions of Danish Academy Technical Science, Vol. 3.

    Fuhrman, D. R., and Madsen, P. A. 2008. Simulation of nonlinear wave runup with a high-order Boussinesq model. Coastal Engineering, 55(2), 139-154. [doi:10.1016/j.coastaleng.2007.09.006]

    Hur, D. S., Lee, W. D., and Cho, W. C. 2012. Characteristics of wave run-up height on a sandy beach behind dual-submerged breakwaters. Ocean Engineering, 45, 38-55. [doi:10.1016/j.oceaneng.2012.01.030]

    Kramer, M., Zanuttigh, B., van der Meer, J. W., Vidal, C., and Gironella, F. X. 2005. Laboratory Experiments on low-crested breakwaters. Coastal Engineering, 52(10-11), 867-885. [doi:10.1016/j.coastaleng. 2005.09.002]

    Laju, K., Sundar, V., and Sundaravadivelu, R. 2011. Hydrodynamic characteristics of pile supported skirt breakwater models. Applied Ocean Research, 33(1), 12-22. [doi:10.1016/j.apor.2010.12.004]

    Li, C. L., and Xie, Y. Y. 2008. Random wave motions around different submerged dikes. Coastal Engineering, 27(1), 1-9. (in Chinese)

    Li, X., and Yan, Y. X. 2005. Numerical simulations of nonlinear wave transformation around wave-permeablestructure. Journal of Hydrodynamics, Ser. B, 17(17), 699-703.

    Luth, H. R., Klopman, Q., and Kitou, N. 1994. Kinematics of Waves Breaking Partially on an Offshore Bar. Delft: Delft Hydraulics.

    Madsen, P. A. 1983. Wave reflection from a vertical permeable wave absorber. Coastal Engineering, 7(4), 381-396. [doi:10.1016/0378-3839(83)90005-4]

    Madsen, P. A. 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15(4), 371-388. [doi:10.1016/0378-3839(92)90019-Q]

    Melito, I., and Melby, J. A. 2002. Wave runup, transmission, and reflection for structures armored with CORE-LOC. Coastal Engineering, 45(1), 33-52. [doi:10.1016/S0378-3839(01)00044-8]

    Ministry of Transport of People’s Republic of China (MT PRC). 2011. Code of Design and Construction of Breakwaters (JTS 154-1-2011). Beijing: China Communications Press. (in Chinese)

    Peng, Z., Zou, Q., Reeve, D. E., and Wang, P. X. 2009. Parameterisation and transformation of wave asymmetries over a low-crested breakwater. Coastal Engineering, 56(11-12), 1123-1132. [doi:10.1016/ j.coastaleng.2009.08.005]

    van der Meer, J. W., Briganti, R., Zanuttigh, B., and Wang, B. X. 2005. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coastal Engineering 52(10-11), 915-929. [doi:10.1016/j.coastaleng.2005.09.005]

    van der Meer, J. W., and Daemen, I. F. R. 1994. Stability and wave transmission at low crested rubble mound structures. Journal of Waterway, Port Coastal and Ocean Engineering, 120(1), 1-9. [doi:10.1061/(ASCE) 0733-950X(1994)120:1(1)]

    Wiegel, R. L. 1961. Closely spaced piles as a breakwater. Dock and Harbor Authority, 42(491), 150.

    Zanuttigh, B., Martinelli, L., and Lamberti, A. 2008. Wave overtopping and piling-up at permeable low crested structures. Coastal Engineering, 55(6), 484-498. [doi:10.1016/j.coastaleng.2008.01.004]

    Zhang, S. X., and Li, X. 2008. Numerical simulation of nonlinear wave propagating in flume. Proceedings of Fourth International Conference on Natural Computation, 649-653. Perth: IEEE. [doi:10.1109/ICNC. 2008.854]

    (Edited by Ye SHI)

    This work was supported by the Key Project in the National Science and Technology Pillar Program for the Twelfth Five-Year Plan Period (Grant No. 2012BAB03B01), and the Jiangsu Provincial Post-Doctoral Support Plan (Grant No. 20100197).

    *Corresponding author (e-mail: xili@hhu.edu.cn)

    Received Feb. 15, 2013; accepted Sep. 1, 2014

    女警被强在线播放| 久久久久久亚洲精品国产蜜桃av| 国产激情久久老熟女| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区mp4| 亚洲精品一卡2卡三卡4卡5卡| 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 久久精品国产亚洲av高清一级| 亚洲人与动物交配视频| 真人做人爱边吃奶动态| 国产一区二区三区视频了| 99久久精品热视频| 极品教师在线免费播放| 国产69精品久久久久777片 | 国产精品一区二区三区四区免费观看 | 男人的好看免费观看在线视频 | 中文字幕人妻丝袜一区二区| 男插女下体视频免费在线播放| 国产成人啪精品午夜网站| 国产伦在线观看视频一区| 天天躁夜夜躁狠狠躁躁| 日韩三级视频一区二区三区| 女警被强在线播放| 成人欧美大片| 97碰自拍视频| 国产一区二区三区在线臀色熟女| 国产麻豆成人av免费视频| 亚洲欧美日韩高清在线视频| 国产高清视频在线播放一区| 国产黄a三级三级三级人| 青草久久国产| 99精品在免费线老司机午夜| 久久久久久人人人人人| 天堂动漫精品| 制服诱惑二区| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| www.自偷自拍.com| 国产精品影院久久| www日本在线高清视频| 亚洲国产精品合色在线| 久久婷婷成人综合色麻豆| 欧美+亚洲+日韩+国产| 美女大奶头视频| 中文字幕人妻丝袜一区二区| www.www免费av| 国产亚洲av嫩草精品影院| 欧美极品一区二区三区四区| 国产1区2区3区精品| 熟妇人妻久久中文字幕3abv| 国产精品免费视频内射| 成人特级黄色片久久久久久久| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片免费观看直播| 亚洲自拍偷在线| 两个人免费观看高清视频| av欧美777| 久久久久久人人人人人| 一区福利在线观看| 久久精品aⅴ一区二区三区四区| 免费在线观看完整版高清| 久久久久久大精品| 亚洲国产欧美一区二区综合| 最近在线观看免费完整版| 成年女人毛片免费观看观看9| 久久久久久久久中文| 久热爱精品视频在线9| 欧美日韩国产亚洲二区| 久久久久久久精品吃奶| 久久久久久久午夜电影| 精品国产美女av久久久久小说| 久久香蕉国产精品| 免费看美女性在线毛片视频| 啪啪无遮挡十八禁网站| bbb黄色大片| 久久精品国产99精品国产亚洲性色| 一本综合久久免费| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 很黄的视频免费| 男男h啪啪无遮挡| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 一本精品99久久精品77| 亚洲中文字幕一区二区三区有码在线看 | 日本黄大片高清| 午夜福利在线在线| 国产精品日韩av在线免费观看| 99riav亚洲国产免费| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 免费在线观看完整版高清| 久久午夜亚洲精品久久| 亚洲av成人一区二区三| av国产免费在线观看| 午夜亚洲福利在线播放| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| 99热只有精品国产| 国产成人aa在线观看| 脱女人内裤的视频| 嫩草影视91久久| 亚洲av电影在线进入| 欧美色欧美亚洲另类二区| 好看av亚洲va欧美ⅴa在| 美女免费视频网站| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 久热爱精品视频在线9| 精品乱码久久久久久99久播| 女警被强在线播放| 亚洲国产精品合色在线| 免费av毛片视频| a级毛片a级免费在线| 在线永久观看黄色视频| 校园春色视频在线观看| 欧美成狂野欧美在线观看| 免费看十八禁软件| 国产精品av久久久久免费| 欧美zozozo另类| bbb黄色大片| 国产精品 欧美亚洲| 黑人操中国人逼视频| 夜夜看夜夜爽夜夜摸| 变态另类成人亚洲欧美熟女| 12—13女人毛片做爰片一| 色尼玛亚洲综合影院| 又大又爽又粗| 桃红色精品国产亚洲av| 在线看三级毛片| 亚洲av成人精品一区久久| 搞女人的毛片| 国产高清视频在线播放一区| 老汉色av国产亚洲站长工具| 后天国语完整版免费观看| 热99re8久久精品国产| 色播亚洲综合网| 国产精品精品国产色婷婷| 亚洲一码二码三码区别大吗| 亚洲av成人精品一区久久| 大型黄色视频在线免费观看| 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 国产精品久久久av美女十八| 禁无遮挡网站| 超碰成人久久| av中文乱码字幕在线| 免费在线观看完整版高清| 国产真人三级小视频在线观看| 国产高清视频在线播放一区| 欧美乱色亚洲激情| 免费一级毛片在线播放高清视频| 白带黄色成豆腐渣| 午夜福利高清视频| 天堂动漫精品| 亚洲av电影不卡..在线观看| 日韩精品中文字幕看吧| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 神马国产精品三级电影在线观看 | 女人爽到高潮嗷嗷叫在线视频| av欧美777| 人成视频在线观看免费观看| 看黄色毛片网站| 久久人人精品亚洲av| a级毛片在线看网站| 亚洲av成人精品一区久久| 国产精品影院久久| 男人的好看免费观看在线视频 | 日本免费a在线| 两人在一起打扑克的视频| 午夜日韩欧美国产| 国产欧美日韩一区二区三| 亚洲精品久久国产高清桃花| 91在线观看av| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| www.自偷自拍.com| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 制服诱惑二区| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9| 久热爱精品视频在线9| 久久香蕉国产精品| 91大片在线观看| 日本五十路高清| 久久亚洲真实| 黑人操中国人逼视频| 在线永久观看黄色视频| 少妇的丰满在线观看| 欧美不卡视频在线免费观看 | 国产亚洲精品一区二区www| 99久久精品热视频| 少妇的丰满在线观看| 动漫黄色视频在线观看| 免费观看人在逋| 精品第一国产精品| 99re在线观看精品视频| 午夜激情福利司机影院| 不卡一级毛片| 男女视频在线观看网站免费 | 亚洲aⅴ乱码一区二区在线播放 | 在线观看美女被高潮喷水网站 | 五月伊人婷婷丁香| 亚洲人成伊人成综合网2020| 亚洲 欧美 日韩 在线 免费| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 日韩 欧美 亚洲 中文字幕| 精品欧美国产一区二区三| 91九色精品人成在线观看| 男女做爰动态图高潮gif福利片| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| 欧美日韩乱码在线| 国产探花在线观看一区二区| 久久精品国产亚洲av香蕉五月| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 亚洲成人久久性| 人成视频在线观看免费观看| 无限看片的www在线观看| 88av欧美| 国产片内射在线| 欧美日本亚洲视频在线播放| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三| 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 国产一区二区在线观看日韩 | 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 又黄又爽又免费观看的视频| 好男人电影高清在线观看| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清 | 五月伊人婷婷丁香| 日本撒尿小便嘘嘘汇集6| 欧美精品亚洲一区二区| 一夜夜www| 国产av麻豆久久久久久久| 黄色女人牲交| 婷婷丁香在线五月| av中文乱码字幕在线| 给我免费播放毛片高清在线观看| 777久久人妻少妇嫩草av网站| 欧美一区二区国产精品久久精品 | 亚洲国产看品久久| 狂野欧美白嫩少妇大欣赏| 午夜激情av网站| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 久久这里只有精品中国| 成人国语在线视频| av天堂在线播放| 欧美乱妇无乱码| 欧美激情久久久久久爽电影| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 美女大奶头视频| 日本一区二区免费在线视频| 久久久久久免费高清国产稀缺| cao死你这个sao货| 特级一级黄色大片| 亚洲av电影在线进入| 黄色a级毛片大全视频| 久久亚洲精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 久久久久九九精品影院| 午夜激情av网站| 91av网站免费观看| 欧美高清成人免费视频www| 精品乱码久久久久久99久播| www.精华液| 午夜免费成人在线视频| 久久这里只有精品19| 成人特级黄色片久久久久久久| cao死你这个sao货| 亚洲国产精品合色在线| av在线天堂中文字幕| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 国产人伦9x9x在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 不卡一级毛片| 欧美乱妇无乱码| 女同久久另类99精品国产91| av视频在线观看入口| 久久久久免费精品人妻一区二区| videosex国产| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 亚洲第一电影网av| 少妇人妻一区二区三区视频| 欧美中文日本在线观看视频| 国产男靠女视频免费网站| cao死你这个sao货| 手机成人av网站| 叶爱在线成人免费视频播放| 黄色毛片三级朝国网站| 变态另类丝袜制服| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| www.熟女人妻精品国产| 欧美日韩黄片免| 90打野战视频偷拍视频| 久久伊人香网站| 国产精品久久久av美女十八| 欧美一级毛片孕妇| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区| 999久久久国产精品视频| 真人一进一出gif抽搐免费| 亚洲专区国产一区二区| 一边摸一边抽搐一进一小说| 一级黄色大片毛片| 亚洲五月天丁香| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 国产精品野战在线观看| 久久精品影院6| 久久久精品大字幕| 变态另类丝袜制服| 99国产精品99久久久久| 久久久精品欧美日韩精品| 日日爽夜夜爽网站| 99国产极品粉嫩在线观看| АⅤ资源中文在线天堂| 亚洲欧美激情综合另类| 在线a可以看的网站| 床上黄色一级片| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 露出奶头的视频| 国产亚洲欧美98| 在线视频色国产色| 少妇裸体淫交视频免费看高清 | 亚洲欧美精品综合一区二区三区| 草草在线视频免费看| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 国产一区二区在线av高清观看| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 丁香六月欧美| 欧美一区二区国产精品久久精品 | 精品乱码久久久久久99久播| 午夜精品一区二区三区免费看| 亚洲成人国产一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久热爱精品视频在线9| 免费高清视频大片| 国产激情久久老熟女| 美女免费视频网站| 国产精品久久电影中文字幕| 欧美午夜高清在线| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 九色国产91popny在线| 岛国视频午夜一区免费看| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 国内精品久久久久精免费| 日本精品一区二区三区蜜桃| 脱女人内裤的视频| 露出奶头的视频| 韩国av一区二区三区四区| 亚洲九九香蕉| 亚洲一区中文字幕在线| 久久精品成人免费网站| 全区人妻精品视频| 一本一本综合久久| 国产高清视频在线播放一区| aaaaa片日本免费| 午夜福利在线在线| 精品欧美一区二区三区在线| 亚洲美女视频黄频| 国产激情久久老熟女| 黄色女人牲交| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清| 日韩三级视频一区二区三区| 99久久99久久久精品蜜桃| 亚洲九九香蕉| 欧美日韩精品网址| 一级片免费观看大全| 亚洲精品一卡2卡三卡4卡5卡| 这个男人来自地球电影免费观看| 三级国产精品欧美在线观看 | 中文字幕av在线有码专区| 极品教师在线免费播放| 婷婷亚洲欧美| 亚洲精品久久国产高清桃花| 老汉色∧v一级毛片| 久久香蕉激情| 男女午夜视频在线观看| 99热这里只有精品一区 | 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 欧美日韩中文字幕国产精品一区二区三区| 9191精品国产免费久久| 成人午夜高清在线视频| 亚洲专区国产一区二区| 最近在线观看免费完整版| 男人舔女人的私密视频| 又爽又黄无遮挡网站| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 十八禁网站免费在线| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 国产熟女午夜一区二区三区| 2021天堂中文幕一二区在线观| 美女高潮喷水抽搐中文字幕| 久久久精品大字幕| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频| 成在线人永久免费视频| 欧美绝顶高潮抽搐喷水| av超薄肉色丝袜交足视频| 在线a可以看的网站| 一本一本综合久久| 97碰自拍视频| 精品欧美一区二区三区在线| 在线永久观看黄色视频| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 91九色精品人成在线观看| 亚洲一码二码三码区别大吗| 亚洲人成网站在线播放欧美日韩| 国产真实乱freesex| av中文乱码字幕在线| 欧美日韩亚洲国产一区二区在线观看| 99久久精品热视频| 啦啦啦观看免费观看视频高清| 一个人免费在线观看的高清视频| 无限看片的www在线观看| 一级片免费观看大全| 国产一级毛片七仙女欲春2| av福利片在线| 免费看a级黄色片| 99热这里只有精品一区 | 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 十八禁人妻一区二区| 久久久久久九九精品二区国产 | 在线永久观看黄色视频| 看免费av毛片| 我要搜黄色片| 国产黄片美女视频| 青草久久国产| av中文乱码字幕在线| 国产精品久久电影中文字幕| 国产高清视频在线观看网站| 韩国av一区二区三区四区| 一个人观看的视频www高清免费观看 | 啦啦啦观看免费观看视频高清| 天天添夜夜摸| 国产精品一区二区精品视频观看| 久9热在线精品视频| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 国产欧美日韩一区二区三| 欧美激情久久久久久爽电影| 给我免费播放毛片高清在线观看| av天堂在线播放| 欧美中文综合在线视频| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 国产精品av久久久久免费| 国产精品98久久久久久宅男小说| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 免费看日本二区| 国产91精品成人一区二区三区| 国产精品电影一区二区三区| 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 精品一区二区三区四区五区乱码| 久久精品aⅴ一区二区三区四区| 看免费av毛片| 亚洲精品中文字幕一二三四区| 成人特级黄色片久久久久久久| 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 在线播放国产精品三级| 国产高清视频在线观看网站| 无限看片的www在线观看| 日韩高清综合在线| 午夜福利在线在线| 丰满人妻熟妇乱又伦精品不卡| 午夜免费观看网址| 亚洲欧洲精品一区二区精品久久久| 一进一出抽搐gif免费好疼| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| 此物有八面人人有两片| 欧美色视频一区免费| 在线观看www视频免费| 亚洲人与动物交配视频| 久久久久久九九精品二区国产 | 白带黄色成豆腐渣| 人成视频在线观看免费观看| 黄色成人免费大全| 两性夫妻黄色片| 国产真实乱freesex| 亚洲真实伦在线观看| 又爽又黄无遮挡网站| 一a级毛片在线观看| 亚洲第一欧美日韩一区二区三区| 国产真人三级小视频在线观看| av片东京热男人的天堂| 一进一出抽搐gif免费好疼| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 久久久久久久久久黄片| 免费一级毛片在线播放高清视频| 国内毛片毛片毛片毛片毛片| 中文在线观看免费www的网站 | 欧美日韩一级在线毛片| 每晚都被弄得嗷嗷叫到高潮| 久99久视频精品免费| 神马国产精品三级电影在线观看 | 999久久久国产精品视频| 黄色片一级片一级黄色片| av天堂在线播放| 久久久久国产一级毛片高清牌| 99国产极品粉嫩在线观看| 久久精品国产99精品国产亚洲性色| av中文乱码字幕在线| 国产精品久久电影中文字幕| 亚洲精品色激情综合| 日日爽夜夜爽网站| 嫩草影院精品99| 亚洲成av人片在线播放无| 久久久久久大精品| 特级一级黄色大片| 男女视频在线观看网站免费 | 禁无遮挡网站| 日韩免费av在线播放| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 亚洲美女黄片视频| 精品熟女少妇八av免费久了| 日本五十路高清| 成熟少妇高潮喷水视频| 中文字幕人成人乱码亚洲影| 正在播放国产对白刺激| 88av欧美| 欧美高清成人免费视频www| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区| 亚洲精品粉嫩美女一区| 制服诱惑二区| 久久久久久九九精品二区国产 | 午夜视频精品福利| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看 | 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 亚洲自拍偷在线| 在线播放国产精品三级| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区免费观看 | 最近最新中文字幕大全电影3| 亚洲无线在线观看| 色老头精品视频在线观看| a级毛片在线看网站| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 三级国产精品欧美在线观看 | 99国产极品粉嫩在线观看| 最近最新中文字幕大全免费视频| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 1024手机看黄色片| 国产av在哪里看| 欧美国产日韩亚洲一区| 99久久精品热视频| 午夜日韩欧美国产| 国产精品久久视频播放|