• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir

    2014-03-14 06:45:42ChuanKaiNiuYuFeiTan

    Chuan-Kai Niu,Yu-Fei Tan

    (School of Municipal&Environment Engineering,Harbin Institute of Technology,Harbin 150090,China)

    1 Introduction

    The technology of using CO2as cushion gas for UGSR has many advantages,including replacing the large deposits of natural gas in UGSR,achieving carbon sequestration,reducing the greenhouse effect,and bringing high economic benefits,etc[1].According to the statistics from United States in 2010[2-4],the total capacity of cushion gas in its running 411 UGSR amounts to 117.67×109m3.If 20% of the cushion gases are replaced with CO2,as much as about 23.54× 109m3natural gas deposits can be further utilized,which bringsthe significantsocialand economic benefits[5].

    The major technical challenge of using CO2as the cushion gas in reservoirs is the mixed of CO2and natural gas.The studies have shown that the mixed of two gases will cause the increase of impurities in the mined peak shaving gas and the decrease of the calorific value[6-7].The mixed zone of CO2and natural gas wascaused by both moleculardiffusion and convection flow.However,the previous mathematic models[8-9]often neglected the influence of molecular diffusion.In these models,the coefficient for the molecular diffusion term is much smaller than the coefficient for the convection diffusion term.So,these models cannot accurately predict the mixing extent of the two gases and the change of these concentrations.

    In this paper,a numerical model is proposed to predict the mixture and diffusion of CO2and natural gas in aquifer UGSR,based on the three dimensional gaswater two-phase flow theory and the gas diffusion theory. Firstly, the pressure equation and the saturation equation for the reservoir are discretized and solved using finite difference method,so the transient pressure distribution and saturation in the reservoir are obtained.Then implicit difference scheme is used to discretize the gas diffusion equation,through which the concentration distribution of CO2and natural gas of reservoir are derived based on the transient pressure distribution of reservoir and saturation.The accuracy of the model is further validated using the actual operation data from Dazhangtuo UGSR,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied:the ratio of CO2injection,the reservoir porosity and the initial operation pressure.Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results will provide the technical guides for using CO2as cushion gas for UGSR in real projects.

    2 Development and Solution of Mathematical Model

    2.1 Gas-Water Two-Phase Seepage Equation

    Following assumptions have been made to simplify the mathematical model:(1)temperature is uniformly distributed in the horizontal direction;(2)natural gas is insoluble.Since the seepage is governed by gravity and capillary pressure and italso considersthe compressibility of rock and fluid,and the anisotropy of the rock,theseepagecan bedescribed bythe extended Darcy Law[10-11].

    Gas phase:

    Water phase:

    where K is absolute permeability of mixed gas(μm2); Krgand Krware relative permeability of mixed gas and water phase;μgand μware dynamic viscosity of mixed gas and water phase(Pa·s);Sgand Sware gas and water saturation;φ is effective porosity;δ is a function of gas source and δ=1 at the wellhead and δ=0 not at the wellhead;H is dimension factor;Cgand Cware isothermal compressibility of mixed gas and water phase,which can be calculated as in Eq.(3),and Bgand Bware volume coefficients of mixed gas and water phase,which can be calculated as in Eq.(4).

    where Vgand ρgare the volume(m3)and density of mixed gas(kg/m3)under formation condition;Vgsand ρgsarethevolume(m3)and densityofmixed gas(kg/m3)under standard condition;Vwand ρware the volume(m3)and density of water(kg/m3)under formation condition;Vwsand ρwsare the volume(m3) and density ofwater(kg/m3)understandard condition;pgand pware capillary pressure of mixed gas and water phase(Pa);qgand qware unit injectionproduction rate of mixed gas and water phase at wellhead(kg/(m3·s)),and it is positive while injection and negative while production and zero while the well is shut-in.

    2.2 Diffusion Equations of Mixed Gas

    The underground reservoir has good fractal characters and the mixed gas diffusion follows Fick's law.The total mass flow rate of the gas diffusion process contains convection and molecular diffusion. Convective flow of fluid is the mass transfer caused by seepage flow of mixed gas,while molecular diffusion is the molecular motion from high concentration range to low concentration range caused by concentration difference of mixed gas.Considering the effects of dimension factor and coupling mass, diffusion equations of mixed gas are expressed in Eqs.(5)and (6)[12-13],in which A and B represent CO2and natural gas respectively.

    where DAB,ris fractal diffusion coefficient of CO2in the medium of natural gas(m2/s),while,DBA,ris fractal diffusion coefficient of natural gas the medium of CO2(m2/s);MAand MBare molecular weight of CO2and natural gas;CAand CBare molar concentration of CO2and natural gas(mol/m3).

    2.3 Auxiliary Equations

    Saturation equilibrium equation:

    The constraint equation of capillary pressure which is a function of fluid saturation is as follows:

    Now,it can complete the variable resolution of pg,pw,Sg,Sw,CAand CBusing the coupled equations of Eqs.(1,2,5-8).Moreover,the coefficient of each parameter in the equations needs to be calculated based on the auxiliary equations,in which the detailed derivation processes are shown in Ref.[14].

    2.4 Initial Conditions and Boundary Conditions

    The first boundary condition is used at the outer boundary of UGSR as follows:

    However,the second boundary condition is given at the head of the injection-production well of UGSR as follows,in which n is normal direction.

    The boundary condition of the UGSR in the sandwich is given as follows:

    The initial pressure and initial saturation of UGSR which are certain functions are given as follows:

    The initial pressure gradient in the reservoir of the UGSR is given as follows:

    2.5 Solution of Numerical Model

    During the operation of UGSRs in aquifer with cushion gas,the edge and bottom water are not usually to contact with the mixed zone.Therefore,the pressure fields and concentration fields of natural gas and cushion gas are respectively solved in the pure natural gas field and pure cushion gas field,while the coupled pressure fields and concentration fields in the mixture gas field are solved using the iterative method.

    Inserting saturation equilibrium Eq.(7)and capillary pressure Eq.(8)into gas-water two-phase seepage Eqs.(1-2)and then eliminating the variables pwand Sw,the simultaneous equations of pgand Sgare obtained as follows:

    The reservoir space of UGSR is a type of porous media with fractal characteristics[15]. The relative permeability of gas phase which are not fixed values in the above equations are changing with the difference of pore fractal dimension and porosity of porous media. The relative permeability of gas phase Krgis calculated as in Eq.(17)[16-17].

    where dfis pore fractal dimension of porous media;rminand rmaxare minimum pore size and maximum pore size (μm);λ is aperture ratio of porous media,and λ= rmin/rmax;C is a constant related with the structure of reservoir space.

    Reservoir pressure equation and saturation equation are discretized using finite element method,and the discrete form of the equations is as follows:

    where[K],[R]and[E]are rigidity matrix;[G],[N],[F]and[O]are coefficient matrix.

    Based on the calculation method of the binary spread system,gas diffusion equations are discretized and solved using finite difference method,where,the fractal diffusion coefficient in porous media(Di,r)is calculated as in Eq.(19)[18].

    where Di,ais diffusion coefficient of CO2or natural gas in the homogeneous Euclidean space(m2/s),and i represent CO2and natural gas respectively;θ is diffusion attenuation index and θ=1/H-2,here H called Hurst coefficient is a characteristic parameter reflected diffusion slowing-down effect of molecular Brownian motion in different fractal structure[19].

    Taking CO2for example,first of all,Eq.(5)can be converted into the following form:

    Non-isometric 8 points implicit scheme of Eq. (20)is discretized using finite difference method as follows.Where,τ is time step.

    Similarly,the diffusion equation of natural gas is discretized. Firstly, it is assumed the initial concentration of reservoir,the pressure field and saturation field at the next time step are calculated according to the equations of the discrete pressure and saturation by finite element method. Then the concentration field at this time step is calculated using the discrete diffusion equation based on the calculation result of pressure field and saturation field. The calculation of pressure field and saturation field at this moment is based on the past moment concentration field,and vice versa.In addition,the calculation of characteristic parameters is based on the result of pressure field,saturation field and concentration field. The detailed calculation steps to solve the coupling of pressure field,saturation field and concentration field are as follows:

    1)To give the calculated value or initial value (Pg,i,yi)of node pressure and mole fractions of working gas and cushion gas(hereinafter short for twoparameter)and the related formation parameter.

    2)According the calculated value or initial value (Pg,i,yi),characteristic parameter obtains by chart method.The pressure field and the saturation field of next momentand(iteration expression with a superscript)are calculated by pressure equation (15)and(16).The velocity distributionof the pressure according to the calculated value or initial value Pg,i.And the concentration distribution,)are calculated byEq.(21)and initial concentration(CA,i+1,CB,i+1)by the calculated value or initial value(Pg,i,yi).Then the mole fractions of next timeof the two-parameter.

    3)Taking the calculated value or initial valueand the calculated valueof Step 2 on average,denotedrepeating Step 2 is taking average as the condition of the next iterative calculations and obtained the calculated value

    4)Repeating Step 3,but taking the calculated valuewhich is the average ofandand initial concentration distribution (CA,i+1,CB,i+1)as the input conditions.The iterations are completed once meeting the conditions of|and,and the calculated valueis the input condition of next step.

    5)Taking the result of two-parameterdenote),which is the input condition of the time step according the steps from 1 to 4.

    3 Model Validation

    Fig.1 shows the well-site distribution and reservoir sketch of Dazhangtuo UGSR in Tianjin,China.The well marked as‘tuozhu-2’is the central injection-production wellaccording to the actual operation and the wellarray maps[20].The original formation pressure and temperature are 24.17 MPa and 378.15 K.According to the high pressure mercury injection experimentfor a rock sample ofthis reservoir[21-22],the convective diffusion coefficient of the rock in the homogeneous Euclid space is Da= 0.517 cm2/s.The average permeability of rock sample of Dazhangtuo reservoir at several different wells is K= 15.31×10-3μm2,according to the core permeability measured data of different reservoir of Dazhangtuo underground gas storage[23]. The pore structure parameters of the rock sample and other physical parameters used in the calculations are shown in Table 1.

    Fig.1 Well-site distribution and reservoir sketch of Dazhangtuo UGSR

    Table 1 Fractal structure parameters of rock swatch and other properties of the model in UGSR

    Fig.2 shows the real measurement data[20,23]and the simulation results of daily gas production volume and reservoir pressure of the‘tuozhu-2’well in two periods from November 15th,2000 to March 15th, 2001 and from November 15th,2001 to March 15th,2002.And there is no cushion gas injection in the first period and there is in the second period.In the simulation,the time step is 0.5 days,and the space is divided into small grids with width,length and height of 1 m,1 m and 0.1 m respectively.

    Fig.2 Changes of gas production and reservoir pressure with or without CO2injection from edge well

    The comparison of measured and simulated daily produced gas volume in the‘tuozhu-2’well in two gas production periods is shown in Fig.2(a).It shows that in the case without cushion gas,the maximum absolute error of daily produced gas volume between measurement and simulation is 4.2×103m3.In the case with cushion gas injection,the maximum absolute error of daily produced gas volume is 8.3×103m3.As shown in Fig.2(a),the daily produced gas volume is little difference between simulation predicted results and actual operation data,which can meet the project requirement.Fig.2(b)shows the reservoir pressure in two gas production periods.The maximum relative error of reservoir pressure drop is 13.2% in the gas production cycle without cushion gas injection.And the maximum relative error of reservoir pressure drop is 14.3%in the gas production cycle with cushion gas injection.The pressure drop in the simulation is always lower than that in actual production operation process because of the change of CO2solubility in the aquifer. Therefore,CO2solubility under instantaneous pressure should be iterative corrected by reservoir pressure and temperature in the simulation,in order to reduce the error between the simulation predicted results and actual operation data.The above comparison shows that the gasmixture prediction modelhasgood accuracy.Therefore,the developed model can be used to simulate the operation process of the UGSR with cushion gas.

    4 Simulation Results and Sensitivity Analysis of Mixed Zone

    To perform the sensitivity analysis,a simplified version of the Dazhangtuo UGSR is used.In this model,the‘tuozhu-2’well is located in the center, the‘tuozhu-1’well,the‘ban53’well,the‘ban57’well and the‘banshen3-1’well are distributed evenly around it.The area of the UGSR in this model is 2 km wide by 2 km,and the height is 20 m.Daily injected or produced gas volume of the central well is 350×103m3.The original formation pressure and temperature are 24.17 MPa and 378.15 K,and all of the boundaries are assumed to be closed. In the simulation,the time step is 0.5 days,and the space is divided into small grids with width,length and height of 1 m,1 m and 0.1 m respectively.The schedule for a complete injection-production cycle is shown in Table 2.Other parameters used in the analysis are shown in Table 2.

    Table 2 Working process of a complete injectionproduction cycle

    4.1 Ratio of CO2Injection in Cushion Gas

    Fig.3 shows the impact of the CO2ratio to the change ofthe mixed zone atdifferentinjectionproduction cycles.At the injection initial phase,when a certain amount of CO2has been detected near the center well,the formation of the mixed zone has been accelerated.At the end of the fourth gas production cycle,the volume ratio of impurities(CO2)in the mined the peak shaving gas from production well has reached 10.4%,which results in the decrease of gas calorific value and cannot satisfy the requirement of the real project.When 30% CO2(volume ratio)is injected at the edge well at the initial injection phase,the mixing process of natural gas and CO2is slowed. At the end of the fourth gas production cycle,CO2has been not detected in the production gas in the central well.This shows that injecting CO2cushion gas from the edge wells can effectively slow down the process of the formation and migration of mixed zone,and thus is suggested as the injection method to be used in practice.

    Fig.3 Mixed zone in different injection-production cycles

    Fig.4 shows that when injecting 30% CO2(volume ratio)as cushion gas at the initial injection phase,CO2has been detected at the bottom of the injection-production well after the tenth production cycle.However,when all the gas in reservoir is CO2(100%)at the initial injection phase,CO2can be detected at the bottom of the injection-production well as early as the end of the third production cycle.This seriously affects the quality of the peak shaving gas from production well.Fig.5 shows the impact of the different initial CO2injection ratio at the edge wells to the width of the natural gas-CO2mixed zone after one production cycle.As the CO2injection ratio decreases,the width of the mixed zone also decreases.After the CO2injection ratio decreases from 90%to 30%,the width of mixed zone decreases from 271.8 m to 134.4 m.Balancing the operation stability of the UGSR and the operation cost,the optimal CO2injection ratio at the edge well is 25.6%.

    Fig.4 Cycle that cushion gas always appears at the bottom of I/P well

    Fig.5 Width of mixed zone under different CO2initial ratio of cushion gas

    4.2 Reservoir Porosity

    Fig.6 shows the width and the location of the mixed zone at different porosities when 30% CO2(volume ratio)is injected from the edge well at the initial injection phase.As shown in Fig.6,as the porosity increases,the width ofthe mixed zone decreases,and the distance to the centralwell increases.This result suggests that large porosity can slow down the mixing of natural gas and CO2and provide larger space for storage.Therefore,reservoir with large porosity is better suited as UGSR.Fig.6(b) shows that the mixing extent of natural gas and CO2is high at the initial injection phase.As natural gas is injected,the width of the mixed zone decreases and after the injection phase is finished,the width of the mixed zone gradually increases and the growth has slowed.At the initial injection phase,the mixing between natural gas and CO2is quick and the width grows rapidly.However,as the volume of natural gas increases,a pure natural gas region is formed around the central well,which drives the mixed zone to move outward away from the central well.Thus,the width of the mixed zone decreases.When the injection phase is finished,the mixed zone develops stably and the width gradually increases again.

    Fig.6 Migration of mixed zone under different porosities

    4.3 Initial Operation Pressure

    Fig.7 shows the impact of the initial pressure on the width and location of the mixed zone.It is seen from Fig.7 that,as the initial pressure decreases,the mixing extent of natural gas and CO2increases,After the initial pressure decreases from 16 MPa to 12 MPa,the distance of the mixed zone to the central well after an operation period of 220 days increases from 217.5 m to 281.4 m(increases by 29.4%),and the average width increases from 129.5 m to 154.9 m (increases by 19.6%).Thus,the initial pressure of the reservoir should be as large as possible.However,it should be noted that as the initial pressure is related with the ratio of the working volume to the total volume,the initial pressure is bounded by a reasonable region.Usually,the initial pressure is slightly larger than the minimally allowed pressure in the reservoir.

    Fig.7 Migration of mixed zone under different Initial pressure

    5 Conclusions

    A numerical model based on the theory of three dimensional gas-water two-phase flows and the theory of gas diffusion is developed in this paper to study the usage of CO2as cushion gas in UGSR.It is found that the model produces simulation results close to the operation data of a real UGSR.Using this model,the growth and change of the natural gas-CO2mixed zone is studied,and the following observations are drawn:

    1)When all of the cushion gas in the reservoir is CO2,the mixed zone of natural gas and CO2will form rapidly near the injection-production well and the operation of the UGSR will be seriously affected.When CO2is used as only part of the cushion gas and injected into the UGSR from the edge wells,the impact of the mixed zone to the operation will be negligible.A calculation through multi-cycle injection-production simulation shows that the optimal CO2injection ratio is 25.6%.

    2)In a reservoir of high porosity,the formation and migration of the mixed zone is slower during its operation.Thus,a reservoir of high porosity is better suited for storing natural gas.

    3)A large initial injection pressure helps limiting the formation and migration ofthe mixed zone. However,as increasing the initial injection pressure decreases the storage space in the reservoir,a proper initial injection pressure is crucial.In general,the initial injection pressure of reservoir is slightly higher than the minimally allowed reservoirpressure in UGSR.

    [1]Procesi M,Cantucci B,Buttinelli M,et al.Strategic use of the underground in an energy mix plan:Synergies among CO2,CH4geological storage and geothermalenergy. Latium Region casestudy(CentralItaly). Applied Energy,2013,110(10):104-131.

    [2]Wang Baohui,Yan Xiangzhen,Yang Xiujuan.Study on the dynamic migration law of inert cushion gas during injection-production process in underground natural gas storage reservoir.Science Technology and Engineering,2013,13(31):9184-9188.

    [3]Yin Huchen,Chen Junbin,Lan Yifei,et al.Technical development status quo and inspiration of typical gas storages in North America. Oil& GasStorage and Transportation,2013,32(8):814-817.

    [4] WangXiuli,EconomidesM J. Purposefullybuilt underground natural gas storage.Journal of Natural Gas Science and Engineering,2012,9(11):130-137.

    [5] Plaat H.Underground gas storage:Why and how. Geological Society,London,Special Publications,2009,313:25-37.

    [6]Tan Yufei,Cao Lin,Lin Tao.Feasibility analysis about carbon dioxide as cushion gas for natural gas storage.Oil&Gas Storage and Transportation,2006,25(3):12-14.

    [7]Chen Mingjie,Buscheck T A,Wagoner J L,et al. Analysis of fault leakage from Leroy underground natural gas storage facility.Hydrogeology Journal,2013,21(7): 1429-1445.

    [8] Tan Yufei.Technology and Numerical Simulation of Underground Gas Storage Reservoir.Beijing:Petroleum Industry Press,2007.171-178.

    [9]Tan Yufei,Lin Tao.Simulation research on carbon dioxide as cushion gas in gas underground reservoirs.Journal of Harbin Institute of Technology(New Series),2009,16 (1):87-90.

    [10]Leontoev N E.Description of weakly compressible fluid flows in porous media for a nonlinear seepage law.Fluid Dynamics,2013,48(3):402-406.

    [11]Navas P,Susana Lopez-Querol.Generalized unconfined seepage flow model using displacement based formulation. Engineering Geology,2013,166(8):140-151.

    [12] Lin Tao. Simulation ofInjection-Production and Optimization of Running Control in Gas Reservoirs Using Carbon Dioxide.Harbin:Harbin Institute of Technology,2008.

    [13]Vopiěka O,De Angelis M G,Du Naiying,et al.Mixed gas sorption in glassy polymeric membranes:II.CO2/CH4mixtures in a polymer of intrinsic microporosity(PIM-1). Journal of Membrane Science,2014,459(6):264-276.

    [14]Li Juanjuan.Simulation Research of Use of Inert Cushion Gas in Underground Gas Storage Reservoir in Aquifer. Harbin:Harbin Institute of Technology,2006.

    [15]Yu Benfu,Yan Xiangzhen,Yang Xiujuan.Seepage law analysis of natural gas considering the fractal features of crack reservoirin underground gas storage. Science Technology and Engineering,2014,14(5):54-61.

    [16]Guarracino L,R?tting T,Carrera J.A fractal model to describe the evolution of multiphase flow properties during mineral dissolution.Advances in Water Resources,2014,67(5):78-86.

    [17]YangYu,Sun Hansen,PengXiaodong,etal. Quantitative study on fractal characteristics of the structure of CBM reservoir.Special Oil&Gas Reservoirs,2013,20 (1):31-34.

    [18]Emera M K,Sarma H K.Genetic algorithm-based correlations offer more reliable prediction of minimum miscibility pressures between reservoir oil and CO2or flue gas.Journal of Canadian Petroleum Technology,2007,46 (8):19-25.

    [19]Li Jin,Huang Jianhua.Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter H∈ (1/4,1/2).Applied Mathematics and Mechanics(English Edition),2014,34(2):189-208.

    [20]Yang Shuhe,He Shumei,Yang Bo,et al.The operation practice and evaluation for Dazhuangtuo underground gas storage.Natural Gas Geoscience,2003,14(5):425-428.

    [21]HuangWeihe,Yang Yuling. Reservoirprotection regarding underground gas storage construction based on low-pressure resrrvoir.Natural Gas Industry,2008,28 (4):102-104.

    [22]Mao Zhiqiang,Xiao Liang,Wang Zhaonian,et al. Estimation of permeability by integrating nuclear magnetic resonance(NMR)Logs with Mercury Injection Capillary Pressure(MICP)Data in tight gas sands.Applied Magnetic Resonance,2013,44(4):449-468.

    [23]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure mercury injection and nitrogen adsorption method. NaturalGasGeoscience,2013,24(3):450-455.

    [24]Ma Huifang.Numeric Simulation of Dazhangtuo Gas Storage.Beijing:China University of Geosciences,2002.

    亚洲精品,欧美精品| 国产精品国产三级国产av玫瑰| h日本视频在线播放| 免费看光身美女| 久久久久久久久久久丰满| 欧美一区二区精品小视频在线| 一个人看视频在线观看www免费| 国产在线一区二区三区精 | 校园人妻丝袜中文字幕| 黄片无遮挡物在线观看| 少妇熟女aⅴ在线视频| 欧美高清成人免费视频www| 国产在线一区二区三区精 | 日本三级黄在线观看| 亚洲精品456在线播放app| 简卡轻食公司| 18禁裸乳无遮挡免费网站照片| 69av精品久久久久久| 我要看日韩黄色一级片| 亚洲伊人久久精品综合 | kizo精华| 中文欧美无线码| 亚洲精品日韩在线中文字幕| 国产熟女欧美一区二区| 人人妻人人澡人人爽人人夜夜 | 久久久国产成人精品二区| 在线免费观看不下载黄p国产| 国产人妻一区二区三区在| 亚洲国产最新在线播放| 大香蕉97超碰在线| 国产精品精品国产色婷婷| 麻豆国产97在线/欧美| 亚洲av免费在线观看| 国产一区亚洲一区在线观看| 亚洲18禁久久av| 日韩欧美三级三区| 亚洲精品色激情综合| 国产精品一区二区三区四区久久| 日韩大片免费观看网站 | 嫩草影院精品99| 深爱激情五月婷婷| 深爱激情五月婷婷| 青青草视频在线视频观看| 国产亚洲91精品色在线| 亚洲真实伦在线观看| 毛片女人毛片| 亚洲成人精品中文字幕电影| 狂野欧美激情性xxxx在线观看| 精品久久久久久久末码| 国产不卡一卡二| 村上凉子中文字幕在线| av播播在线观看一区| 国产极品天堂在线| 久久精品人妻少妇| 国产三级中文精品| 日韩av不卡免费在线播放| 你懂的网址亚洲精品在线观看 | 久久久精品94久久精品| 国产精品一及| 美女黄网站色视频| 免费电影在线观看免费观看| 日韩精品有码人妻一区| 3wmmmm亚洲av在线观看| 国产av在哪里看| 精品一区二区三区人妻视频| 在线天堂最新版资源| 少妇高潮的动态图| av在线亚洲专区| 久久精品熟女亚洲av麻豆精品 | 日韩亚洲欧美综合| 午夜福利在线在线| 久久久亚洲精品成人影院| 亚洲av日韩在线播放| 国产精品综合久久久久久久免费| 纵有疾风起免费观看全集完整版 | 人妻少妇偷人精品九色| 少妇猛男粗大的猛烈进出视频 | 国产一区有黄有色的免费视频 | 美女xxoo啪啪120秒动态图| 一级毛片电影观看 | 插阴视频在线观看视频| 国产成人a∨麻豆精品| 久久韩国三级中文字幕| 深爱激情五月婷婷| 噜噜噜噜噜久久久久久91| 亚洲精品色激情综合| 长腿黑丝高跟| 久久99热这里只有精品18| 只有这里有精品99| 一区二区三区高清视频在线| 午夜福利网站1000一区二区三区| 国产免费男女视频| 国产高清三级在线| 狂野欧美白嫩少妇大欣赏| 国语对白做爰xxxⅹ性视频网站| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜爱| 亚洲精品影视一区二区三区av| 最后的刺客免费高清国语| 日韩亚洲欧美综合| 欧美色视频一区免费| 国产人妻一区二区三区在| 欧美xxxx性猛交bbbb| 国产中年淑女户外野战色| 亚洲精品456在线播放app| 国产av一区在线观看免费| 久久人妻av系列| 联通29元200g的流量卡| 久久久欧美国产精品| 黄色一级大片看看| 少妇熟女aⅴ在线视频| .国产精品久久| 久久久亚洲精品成人影院| 亚洲国产精品专区欧美| 亚洲国产精品sss在线观看| 国产精品无大码| 亚洲精品日韩在线中文字幕| 日韩精品青青久久久久久| 少妇丰满av| 国产成人精品婷婷| 亚洲欧洲日产国产| 在线观看美女被高潮喷水网站| 亚洲婷婷狠狠爱综合网| 亚洲成人久久爱视频| 建设人人有责人人尽责人人享有的 | 欧美成人一区二区免费高清观看| 91久久精品国产一区二区成人| 六月丁香七月| 亚洲国产精品成人久久小说| 99热这里只有是精品在线观看| 直男gayav资源| 夜夜爽夜夜爽视频| 欧美变态另类bdsm刘玥| 欧美人与善性xxx| 精品国产一区二区三区久久久樱花 | 亚洲国产欧洲综合997久久,| 床上黄色一级片| 久久精品综合一区二区三区| 久久久精品94久久精品| 精品午夜福利在线看| 少妇裸体淫交视频免费看高清| 亚洲五月天丁香| 国语对白做爰xxxⅹ性视频网站| 成人性生交大片免费视频hd| 最近2019中文字幕mv第一页| 欧美成人精品欧美一级黄| 99热这里只有是精品50| 18+在线观看网站| 精品酒店卫生间| 午夜福利网站1000一区二区三区| 91av网一区二区| 国产成人91sexporn| 长腿黑丝高跟| 国产精品女同一区二区软件| 久久6这里有精品| 毛片女人毛片| 麻豆乱淫一区二区| av线在线观看网站| 啦啦啦韩国在线观看视频| www.色视频.com| 99热网站在线观看| 国产亚洲午夜精品一区二区久久 | 精品99又大又爽又粗少妇毛片| 如何舔出高潮| 老师上课跳d突然被开到最大视频| kizo精华| 欧美区成人在线视频| 国产乱人视频| 亚洲乱码一区二区免费版| 久久久久精品久久久久真实原创| 国产成年人精品一区二区| 一级二级三级毛片免费看| 午夜福利视频1000在线观看| 99热6这里只有精品| 国产91av在线免费观看| 可以在线观看毛片的网站| www.av在线官网国产| 在线观看66精品国产| 国产极品天堂在线| 丰满人妻一区二区三区视频av| 久久久久久大精品| 一二三四中文在线观看免费高清| 午夜福利视频1000在线观看| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 大又大粗又爽又黄少妇毛片口| 国产伦在线观看视频一区| 老司机影院毛片| av播播在线观看一区| 99久久精品热视频| 亚洲自偷自拍三级| 亚洲18禁久久av| 观看美女的网站| 久久99热这里只频精品6学生 | 国产精品国产三级国产专区5o | 国内揄拍国产精品人妻在线| 国产一区二区在线av高清观看| av在线天堂中文字幕| 男人的好看免费观看在线视频| 熟女人妻精品中文字幕| 国产精品永久免费网站| 国产探花在线观看一区二区| 精品酒店卫生间| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 色吧在线观看| 偷拍熟女少妇极品色| 一本一本综合久久| 国产亚洲一区二区精品| av黄色大香蕉| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 亚洲精品乱码久久久久久按摩| 国内揄拍国产精品人妻在线| 精品久久久久久电影网 | 免费在线观看成人毛片| 国产精品久久电影中文字幕| 成人一区二区视频在线观看| 内射极品少妇av片p| 亚洲av日韩在线播放| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久久黄片| 日本爱情动作片www.在线观看| 亚洲四区av| 中文在线观看免费www的网站| 久久精品国产亚洲av涩爱| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| 亚洲国产欧美人成| 精品久久久久久久末码| 欧美丝袜亚洲另类| 国产在线一区二区三区精 | 亚洲电影在线观看av| 久久亚洲精品不卡| 观看美女的网站| av女优亚洲男人天堂| 高清毛片免费看| 少妇的逼水好多| 亚洲欧美精品自产自拍| 国产不卡一卡二| 欧美性猛交黑人性爽| 成人无遮挡网站| 国产乱来视频区| 夜夜爽夜夜爽视频| 国产黄片美女视频| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 精品午夜福利在线看| 综合色丁香网| 亚洲人与动物交配视频| 级片在线观看| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 97在线视频观看| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 日韩成人伦理影院| ponron亚洲| 国产一区亚洲一区在线观看| 丰满少妇做爰视频| 午夜精品国产一区二区电影 | 国产一区二区在线观看日韩| 听说在线观看完整版免费高清| 老司机影院成人| 亚洲不卡免费看| 黄色配什么色好看| 亚洲国产精品sss在线观看| 中国国产av一级| 尤物成人国产欧美一区二区三区| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看 | 少妇人妻精品综合一区二区| 99热这里只有是精品50| av.在线天堂| 在线免费观看的www视频| 91久久精品国产一区二区成人| 亚洲人成网站在线播| 国产探花极品一区二区| 亚洲精品久久久久久婷婷小说 | 美女cb高潮喷水在线观看| 内地一区二区视频在线| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 久久久久久大精品| 久久精品夜色国产| 国产探花在线观看一区二区| 欧美区成人在线视频| 日韩制服骚丝袜av| 丝袜美腿在线中文| 99热这里只有精品一区| 国产精品一区二区三区四区免费观看| 日韩精品青青久久久久久| 国国产精品蜜臀av免费| 国产老妇伦熟女老妇高清| 精品久久久噜噜| 亚洲精品aⅴ在线观看| 麻豆国产97在线/欧美| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 日韩一本色道免费dvd| 久久精品综合一区二区三区| 三级毛片av免费| 午夜免费男女啪啪视频观看| 男的添女的下面高潮视频| 久久人人爽人人爽人人片va| 国产在视频线精品| 国产在线一区二区三区精 | h日本视频在线播放| 午夜福利在线在线| 九色成人免费人妻av| 简卡轻食公司| 99热6这里只有精品| 国产探花在线观看一区二区| 99久久九九国产精品国产免费| 欧美区成人在线视频| 色综合亚洲欧美另类图片| 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 夫妻性生交免费视频一级片| 国内揄拍国产精品人妻在线| 久久韩国三级中文字幕| 99久久成人亚洲精品观看| 国产精品.久久久| 国产成人免费观看mmmm| 嫩草影院入口| 欧美另类亚洲清纯唯美| 高清视频免费观看一区二区 | 国产中年淑女户外野战色| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 久久99热6这里只有精品| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产在线一区二区三区精 | 五月伊人婷婷丁香| 久久99热这里只频精品6学生 | 白带黄色成豆腐渣| 日韩精品有码人妻一区| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 99在线人妻在线中文字幕| 国产淫片久久久久久久久| 亚洲在线自拍视频| 久久久久久九九精品二区国产| 舔av片在线| 婷婷色av中文字幕| 青春草视频在线免费观看| 两个人的视频大全免费| 激情 狠狠 欧美| 麻豆av噜噜一区二区三区| 搞女人的毛片| www.色视频.com| 亚洲综合精品二区| 天堂av国产一区二区熟女人妻| 2022亚洲国产成人精品| 青青草视频在线视频观看| 精品久久久久久成人av| 九九在线视频观看精品| 美女黄网站色视频| 亚洲精品国产av成人精品| 欧美97在线视频| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 亚洲美女搞黄在线观看| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 亚洲一区高清亚洲精品| 欧美不卡视频在线免费观看| 亚洲综合色惰| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 中文天堂在线官网| 在线观看美女被高潮喷水网站| 蜜桃久久精品国产亚洲av| 亚洲中文字幕日韩| 亚州av有码| 午夜激情欧美在线| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| 亚洲欧美清纯卡通| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 国产成人福利小说| 亚洲成人久久爱视频| 欧美高清成人免费视频www| 夜夜爽夜夜爽视频| 午夜福利在线观看免费完整高清在| 日日撸夜夜添| 精品欧美国产一区二区三| 日韩视频在线欧美| 人妻夜夜爽99麻豆av| 床上黄色一级片| 三级国产精品片| 欧美激情久久久久久爽电影| 草草在线视频免费看| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 色哟哟·www| 久久久久性生活片| 亚洲无线观看免费| 亚洲自拍偷在线| 国产在视频线精品| 成人欧美大片| 国产精品综合久久久久久久免费| 亚洲内射少妇av| 国产精品久久久久久av不卡| 桃色一区二区三区在线观看| 九草在线视频观看| 最近最新中文字幕免费大全7| 国产淫片久久久久久久久| 91精品一卡2卡3卡4卡| 久久亚洲精品不卡| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 神马国产精品三级电影在线观看| 99久久精品热视频| 国产在视频线精品| av专区在线播放| 男人舔女人下体高潮全视频| 国产老妇伦熟女老妇高清| 一个人看视频在线观看www免费| 97超视频在线观看视频| 一级黄片播放器| 小说图片视频综合网站| 国产高清国产精品国产三级 | 深夜a级毛片| 亚洲人成网站在线观看播放| 少妇熟女欧美另类| 亚洲国产精品成人久久小说| 欧美xxxx黑人xx丫x性爽| 国产淫片久久久久久久久| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 一本一本综合久久| 特级一级黄色大片| 亚洲自偷自拍三级| 中文字幕亚洲精品专区| 22中文网久久字幕| 久久久久九九精品影院| 久久久久久久久中文| 久久99热这里只有精品18| 午夜精品在线福利| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 1000部很黄的大片| 能在线免费看毛片的网站| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 亚洲成av人片在线播放无| 99久久中文字幕三级久久日本| 久久精品国产亚洲网站| 亚洲中文字幕日韩| 69人妻影院| 99热精品在线国产| 精品国产三级普通话版| 国产单亲对白刺激| 午夜福利高清视频| 美女内射精品一级片tv| 尾随美女入室| 亚洲av福利一区| 精品久久久久久成人av| 午夜日本视频在线| 国内精品宾馆在线| h日本视频在线播放| 国产黄片视频在线免费观看| 中文字幕久久专区| 婷婷六月久久综合丁香| 青春草国产在线视频| 日本黄色视频三级网站网址| 亚洲av电影在线观看一区二区三区 | 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看 | 日本欧美国产在线视频| 不卡视频在线观看欧美| 国产av不卡久久| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 一区二区三区乱码不卡18| 黄色日韩在线| 青青草视频在线视频观看| 秋霞伦理黄片| 日韩大片免费观看网站 | 午夜精品一区二区三区免费看| 精品国产三级普通话版| 韩国高清视频一区二区三区| 国产精品一区二区性色av| 天天躁日日操中文字幕| 亚洲无线观看免费| 有码 亚洲区| 丝袜喷水一区| 久久久久精品久久久久真实原创| 韩国av在线不卡| 精品熟女少妇av免费看| 国产精品爽爽va在线观看网站| 午夜精品一区二区三区免费看| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 边亲边吃奶的免费视频| 日韩高清综合在线| 大香蕉久久网| 亚洲av一区综合| 国产激情偷乱视频一区二区| 国产精品久久久久久精品电影| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 国模一区二区三区四区视频| 一边摸一边抽搐一进一小说| 不卡视频在线观看欧美| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 国产三级在线视频| 精品欧美国产一区二区三| 国产黄片美女视频| 亚洲av熟女| 日韩成人伦理影院| 成人特级av手机在线观看| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 别揉我奶头 嗯啊视频| 欧美bdsm另类| 在线免费观看不下载黄p国产| 国产高潮美女av| 午夜福利在线观看吧| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 97超碰精品成人国产| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 18禁动态无遮挡网站| 国产一区二区三区av在线| 久久久久性生活片| 久久久午夜欧美精品| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 国产亚洲精品久久久com| 国产毛片a区久久久久| 日日干狠狠操夜夜爽| 久久鲁丝午夜福利片| 免费大片18禁| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 久久这里有精品视频免费| 久久精品影院6| 久久精品熟女亚洲av麻豆精品 | 人妻夜夜爽99麻豆av| 大香蕉97超碰在线| 日本黄色视频三级网站网址| 国产精华一区二区三区| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区| 亚洲综合精品二区| 成年女人看的毛片在线观看| 美女cb高潮喷水在线观看| 日本免费在线观看一区| 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 日韩欧美精品免费久久| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 一级黄色大片毛片| 女人十人毛片免费观看3o分钟| 欧美激情久久久久久爽电影| 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 美女内射精品一级片tv| 日本免费在线观看一区| 欧美色视频一区免费| 国产精品一区二区性色av| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 99热全是精品| 中文欧美无线码| 精品99又大又爽又粗少妇毛片| 亚洲伊人久久精品综合 | 成年版毛片免费区| 精品久久久久久久末码| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 一区二区三区高清视频在线| 久久久久网色| 亚洲精品亚洲一区二区| 青春草国产在线视频| 欧美日韩在线观看h| 18禁动态无遮挡网站| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 色吧在线观看| 欧美一级a爱片免费观看看| 男女边吃奶边做爰视频| av在线亚洲专区| 少妇猛男粗大的猛烈进出视频 | 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 国产美女午夜福利| 中文欧美无线码| 精品久久久久久成人av| 国产精品一及| 国产伦精品一区二区三区四那| 久久综合国产亚洲精品| 国产成人一区二区在线| 日本免费a在线| 国产毛片a区久久久久| 亚洲国产最新在线播放| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区 |