• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    2014-03-15 07:15:57ChanglinCHENJunchengZUOMeixiangCHENZhigangGAOSHUM
    Water Science and Engineering 2014年4期

    Chang-lin CHEN, Jun-cheng ZUO*, Mei-xiang CHEN, Zhi-gang GAO, C.-K. SHUM

    1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, P. R. China

    2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China

    3. National Marine Date and Information Service, State Oceanic Administration, Tianjin 300171, P. R. China

    4. School of Earth Sciences, Ohio State University, Columbus OH 43210, USA

    Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    Chang-lin CHEN1, Jun-cheng ZUO*2, Mei-xiang CHEN2, Zhi-gang GAO3, C.-K. SHUM4

    1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, P. R. China

    2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China

    3. National Marine Date and Information Service, State Oceanic Administration, Tianjin 300171, P. R. China

    4. School of Earth Sciences, Ohio State University, Columbus OH 43210, USA

    Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.

    sea level rise; steric sea level change; IPCC-A2 scenario; mass redistribution; Bohai, Yellow, and East China Seas

    1 Introduction

    Sea level rise (SLR) is one of the most profound consequences of anthropogenic climate change. As coastal ecosystems and their communities around the world are widely recognized to be vulnerable to SLR (Nicholls et al. 2007), it is very important to understand processes governing past and present SLRs and to obtain reliable future SLR projections (Yin et al. 2010).

    The global mean SLR from tide gauge records is assessed to have been about 1.7 mm/year in the 20th century and 1.8 mm/year in the period from 1950 to 2000 (Churchet al. 2004; Church and White 2006; Holgate 2007; Bindoff et al. 2007). Altimetry data show a more rapid rate of SLR at 3 mm/year after 1993 (Cazenave and Nerem 2004; Willis et al. 2008). However, the greater value of the estimated SLR rate could be a result of contamination by interannual or longer variations in the ocean. During the past decade, realistic global atmosphere-ocean general circulation models (AOGCMs) were widely used to simulate and project SLR (Gregory et al. 2001; Pardaens et al. 2011a, b; Church et al. 2011). The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) projected a global average SLR of between 0.18 m and 0.59 m from 1990 to 2100 using the full range of IPCC greenhouse gas (GHG) scenarios and a range of AOGCMs, including the ice sheet uncertainties (Bindoff et al. 2007). In responding to a changing climate, however, SLR of the global ocean will not be spatially uniform, but will rather display considerable regional patterns, as indicated by both observations and model projections (Douglas 2001; Landerer et al. 2007a; Yin et al. 2010; Suzuki and Ishii 2011; Merrifield 2011).

    The Bohai, Yellow, and East China Seas (BYECSs) are shallow marginal seas enclosed by East China, the Korean Peninsula, and Japan, with open connections to the northwest Pacific Ocean, South China Sea, and Sea of Japan (Fig. 1). The BYECSs have one of the most extensive continental shelves in the world. The Okinawa Trough, which is the deepest section in the BYECSs, extends alongside the Ryukyu Island chain and has a maximum depth of 2717 m. Water depth off the coast of the BYECSs is less than 20m, which makes these coastal areas very vulnerable to SLR. In the BYECSs, sea level variability is very complicated (Han and Huang 2008; Zuo et al. 2012), and SLR is apparent over the last 50 years based on the observational data (Yan et al. 2007; Chen et al. 2010).

    Previous studies on the projection of SLR with climate change in the BYECSs have been mainly based on simple estimation models. For example, Zhang (1997) set up a simple estimation model, which considers GHG emission to project the SLR along the coast of China. Li et al. (2011) predicted the SLR in the BYECSs using a semi-empirical method based on the relationship between the global surface air temperature and sea level. Simple estimation models are computationally cheap and canprovide insights into how the global SLR is modified through various mechanisms under different GHG emission scenarios. However, these simple models are based on the assumption that SLR in the future will respond to climate change as a linear system, so that the future response is analogous to the past. Furthermore, they are limited by lack of spatial variability (Jevrejeva et al. 2012). In contrast, the AOGCMs can simulate the spatial variations of SLR (Gregory et al. 2001). However, due to the high computational cost, most of the AOGCMs run with relatively coarse horizontal resolutions (about 1°×1° or lower for ocean components). Some continental shelves, e.g., those of the BYECSs, are not well represented by these models. Since the topography and ocean dynamics on these shelves cannot be well reproduced, the patterns and attributes of SLR in these regions are unclear.

    In this study, we set up a regional ocean general circulation model (ROGCM) of a portion of the Pacific Ocean with a grid refinement in the BYECSs, to project the SLR in the BYECSs in the 21st century. We only focused on the ocean dynamics that impact the absolute SLR pattern, while excluding the melting of glaciers and ice sheets, the gravitational loading effect that modifies the geoid (Mitrovica et al. 2009), and geological processes such as glacial isostatic adjustment (Peltier 2001) and sea-floor tectonics.

    2 Model configuration and analysis methods

    2.1 Model description

    The simulation described here was performed using the Los Alamos Parallel Ocean Program (POP) (Smith et al. 1992; Smith and Gent 2004), a level-coordinate ROGCM that solves three-dimensional primitive equations with realistic bottom topography. POP is the ocean component of the Community Climate System Model (CCSM) developed by the National Center for Atmospheric Research (NCAR). It is a Bryan-Cox-type model with an implicit free-surface treatment of the barotropic equations (Bryan 1969). The vertically integrated continuity equation in the Boussinesq approximation reads as follows:

    where ζBis the sea surface height (SSH) due to the Boussinesq dynamics, H is the depth of the ocean, Uis the vertically averaged horizontal velocity, and Q represents the surface freshwater flux, which is treated as virtual salt flux here. With the virtual salt flux, the dilution and salinification effects of rainfall and evaporation have to be parameterized by a salt extraction or input, and it is considered that the global hydrological cycle affects the oceanic circulation in the form of a spurious salt cycle (Yin et al. 2010).

    Eq. (1) implies volume conservation in the ocean; this formulation yields correct relative horizontal SSH gradients, but a spatially uniform time-varying correction term must be added in order to adjust the sea level for any net expansion or contraction through changes in the mean density in the model domain (Greatbatch 1994). Based on Mellor and Ezer (1995), thenon-Boussinesq SSH (ζ) can be written as

    where ζEis the SLR due to expansion or contraction of the water column and is equal to the area average ofbeing the vertical average of density deviation from a reference density, and ρ0being the reference density; and ζGSis unknown and negligible as a small error, which is largely attributable to the so-called Goldsbrough-Stommel gyres (Greatbatch 1994), a non-Boussinesq vortex stretching effect caused by density change.

    2.2 Model setup

    The model domain extends from 20°S to 65°N and from 98°E to 60°W. The horizontal grid is a non-uniform Mercator grid (Fig. 2). In order to sufficiently represent the BYECSs, the horizontal resolution of the domain (113°E to 132°E, and 22°N to 42°N) is 0.25° and gradually changes to 1° and 2° outside.

    Fig. 2 Model grid (black lines are plotted every two points) and topography

    In this study there were 40 non-uniform vertical levels, which varied in thickness from about 10 m at the surface to 250 m at depth. The topography was derived from the 1/12° ETOP05 database of the National Geophysical Data Center (NGDC). The depth of the BYECSs was replaced with the bathymetry data provided by the Navigation Assurance Ministry of the Chinese Navy Headquarters, and interpolated to model grids to provide more accurate ocean topography.

    Biharmonic operators were used for horizontal mixing of momentum and tracers. The horizontal viscosity and diffusivity varied spatially with the cube of the horizontal grid spacing and had equatorial values of 2.7 × 1010m4/s and 0.9 × 1010m4/s, respectively. The vertical viscosity and diffusivity were computed using the Richardson number formulation(Pacanowski and Philander 1981) with background values of 10-4m2/s and 10-5m2/s, respectively.

    The model was driven by surface wind and boundary forcing. The surface heat and freshwater fluxes were calculated from bulk flux formulations. Necessary forcing fields consisted of sea surface wind stress, sea surface temperature, air temperature, air humidity, downward short-wave radiation, cloud fraction, wind speed, sea surface salinity, and precipitation. All these fields were derived from the simulation result of the CCSM version 3.0 (CCSM3) under the IPCC-A2 scenario. Restoring buffer zones with a width of 3° were set near the four lateral boundaries where the temperature and salinity were restored to the monthly values of CCSM3 output data at all depths with a restoring time scale of 30 days. The A2 scenario is a medium-high emission scenario that is widely used in regional climate change research (Cayan et al. 2007; Tang et al. 2009; Graham et al. 2012).

    The model was initialized with the ocean at rest, and the temperature and salinity were set to the values of January 2000 in the CCSM3 IPCC-A2 experiment. Then, the model was spun up from January 2000 to December 2009 with a time step of 24 minutes, driven by the forcing described above. This completed a 10-year spinup. After that, we switched the model back to January 2000, and spun it up again for other nine rounds. In total a 100-year spinup was completed. Then, the model was run from January 2000 through December 2099. The monthly mean SSH, temperature, and salinity data were then used for analysis.

    2.3 Analysis methods

    Sea level change (Δζ) can be attributed to three major components:

    where Δhsis the local steric sea level change; Δpbgρ0is the sea level change induced by bottom pressure change, with pbbeing the bottom pressure, and g being the gravitational acceleration; and Δhais the atmospheric inverse barometer correction to the sea level change. In the present study, Δha=0.

    The local steric sea level change is associated with vertical expansion or contraction of the water column in response to changes in the local density. It is necessary to convert the gridded temperature and salinity anomalies to density anomalies at each standard level using the classical expression for the ocean state equation (Gill 1982). The local steric sea level change is further obtained by vertically integrating density anomalies at each grid point and each time step according to the following equation (Lombard et al. 2005):

    where S, T, and p are the salinity, temperature, and pressure, respectively, and S0and T0are the values in the reference state. ρ is a nonlinear function of S, T, and p (Gill 1982).

    3 Results and discussion

    3.1 Projection of SLR in BYECSs

    First of all, annual mean values of variables were calculated from the monthly mean output of the model. The time series of SLR in the Pacific Ocean (98°E to 60°W, 20°S to 65°N) was obtained from the averaged local steric sea level change. By the end of the 21st century, the projected SLR in the Pacific Ocean is about 0.18m with a significant acceleration (Fig. 3). This implies that the net heat flux into the ocean is increasing steadily (Gregory et al. 2001). The rising value is much smaller than the global mean projected SLR over the 21st century, which is about 0.30m under the IPCC-A2 scenario (see Fig. 3(c) in Meehl and Washington 2006). The same result is shown in Landerer et al. (2007a).

    As the POP model used in this study is based on a Boussinesq approximation, a correction term (ζE) must be applied to SSH according to Eq. (2), where ζEis the spatially uniform time-varying area-averaged SLR of the Pacific Ocean (Fig. 3). After adding ζEto the SSH of the model output in the Boussinesq approximation ζB, the non-Boussinesq SSH ζ was obtained, and the sea level change in the BYECSs was further obtained, as shown in Fig. (4).

    Fig. 3 Mean SLR over model domain

    Fig. 4 Projections of SLR in BYECSs from 2090 to 2099 relative to 2000 to 2009

    The projected SLR ranges from 0.12 to 0.20 m in the BYECSs (Fig. 4). The value is largein the sea area near the Ryukyu Island chain connected to the Northwestern Pacific Ocean, where the bathymetry is deeper than 200 m, and relatively low on the continental shelves. The SLR in the Bohai Sea reaches 0.17 m; the rise in amplitude is more than 0.16 m in the eastern part of the Yellow Sea and East China Sea, a little larger than that in the western part of the BYECSs, where it is is less than 0.15 m.

    3.2 Local steric SLR

    The local steric SLR was calculated with Eq. (4). The local steric SLR is positive for all regions in the BYECSs (Fig. 5(a)). A large value also occurs near the Ryukyu Island chain, which reaches 0.20 m. In contrast, shallow water columns on the continental shelves of the BYECSs only permit a much smaller steric expansion than the deep water region. This steric SLR pattern demonstrates a sharp gradient across the Kuroshio (Landerer et al. 2007b). On the continental shelves, the steric SLR ranges from 0.02 to 0.08 m, with a relatively larger value in the offshore area, and a smaller value near the coastline (Fig. 5(a)). In general, the steric SLR contributes less than 50% to the total projected SLR, and the contribution is even smaller near the coastal region, with a ratio of less than 20% (Fig. 5(b)). The steric SLR can be divided into thermosteric and halosteric SLRs. Almost all of the steric SLR on the continental shelves is induced by the thermosteric effect. However, the steric SLR off the Kuroshio largely results from the halosteric effect (figures omitted).

    Fig. 5 Local steric SLR from 2090 to 2099 relative to 2000 to 2009 and its contribution to total projected SLR

    3.3 SLR induced by mass redistribution

    From the difference between the projected SLR (Fig. 4) and local steric SLR (Fig. 5(a)), the contribution of bottom pressure change to the total projected SLR for the period of 2090 to 2099 relative to the period of 2000 to 2009 was obtained. The contribution of the bottompressure change (Δ pbgρ0) is caused by ocean mass redistributions which result from tides, ocean circulation changes, or water mass flux such as the global water cycle or melting of glaciers and ice sheets. In the CCSM3 and POP models, the contributions to SLR from ice sheets and glacier melting are not included, and freshwater flux is treated as virtual salt flux. Hence, all of the bottom pressure changes are considered solely from the ocean mass redistributions induced by the ocean dynamic change. Most prominently, an additional mass loading that can cause a SLR of up to 0.13 m occurs on the continental shelves of the BYECSs, where the water depth is less than 200 m, while the effect is very small in the deep water region (Fig. 6(a)). The pattern effectively reduces the strong local steric SLR gradient across the Kuroshio. This means that sea water tends to move from the Pacific Ocean to the continental shelves of the BYECSs. On the continental shelves of the BYECSs, the mass redistribution-induced SLR is closely related to the water depth, with the value ranging from 0.09 m in the offshore area to 0.15 m in the coastal area (Fig. 6(a)). In general, mass redistribution-induced SLR contributes more than 50% to the total projected SLR on the continental shelves of the BYECSs, and the contribution is even larger near the coastal region, with a ratio of more than 80% (Fig. 6(b)).

    Fig. 6 SLR induced by mass redistribution from 2090 to 2099 relative to 2000 to 2009 and its contribution to total projected SLR

    4 Conclusions

    (1) A ROGCM of the Pacific Ocean, with a grid refinement in the BYECSs, was established to project the SLR in the BYECSs in the 21st century. Simulation results show that, at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. SLR in the Bohai Sea is relatively large, reaching 0.17 m. The rise in amplitude in the eastern BYECSs is larger than that in the western BYECSs. The sea level will rise about 0.20 m nearthe Ryukyu Islands.

    (2) The contributions of different factors to SLR can be divided into the ocean mass redistribution and local steric sea level change. In summary, the SLR in the BYECSs over the 21st century will mainly be due to the ocean mass redistribution caused by the ocean dynamic change, which means that sea water will tend to move from the Pacific Ocean to the continental shelves of the BYECSs. This also implies that, with global warming, the SLR in the BYECSs, to a great extent, will be determined by Pacific Ocean-scale changes, rather than by local changes.

    (3) In the study, it is considered that only the ocean dynamics affect the absolute SLR patterns. The model does not include contributions from ice sheets, glacier melting, and land movements. Tidal contributions are also negligible in the low-frequency change analysis. Thus, the projected SLR in this study is smaller than those in the previous studies, which were based on simple estimation models. For example, Zhang (1997) and Li et al. (2011) showed that the SLR in the BYECSs at the end of the 21st century would be about 0.28 to 0.64 m and 0.30 to 0.74 m, respectively.

    (4) Results in this study were obtained from one ROGCM, which contains uncertainties in modeling of climate change. Therefore, the results only suggest a possible estimation of SLR in the BYECSs under the IPCC-A2 scenario. In future studies, SLR should be projected with different models under different emission scenarios so as to provide a more representative prediction range.

    Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., et al. 2007. Observations: Oceanic climate change and sea level. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 386-432. Cambridge: Cambridge University Press.

    Bryan, K. 1969. A numerical method for the study of the circulation of the world ocean. Journal of Computational Physics, 4(3), 347-376.

    Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., and Hayhoe, K. 2008. Climate change scenarios for the California region. Climatic Change, 87(s1), 21-42. [doi:10.1007/s10584-007-9377-6]

    Cazenave, A., and Nerem, R. S. 2004. Present-day sea level change: Observations and causes. Reviews of Geophysics, 42(3), RG3001. [doi:10.1029/2003RG000139]

    Chen, M. C., Zuo, J. C., Chen, M. X., Zhang, J. L., and Du, L. 2007, Spatial distribution of sea level trend and annual range in the China Seas from 50 long term tidal gauge station data. Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, 583-587. Vancouver: ISOPE.

    Church, J. A., White, N. J., Coleman, R., Lambeck, K., and Mitrovica, J. X. 2004. Estimates of the regional distribution of sea level rise over the 1950 to 2000 period. Journal of Climate, 17(13), 2609-2625. [doi:10.1175/1520-0442(2004)017〈2609:EOTRDO〉2.0.CO;2]

    Church, J. A., and White, N. J. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33(1), 01602. [doi:10.1029/ 2005GL024826]

    Church, J. A., Gregory, J. M., White, N. J., Platten, S. M., and Mitrovica, J. X. 2011. Understanding and projecting sea level change. Oceanography, 24(2), 130-143. [doi:10.5670/oceanog.2011.33]

    Douglas, B. C. 2001. Sea level change in the era of the recording tide gauge. Douglas, B. C., Kearney, M. S., andLeatherman, S. P., eds., Sea Level Rise: History and Consequence, 37-62. New York: Academic Press.

    Gill, A. E. 1982. Atmosphere-Ocean Dynamics, 662. San Diego: Academic Press.

    Graham, N. E., Cayan, D. R., Bromirski, P. D., and Flick, R. E. 2012. Multi-model projections of twenty-first century North Pacific winter wave climate under the IPCC A2 scenario. Climate Dynamics, 40(5-6), 1335-1360. [doi:10.1007/s00382-012-1435-8]

    Greatbatch, R. J. 1994. A note on the representation of steric sea level in model that conserve volume rather than mass. Journal of Geophysical Research, 99(C6), 12767-12771. [doi:10.1029/94JC00847]

    Gregory, J. M., Church, J. A., Boer, G. J., Dixon, K. W., Flato, G. M., Jackett, D. R., Lowe, J. A., O'Farrell, S. P., Roeckner, E., Russell, G. L., et al. 2001. Comparison of results from several AOGCMs for global and regional sea-level change 1900-2100. Climate Dynamics,18(3-4), 225-240. [doi:10.1007/s003820100180]

    Han, G. Q., and Huang, W. G. 2008. Pacific decadal oscillation and sea level variability in the Bohai, Yellow, and East China Seas. Journal of Physical Oceanography, 38(12), 2772-2783. [doi:10.1175/2008JPO3885.1]

    Holgate, S. J. 2007. On the decadal rates of sea level change during the twentieth century. Geophysical Research Letters, 34(1), L01602. [doi:10.1029/2006GL028492]

    Jevrejeva, S., Moore, J. C., and Grinsted, A. 2012. Sea level projections to AD2500 with a new generation of climate change scenarios. Global and Planetary Change, 80-81, 14-20. [doi:10.1016/j.gloplacha. 2011.09.006]

    Landerer, F. W., Jungclaus, J. H., and Marotzke, J. 2007a. Regional dynamic and steric sea level change in response to the IPCC A1B scenario. Journal of Physical Oceanography, 37(2), 296-312. [doi: 10.1175/JPO3013.1]

    Landerer, F. W., Jungclaus, J. H., and Marotzke, J. 2007b. Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate. Geophysical Research Letters, 34(6), L06307. [doi:10.1029/ 2006GL029106]

    Li, X., Zhang, J., and Gao, Z. 2011. Discussion on semi-empirical prediction method for sea level change of China. Marine Sciences Bulletin, 30(5), 540-543. (in Chinese)

    Lombard, A., Cazenave, A., Le Traon, P. Y., and Ishii, M. 2005. Contribution of thermal expansion to present-day sea level change revisited. Global and Planetary Change, 47(1), 1-16. [doi: 10.1016/j.gloplacha.2004.11.016]

    Meehl, G. A., and Washington, W. M. 2006. Climate change projections for the twenty-first century and climate change commitment in the CCSM3. Journal of Climate, 19(11), 2597-2616. [doi:10.1175/JCLI3746.1]

    Mellor, G. L., and Ezer, T. 1995. Sea level variations induced by heating and cooling: An evaluation of the Boussinesq approximation in ocean models. Journal of Geophysical Research, 100(C10), 20565-20577. [doi:10.1029/95JC02442]

    Merrifield, M. A. 2011. A shift in western tropical Pacific sea level trends during the 1990s. Journal of Climate, 24(15), 4126-4138. [doi:10.1175/2011JCLI3932.1]

    Mitrovica, J. X., Gomez, N., and Clark, P. U. 2009. The sea-level fingerprint of west Antarctic collapse. Science, 323(5915), 753. [doi:10.1126/science.1166510]

    Nicholls, R. J., Wong, P. P., Burkett, V. R., Codignotto, J. O., Hay, J. E., McLean, R. F., Ragoonaden, S., and Woodroffe, C. D. 2007. Coastal systems and low-lying areas. Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., eds., Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 315-357. Cambridge: Cambridge University Press.

    Pacanowski, R. C., and Philander, S. G. H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11), 1443-1451. [doi:10.1175/1520-0485(1981) 011〈1443:POVMIN〉2.0.CO;2]

    Pardaens, A. K., Gregory, J. M., and Lowe, J. A. 2011a. A model study of factors influencing projected changes in regional sea level over the twenty-first century. Climate Dynamics, 36(9), 2015-2033. [doi:10.1007/ s00382-009-0738-x]

    Pardaens, A. K., Lowe, J. A., Brown, S., Nicholls, R. J., and de Gusm?o, D. 2011b. Sea level rise and impacts projections under a future scenario with large greenhouse gas emission reductions. Geophysical ResearchLetters, 38(12), L12604. [doi:10.1029/2011GL047678]

    Peltier, W. R. 2001. Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Douglas, B. C., Kearney, M. S., and Leatherman, S. P., eds., Sea Level Rise: History and Consequences, 65-95. New York: Academic Press.

    Smith, R., and Gent, P. 2004. Reference Manual for the Parallel Ocean Program (POP). Los Alamos: Los Alamos National Laboratory.

    Smith, R. D., Dukowicz, J. K., and Malone, R. C. 1992. Parallel ocean general circulation modeling. Physica D: Nonlinear Phenomena, 60(1-4), 38-61. [doi:10.1016/0167-2789(92)90225-C]

    Suzuki, T., and Ishii, M. 2011. Regional distribution of sea level changes resulting from enhanced greenhouse warming in the model for interdisciplinary research on climate version 3.2. Geophysical Research Letters, 38(2), L02601. [doi:10.1029/2010GL045693]

    Tang, J. P., Chen, X., Zhao, M., and Su, B. K. 2009. Numerical simulation of regional climate change under IPCC A2 scenario in China. ActaMeteorologica Sinica, 23(1), 29-42.

    Willis, J. K., Chambers, D. P., and Nerem, R. S. 2008. Assessing the globally averaged sea level budget on seasonal to interannual timescales. Journal of Geophysical Research, 113(C6), C06015. [doi:10.1029/ 2007JC004517]

    Yan, M., Zuo, J. C., Du, L., Li, L., and Li, P. L. 2007. Sea level variation/change and steric contributions in the East China Sea. Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, 2377-2382. Lisbon: ISOPE.

    Yin, J. J., Griffies, S. M., and Stouffer, R. J. 2010. Spatial variability of sea level rise in twenty-first century projections. Journal of Climate, 23(17), 4585-4607. [doi:10.1175/2010jcli3533.1]

    Zhang, J. W. 1997. Estimate model of MSL change along the coast of China. Marine Science Bulletin, 16(4), 1-9. (in Chinese)

    Zuo, J. C., He, Q. Q., Chen, C. L., Chen, M. X., and Xu, Q. 2012. Sea level variability in the East China Sea and its respond to ENSO. Water Science and Engineering, 5(2), 164-174. [doi:10.3882/j.issn.1674-2370.2012.02.005]

    (Edited by Ye SHI)

    This work was supported by the National Natural Science Foundation of China (Grants No. 41206021 and 41276018), the National Basic Research Program of China (Grant No. 2012CB955601), the Young Scientist Foundation of the State Oceanic Administration, China (Grant No. 2012251), the U.S. National Science Foundation Belmont Forum Program (Grant No. ICER-1342644), and the GASI-03-01-01-09.

    *Corresponding author (e-mail: zuo@ouc.edu.cn)

    Received Aug. 24, 2013; accepted Jun. 30, 2014

    久久久久久人人人人人| 久9热在线精品视频| 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 97超视频在线观看视频| av视频在线观看入口| 中文字幕精品亚洲无线码一区| 天堂影院成人在线观看| 欧美乱色亚洲激情| 日韩精品青青久久久久久| 国产欧美日韩一区二区三| a级毛片a级免费在线| 免费看十八禁软件| 国产精品久久电影中文字幕| www日本在线高清视频| ponron亚洲| 最新中文字幕久久久久| 男女之事视频高清在线观看| 免费在线观看亚洲国产| 天堂av国产一区二区熟女人妻| 在线十欧美十亚洲十日本专区| 日韩欧美 国产精品| 久久久成人免费电影| 免费大片18禁| 首页视频小说图片口味搜索| 国产精品野战在线观看| 动漫黄色视频在线观看| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 亚洲人与动物交配视频| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美在线一区二区| 久久性视频一级片| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区免费观看 | 国产国拍精品亚洲av在线观看 | 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 久久久久久大精品| 亚洲欧美激情综合另类| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 久久久久久大精品| 午夜激情欧美在线| 日韩大尺度精品在线看网址| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 老汉色∧v一级毛片| 一进一出好大好爽视频| 俺也久久电影网| 欧美中文综合在线视频| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 俄罗斯特黄特色一大片| 国产亚洲欧美98| 成人欧美大片| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 午夜精品久久久久久毛片777| 99久久成人亚洲精品观看| 国产精品一区二区三区四区免费观看 | 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 久久久久免费精品人妻一区二区| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 少妇人妻精品综合一区二区 | 国产av麻豆久久久久久久| 精品国产超薄肉色丝袜足j| 国产精品久久久久久精品电影| 日本a在线网址| 国产精品亚洲av一区麻豆| 亚洲成av人片在线播放无| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 国内精品久久久久久久电影| 少妇的逼水好多| 久久久久久九九精品二区国产| 美女高潮喷水抽搐中文字幕| 久99久视频精品免费| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 久久久成人免费电影| 欧美成人一区二区免费高清观看| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区在线臀色熟女| 国产中年淑女户外野战色| 可以在线观看毛片的网站| 动漫黄色视频在线观看| 19禁男女啪啪无遮挡网站| 欧美色视频一区免费| 久久久精品大字幕| 国产一级毛片七仙女欲春2| 在线免费观看的www视频| 日韩高清综合在线| 亚洲人成网站高清观看| 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| bbb黄色大片| 亚洲av中文字字幕乱码综合| 97人妻精品一区二区三区麻豆| 嫩草影院精品99| 免费在线观看成人毛片| 国产免费男女视频| www日本黄色视频网| 亚洲av第一区精品v没综合| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 悠悠久久av| 床上黄色一级片| 可以在线观看的亚洲视频| av专区在线播放| 91久久精品电影网| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 欧美黑人巨大hd| 欧美大码av| 色哟哟哟哟哟哟| 99在线人妻在线中文字幕| 51国产日韩欧美| 免费观看精品视频网站| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清| 国产成人欧美在线观看| 国产精品亚洲一级av第二区| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 97人妻精品一区二区三区麻豆| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 每晚都被弄得嗷嗷叫到高潮| 在线观看美女被高潮喷水网站 | 99久久成人亚洲精品观看| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片 | 国产伦在线观看视频一区| 欧美bdsm另类| 真人一进一出gif抽搐免费| av专区在线播放| 亚洲精品一区av在线观看| 最近视频中文字幕2019在线8| e午夜精品久久久久久久| 搞女人的毛片| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 亚洲电影在线观看av| 琪琪午夜伦伦电影理论片6080| 欧美黄色淫秽网站| 小说图片视频综合网站| 嫩草影院精品99| 欧美极品一区二区三区四区| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 97碰自拍视频| 久久6这里有精品| 高清在线国产一区| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站 | 一级毛片女人18水好多| 国产一区二区在线观看日韩 | 欧美乱色亚洲激情| 国产高清视频在线观看网站| 国产单亲对白刺激| 在线观看免费视频日本深夜| a级毛片a级免费在线| 免费看日本二区| av福利片在线观看| 亚洲内射少妇av| 精品国产超薄肉色丝袜足j| 久久香蕉国产精品| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 午夜福利免费观看在线| 99久久综合精品五月天人人| 午夜福利高清视频| 欧美成人性av电影在线观看| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 欧美午夜高清在线| 日本黄色片子视频| 女同久久另类99精品国产91| 国产黄a三级三级三级人| e午夜精品久久久久久久| av天堂中文字幕网| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 免费看光身美女| 精品乱码久久久久久99久播| 国产成人欧美在线观看| 老熟妇仑乱视频hdxx| 性色av乱码一区二区三区2| 亚洲天堂国产精品一区在线| 一级a爱片免费观看的视频| 中国美女看黄片| 中文字幕高清在线视频| 亚洲,欧美精品.| 国产日本99.免费观看| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 在线a可以看的网站| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 有码 亚洲区| 欧美黄色淫秽网站| 精品人妻偷拍中文字幕| 一本久久中文字幕| 婷婷亚洲欧美| 色噜噜av男人的天堂激情| 久久久色成人| 人妻丰满熟妇av一区二区三区| 日本与韩国留学比较| 中文字幕熟女人妻在线| 真实男女啪啪啪动态图| 午夜影院日韩av| 亚洲五月天丁香| 国产av麻豆久久久久久久| 一区福利在线观看| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 制服丝袜大香蕉在线| 最新美女视频免费是黄的| 精品电影一区二区在线| 久久亚洲真实| 日日夜夜操网爽| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看 | 久久人妻av系列| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 欧美日本视频| 国产av不卡久久| 99热这里只有精品一区| 日韩欧美精品v在线| 十八禁人妻一区二区| 在线播放无遮挡| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 亚洲精品在线观看二区| 亚洲欧美日韩高清专用| 在线观看66精品国产| 嫩草影院精品99| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| www.www免费av| 少妇的逼水好多| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 精品人妻偷拍中文字幕| 真人一进一出gif抽搐免费| 少妇高潮的动态图| 一夜夜www| 国产激情偷乱视频一区二区| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 国产免费一级a男人的天堂| 母亲3免费完整高清在线观看| 免费av观看视频| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费 | 香蕉久久夜色| 亚洲国产欧美人成| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 九色国产91popny在线| 日韩 欧美 亚洲 中文字幕| 精品无人区乱码1区二区| 亚洲精品在线美女| 国产精品 国内视频| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 九九久久精品国产亚洲av麻豆| e午夜精品久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| av天堂中文字幕网| 亚洲精华国产精华精| 久久精品国产亚洲av涩爱 | 有码 亚洲区| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久一区二区三区 | 成人亚洲精品av一区二区| 欧美又色又爽又黄视频| 三级毛片av免费| 日韩中文字幕欧美一区二区| 日韩欧美精品免费久久 | 日韩人妻高清精品专区| 国产精华一区二区三区| 全区人妻精品视频| 91久久精品国产一区二区成人 | 少妇的逼好多水| 国产综合懂色| 久久中文看片网| 免费在线观看亚洲国产| 久久欧美精品欧美久久欧美| 三级毛片av免费| 悠悠久久av| 禁无遮挡网站| 亚洲成人免费电影在线观看| 中国美女看黄片| 婷婷亚洲欧美| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 波多野结衣高清作品| 亚洲第一电影网av| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 女警被强在线播放| 美女高潮的动态| 精品电影一区二区在线| 一进一出抽搐动态| 日韩精品青青久久久久久| 成人av在线播放网站| 国产视频一区二区在线看| 天天躁日日操中文字幕| 亚洲国产精品合色在线| 观看美女的网站| 18+在线观看网站| 琪琪午夜伦伦电影理论片6080| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 精品99又大又爽又粗少妇毛片 | 日本黄色视频三级网站网址| 国产精品 国内视频| 欧美绝顶高潮抽搐喷水| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频| or卡值多少钱| 欧美日本视频| 黄色视频,在线免费观看| 18+在线观看网站| 90打野战视频偷拍视频| 18+在线观看网站| 亚洲无线在线观看| 欧美日本视频| 天美传媒精品一区二区| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| or卡值多少钱| 欧美乱色亚洲激情| 两个人视频免费观看高清| 国产探花极品一区二区| 91久久精品国产一区二区成人 | 亚洲国产欧美人成| 在线国产一区二区在线| 国产精品女同一区二区软件 | 级片在线观看| 亚洲av美国av| 午夜精品一区二区三区免费看| 男女床上黄色一级片免费看| 可以在线观看毛片的网站| 国产成人福利小说| 午夜日韩欧美国产| 国产精品女同一区二区软件 | 午夜精品一区二区三区免费看| 欧美黑人欧美精品刺激| 淫妇啪啪啪对白视频| 高清日韩中文字幕在线| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 免费在线观看日本一区| 久久久久久大精品| 国产成+人综合+亚洲专区| 欧美日韩乱码在线| 婷婷亚洲欧美| 日韩欧美精品免费久久 | 国产精品免费一区二区三区在线| 夜夜躁狠狠躁天天躁| 97超视频在线观看视频| 窝窝影院91人妻| 久久久久久国产a免费观看| 国产激情欧美一区二区| 琪琪午夜伦伦电影理论片6080| 成人精品一区二区免费| 女生性感内裤真人,穿戴方法视频| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看 | 久久精品国产清高在天天线| www.熟女人妻精品国产| 亚洲,欧美精品.| 欧美一级a爱片免费观看看| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 精华霜和精华液先用哪个| 国产亚洲欧美98| 美女免费视频网站| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 日日夜夜操网爽| 露出奶头的视频| 亚洲成av人片在线播放无| 在线观看美女被高潮喷水网站 | 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 国产精品影院久久| 亚洲激情在线av| 日本黄色片子视频| 国内揄拍国产精品人妻在线| 国产高清三级在线| 国产亚洲欧美在线一区二区| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 国产精华一区二区三区| 又粗又爽又猛毛片免费看| 麻豆国产av国片精品| 两个人的视频大全免费| 午夜激情欧美在线| 国产真人三级小视频在线观看| svipshipincom国产片| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 日日干狠狠操夜夜爽| 手机成人av网站| a在线观看视频网站| 国产极品精品免费视频能看的| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 少妇的逼水好多| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 丰满人妻一区二区三区视频av | 日本与韩国留学比较| 成熟少妇高潮喷水视频| 在线免费观看的www视频| 成人欧美大片| 日本a在线网址| 小说图片视频综合网站| 可以在线观看的亚洲视频| 久久国产乱子伦精品免费另类| 蜜桃久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 国产亚洲精品综合一区在线观看| 日韩av在线大香蕉| 小说图片视频综合网站| 亚洲人与动物交配视频| eeuss影院久久| xxx96com| 舔av片在线| 欧美日韩瑟瑟在线播放| 欧美成狂野欧美在线观看| 91久久精品电影网| 亚洲第一欧美日韩一区二区三区| 国产精品,欧美在线| 真人做人爱边吃奶动态| 女人十人毛片免费观看3o分钟| 亚洲精品一卡2卡三卡4卡5卡| 久久久色成人| 日韩欧美精品v在线| 国产av一区在线观看免费| 亚洲内射少妇av| 内射极品少妇av片p| 最近最新免费中文字幕在线| 国产免费一级a男人的天堂| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久| 99热精品在线国产| 免费观看人在逋| 精品不卡国产一区二区三区| 无人区码免费观看不卡| avwww免费| 中文字幕久久专区| 男女之事视频高清在线观看| 亚洲 欧美 日韩 在线 免费| xxxwww97欧美| 高清日韩中文字幕在线| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 精品国产超薄肉色丝袜足j| 国内精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 成人一区二区视频在线观看| 最近最新中文字幕大全免费视频| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 麻豆成人午夜福利视频| www日本黄色视频网| 淫妇啪啪啪对白视频| 国内毛片毛片毛片毛片毛片| 欧美区成人在线视频| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久精免费| 免费观看人在逋| 全区人妻精品视频| 在线看三级毛片| 国产欧美日韩一区二区三| 午夜免费男女啪啪视频观看 | 亚洲国产高清在线一区二区三| 国内精品久久久久久久电影| 国产精品久久久久久精品电影| 一区二区三区国产精品乱码| 嫩草影院入口| 日韩欧美国产一区二区入口| 亚洲av电影不卡..在线观看| 亚洲内射少妇av| 欧美激情久久久久久爽电影| 在线观看日韩欧美| 国产精品香港三级国产av潘金莲| 可以在线观看毛片的网站| 欧美激情在线99| 国产精品综合久久久久久久免费| 人妻久久中文字幕网| 天堂动漫精品| 一个人看视频在线观看www免费 | 久久国产乱子伦精品免费另类| 久久国产精品人妻蜜桃| 听说在线观看完整版免费高清| 黄色日韩在线| 国内精品久久久久久久电影| 午夜免费观看网址| 欧美日韩国产亚洲二区| 一本久久中文字幕| 国产真实伦视频高清在线观看 | 熟女少妇亚洲综合色aaa.| 少妇的逼好多水| 白带黄色成豆腐渣| 午夜激情福利司机影院| 91麻豆精品激情在线观看国产| 中文字幕av在线有码专区| 中国美女看黄片| av中文乱码字幕在线| 天堂影院成人在线观看| 超碰av人人做人人爽久久 | 99国产精品一区二区蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 蜜桃久久精品国产亚洲av| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| 在线看三级毛片| 久久久久久久久久黄片| www日本在线高清视频| 成人av在线播放网站| 久久这里只有精品中国| 亚洲成av人片在线播放无| 桃红色精品国产亚洲av| 97人妻精品一区二区三区麻豆| 99热精品在线国产| 欧美成人a在线观看| 日本五十路高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产黄色小视频在线观看| 悠悠久久av| 国产精品 欧美亚洲| 嫩草影院精品99| 精品国产超薄肉色丝袜足j| 色综合欧美亚洲国产小说| 哪里可以看免费的av片| 黄色日韩在线| 国产69精品久久久久777片| 欧美黄色片欧美黄色片| 国内精品一区二区在线观看| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av香蕉五月| 亚洲国产欧美网| 国产亚洲精品久久久com| 国产一区二区在线观看日韩 | 欧美黑人欧美精品刺激| 色老头精品视频在线观看| 99热6这里只有精品| 88av欧美| 老司机在亚洲福利影院| 99久久精品国产亚洲精品| 波多野结衣高清作品| 国语自产精品视频在线第100页| 97超级碰碰碰精品色视频在线观看| 高清日韩中文字幕在线| 日本熟妇午夜| 99热6这里只有精品| 深夜精品福利| 国产毛片a区久久久久| 亚洲欧美激情综合另类|