• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerodynamic Characteristics of Projectile with Exotic Wraparound Wings Configuration

    2014-03-14 06:46:04FuZhangWenJunRuanHaoWangChenGuangZhuMengHuaZhang

    Fu Zhang,Wen-Jun Ruan,Hao Wang,Chen-Guang Zhu,Meng-Hua Zhang

    (School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)

    1 Introduction

    Since the advent of wraparound wings(WAW)in the mid-1950s,they have been widely used in various tactical and strategic weapons,such as long-range rocket,antitank missile,terminal-guided projectile,aerial bomb,and cruise missile.Adopting a tube launch can effectively reduce the space requirements and improve the initial accuracy of these weapons.The weapons packaged in a launch canister may not only improve the reliability of the weapon system but also facilitate weapon transportation and storage. The tacticalweaponswith WAW orwraparound fins (WAF)consist of five different configuration types,namely,wing-tail,tailless,conventional,canard,and exotic configuration which unconventionally meet the special needsoftacticalweapons[1-2].WAF and WAW,which have broad prospects for application and unique aerodynamic properties,have attracted much attention from scientific research personnel and professional and technical staff.However,the studies on the subsonic and transonic flight of projectiles with exotic WAW configuration are rare in the literatures.By the use of explicit coupling method and Spalart-Allmaras turbulence model,it showed the formation cause of the side force,through the pressure analysis of WAF[3].The unsteady flow field of the WAF rocket was numerically simulated and analyzed the cause of the formation of the rolling moment of the WAF rocket[4].By using advection upwind splitting method (AUSM),it analyzed the changes in the aerodynamic coefficients of WAF-body combinations with varying Mach numbers and attack angles[5].CFD and the semi-empirical method were utilized to compare the aerodynamic characteristics of the folding multisurface of the diamond back wing with the same airfoil,chord,and surface area[6].By adoption of proper algebraic grid generation,the glide bullet and the two sets of empennage bullet were calculated and studied in Refs.[7]and[8],respectively.

    This study fully utilizes the characteristics of the structured grid and takes advantage of the features of the unstructured grid for the discretization of geometrically complex domains.The Roe scheme is employed to resolve the convective terms,and MUSCL reconstruction is applied to achieve third-order accuracy.The shear-stress transport(SST)k-ω twoequation turbulence model is adopted in this simulation.Time advancement is accomplished by using the lower-upper symmetric Gauss-Seidel method.

    Fig.1 shows the structures of projectiles studied in this paper.The head of the projectile consists of three sections:ogive nose,straight,and cone.The projectile body consists of cylindrical sections,and the rear of the projectile is made up of tail rod and six flip-out tail fins.Fig.1(b)shows a configuration with increasing lift and decreasing rolling moment.The installation position of the WAW,which can make good use of space,is behind that of the centroid.A backwardfacing step exists between the WAW and the tail.The maximum projectilediameteris 80 mm and the projectile length is 320 mm.The WAW has a wingspan of 78.5 mm,chord length of 14.5 mm,curvature radius of 36 mm,and opening angle of 45°.Using the WAW may generate aerodynamic interferenceand projectile body in high attack angle,thus making the application of engineering algorithm for computation and correction difficult.Therefore,it is necessary to study the aerodynamic characteristics of the projectile with WAW by using CFD.

    Fig.1 Structure of two types of projectiles

    2 Grid-Generation Method

    Reasonable design and high-quality grid generation are the presupposition of numerical calculation and are also the crucial factors affecting CFD results.Structured and unstructured grids possess their respective merits and drawbacks,and each of them can hardly fulfill the expectations of the increase of CFD development.

    This study fully utilizes the characteristics of the structured grid(e.g.,high precision,high efficiency,and high reliability)and takes advantage of the features ofthe unstructured grid (e.g.,easy generation and inherent flexibility) for the discretization of geometrically complex domains.The topology structure of the mesh is shown in Fig.2.

    Fig.2 Topology structure of grid

    O-type structured grids are designed to surround the projectile body and the tail fin to improve the quality of grids and to refine the boundary layer around the geometry.The approach for generating unstructured grids can be divided into two steps.In the first step,the quadrilateral elements are generated for the WAW cross section.In the second step,hexahedral elements are created by extending these quadrangles along the projectile body axis.The flow-field parameters are transferred by searching and interpolating between structured grids and unstructured grids in the overlapped areas[9-10].The abovementioned methods effectively solve the problem caused by large deformation of grids between WAW and tail fins[11].In order to ensure that the wall y plus is not more than 1.0,the distance of the first-layer grid to the wall is set as 2×10-6.The growth rate of the boundary-layer thickness is 1.15.The grid quality is efficiently improved by finely adjusting the topology structure and grid distribution.After the test,the total number of grids is about 3 million,and the local minimum angle is 25°.

    3 Numerical Method

    3.1 Governing Equation

    The cell-centered finite-volume method is used to solve3D compressible Reynolds-averaged Navier-Stokes equations.The flow governing equations can be expressed in 3D Cartesian coordinates(x1,x2,x3) as[11-12]

    The Roe scheme is employed to resolve the convective terms,and MUSCL reconstruction is applied to achieve third-orderaccuracy. Fora MUSCL scheme,the left and right states of the conservative variables at the cell faces are computed as

    where U is the vector of cell averaged conserved variables;k is a free parameter,which is set to 1/3 for the third-order limiter,and the cells are labeled by the integer i.Additionally,

    In this study,the following third-order MUSCL-type limiter is considered:

    where M3 is constrained in the normal fashion to firstorder accuracy at local maxima and minima and also includes a“steepening”parameter N to improve the resolution of discontinuities;in this paper,N=2.

    The viscous terms are discretized by using the second-order center difference scheme.The shearstress transport(SST)k-ω two-equation turbulence model is adopted in numerical computations.Time advancement is accomplished by using the lower-upper symmetric Gauss-Seidel method.

    3.2 Shear Stress Transport Turbulence Model

    In this section,the complete formulation of the SST model is given,with the limited number of modifications highlighted[10].F1is equal to zero when away from the surface(k-ε model)and switches over to a surface inside the boundary layer(k-ω model)[13].

    3.3 Boundary Condition

    No-penetration boundary conditions are adopted in the normal direction of the surface,and no-slip boundary conditions are used in the tangential direction.Free-stream conditions are applied in the far field.

    3.4 Numerical Evidence

    The numericalexample ofthe firststandard projectile in Ref.[14] is given to show the effectiveness of the proposed method.Figs.3(a)and 3(c)show thatthe liftand pitching moment coefficients agree with the experimental data.Fig.3 (b)shows that the change trend of the drag coefficient is consistent with the experimental data and that the maximum relative error is within 7%.Therefore,the proposed method has high accuracy and good reliability.

    3.5 Independence of Grid

    In this section,the independence of the grid has been verified.It can be seen from Fig.4 that the lift coefficient of the two types of projectiles slightly changes when the grid number is larger than 3 million.

    Fig.3 Comparison results between tests and calculations as Ma=0.6

    Fig.4 Lift coefficient of two types of projectiles versus the attack angle

    4 Calculation Results and Analyses

    The Mach numbers that have been calculated in this study are 0.35,0.5,0.65,0.8,and 0.95,and the attack angles are 0°,2°,4°,6°,8°.Fig.5 provides the definition of the projectile rolling angle φ: as the projectile rolling angle φ increases to 45°,the longitudinal symmetrical plane rotates 45° anticlockwise.When the Mach number is 0.65 and the attack angle is 4°,the pressure distribution,the Mach number distribution,and the streamline distribution of the B-type projectile are given in Figs.6(a)-6(c) and Figs.7(a)-7(b).The contrast curves show the differences between the aerodynamic coefficient of the B-type projectile and that of the A-type projectile(see Figs.6-7 and Figs.9-11).

    Fig.5 Sketch of different rolling-angle orientations

    4.1 Drag Characteristics

    Fig.6(a)shows that high pressure exists on the ogive nose and cone section of the B-type projectile and low pressure exists on the joint regions of the ogive nose and straight section,as well as on the joint regions of the cone section and the projectile body,because of the expansion effect of body-surface alteration.Fig.6(b) illustrates that the back flow appears near the trailing edge of the WAW and that the turbulent boundary layer separates on the leeward side of the WAW under strong adverse pressure gradient because of the influence of the attack angle.Fig.6(c)indicates that the distributions of vortex are evidently asymmetrical behind the tail of the B-type projectile when the attack angle is 4°.The lowpressure vortex layers are also formed between the WAW and the tail during the backward-facing step.Under the comprehensive influence of the abovementioned factors,the drag of the B-type projectile increases.Fig.8 shows that the drag coefficient of the two types of projectiles increase when the attack angle increases,which can be described by a parabolic function[15].With the same state parameters,the drag coefficient of the B-type projectile is 13.1%to 18%greater than that of the A-type projectile.Such difference is not significant in the region where the attack angle is near 0°,but significant in the region where the attack angle is close to 8°.This phenomenon is caused by the increase in the windward area and the seriousness of the boundary-layer separation when the attack angle is increased,which significantly increases the pressure drag.The calculation results show that the drag coefficient of the two types of projectiles slightly changes when the rolling angle increases,when the Mach number ranges from 0.35 to 0.95,and when the attack angle is less than 8°.

    Fig.6 Contours and streamline distribution of B-type projectile at α=4°,Ma=0.5

    Fig.7 Streamline distribution of WAW and fin at α=4°,Ma=0.5

    Fig.8 Drag coefficient of two types of projectiles versus the attack angle

    4.2 Lift Characteristics

    Fig.6(a)shows that the pressure values on the projectile body windward are higher than those on the projectile body leeward.Fig.7 illustrates that the pressure values on the WAW and tail fin windward are higher than those on the WAW and tail fin leeward because of the attack angle with 4°,which produces a stabilizing moment[16].

    Fig.9 shows that the lift coefficient of the two types of projectiles decreases with the increase of the Mach number and increases with the increase of the attack angle.This relationship can be described by the linearity rule[15].With the same state parameters,the lift coefficient of the B-type projectile is 21%greater than that of the A-type projectile when the attack angle is 8°.Fig.6(b)shows that flow separation is likely to occur near the leeward side of the WAW at a relatively large attack angle.Therefore,the lift-coefficient curve slope of the B-type projectile slightly decreases when the attack angle is more than 4°.Fig.10 shows that when the free Mach number is 0.5 and the attack angle is 4°,the lift coefficient of the B-type projectile first decreases and then increases, whereas the lift coefficient of the A-type projectile is almost unchanged.When the rolling angle is up to 90°,the lift coefficient of the B-typeprojectilereaches a minimum value because of the decreasing lifting surface area.Under the subsonic condition with the zero attack angle,the pressure of the WAW convex surface is larger than those of the concave surface,which makes the pressure load shift from the convex surface to the concave surface[11,14]. Consequently, the lift coefficient of the B-type projectile at a rolling angle of 180°is larger than that at 0°and the lift coefficient of the B-type projectile at a rolling angle of 135°is larger than that at 45°.

    Fig.9 Lift coefficient of two types of projectiles versus the attack angle

    Fig.10 Lift coefficient of two types of projectiles versus rolling angle at α=4°,Ma=0.5

    4.3 Pitching Moment Characteristics

    In this study,the distance between the reference point of the pitching moment and the head of the projectile is 180 mm.Fig.11 shows that the pitching moment coefficient raises toward the negative direction when the attack angle gradually increases.The rising trend of the B-type projectile is significantly greater than that of the A-type projectile because the influence of the WAW increases the lift curve slope.Such difference is not significant in the region where the Mach number is near 0.8,but significant in the region where the Mach number is close to 0.5.Fig.12 shows that the pitching moment coefficient of the A-type projectile is almost constant with the increase of the rolling angle,and the pitching moment coefficient of the B-type projectile slightly changes at the rolling angle ranging from 0°to 90°.When the rolling angle is greater than 90°,the pitching moment coefficient of the B-type projectile slightly raises toward the negative direction because the pressure of the WAW convex surface is larger than that of the concave surface.Therefore,the outstanding advantages of the flight stability of the B-type projectile lie in the region where the Mach number is about 0.5.

    Fig.11 Pitching moment coefficient of two types of projectiles versus the attack angle

    4.4 Rolling Moment Characteristics

    Fig.13 shows that the rolling moment coefficient of the A-type projectile presents periodical variation with the increase of rolling angle.When the A-type projectile is symmetrical on both sides of the vertical plane(rolling angle of 0°,90°,and 180°),the rolling moment coefficient reaches the minimum value.The rolling moment coefficient of the B-type projectile firstly increases and then decreases.It can be seen from Fig.7(a)that the distributions of streamline and pressure are symmetricalon both sides ofthe longitudinal symmetrical plane.So,as the longitudinal symmetrical plane coincides with the vertical plane (rolling angle of 0°and 180°),the rolling moment coefficient of the B-type projectile reaches a minimum value.However,although the longitudinal symmetrical plane is perpendicular to the vertical plane(rolling angle of 90°),the rolling moment coefficient reaches its maximum value.Under the comprehensive influence of the specific laws of stress distribution of the WAW and attack angle,the rolling moment coefficient of the B-type projectile at a rolling angle of 135°is larger than that at 45°,and the rolling moment coefficient of the B-type projectile at a rolling angle of 180°is larger than that at 0°.Although the rolling moment coefficient of the B-type projectile is slightly larger than that of the A-type projectile, the average rolling moment coefficient of the B-type projectile is less than that of the A-type projectile in the entire rollcycle.Therefore, the exotic WAW configuration can effectively reduce the rolling moment in accordance with some specific requirements of the projectile.

    Fig.12 Pitching moment coefficient of two types of projectiles versus rolling angle at α=4°,Ma= 0.5

    Fig.13 Rolling moment coefficient of two types of projectiles versus rolling angle at α=4°,Ma=0.5

    4.5 Position of the Pressure Center

    Fig.14(a)shows that when the Mach number gradually increases,the position of the pressure center of the A-type projectile moves to the directions of the warhead and then to the directions of the tail.This movement is caused by the parts of the high pressure on the head of the A-type projectile holding a dominant position in the pressure center variation when the Mach number varies from 0.35 to 0.65.The high pressure on the windward of the tail and tail fin will take up the dominant status when the Mach number exceeds 0.65.Fig.14(a)shows that with the increase of the Mach number,the position of the pressure center of the B-type projectile slightly changes and moves toward the direction of the tail.It can be seen from Fig.7 that the pressure values on the WAW windward are higher than those on the WAW leeward because of the attack angle with 4°.So,this movement is caused by the influence of the WAW,which makes the windward of the WAW and tail fin occupy the dominant status in the entire range of flight Mach numbers.Therefore,the B-type projectile has better static stability in the flight tests.Fig.14(b)shows that the position of the pressure center of the two types of projectiles slightly changes with the increase of rolling angle.

    Fig.14 Position of the pressure center of the two types of projectiles at α=4°

    4.6 Lift-to-Drag Ratio

    Fig.15(a)shows that with the same state parameters,the lift-to-drag ratio ofthe B-type projectile is 9%to 12%greater than that of the A-type projectile.Such difference is not significant in the region where the Mach number is near 1.0,but significant in the region where the Mach number is close to 0.5.Therefore,the WAW of the B-type projectile is more suitable to unfold in the range of the Mach number with 0.5.Fig.15(b)shows that with the increase of the rolling angle,the lift-to-drag ratio of the B-type projectile declines at first and then rises,whereas the lift-to-drag ratio of the A-type projectile is almost unchanged.As the rolling angle increases up to 90°,the lift-to-drag ratio of the B-type projectile reaches its minimum value because of the decreasing lifting surface area.

    Fig.15 Lift-to-drag ratio of two types of projectiles at α=4°

    5 Conclusions

    In this study,two types of fin-stabilized projectiles that have the same body with and without exotic WAW configuration are studied by numerical simulation.On the basis of the analysis and comparison of results,the following conclusion can be drawn:

    With the exotic WAW configuration,the drag coefficient of the B-type projectile increases by 18%at most.The lift coefficient of the B-type projectile is about 21%greater than that of the A-type projectile when the attack angle is 8°and the rolling angle is 0°.The difference in the lift-to-drag ratio is not significant in the region where the Mach number is near 1.0,but significant in the region where the Mach number is close to 0.5.With the increase in the rolling angle,the lift-to-drag ratio of the B-type projectile declines at first and then rises.The pitching moment coefficient of the B-type projectile rises toward the negative direction,and the average rolling moment coefficient is significantly less than that of the A-type projectile in the entire roll cycle.As the Mach number increases from 0.35 to 0.95,the position of the pressure center of the B-type projectile shows relatively small changes.

    The exotic WAW configuration is simple to design and convenient to install.Therefore,to improve the shooting quality of the fin-stabilized projectile,reduce the rolling moment,and enhance the projectile range,this type of projectile can fully use the tail space to configure the exotic WAW during flight test.Future work will be focused on simulating and researching the aerodynamic characteristics of the exotic WAW configuration with different aspect ratios and opening angles in subsonic,transonic,and supersonic flow.This work will provide the theoretical foundation and design decision for scientific research personnel and professional and technical staff.

    [1]Wu Jiasheng,Ju Xianming,Miao Ruisheng.Advance in the research for aerodynamic characteristic of wrap-around fins.Advances in mechanics,1995,25(1):102-113.

    [2]Tilmann C P.Characterization of the Flow Field Near a Wrap Around Fin at Supersonic Speeds.Washington DC: Storming Media,1998.

    [3] XieZhimin,YangShuxin,ChenWei.Numerical investigation of side aerodynamic characteristics of wrap around fins rocket.Acta Aerodynamic Sinica,2010,28 (1):66-69.

    [4]Mao Xuerui,Yang Shuxing,Zhao Liangyu.Numerical simulation on aerodynamic characteristics of rocket with wrap around fins.Journal of Solid Rocket Technology,2007,30(3):181-281.

    [5]Zheng Jian,Zhou Changsheng,Ju Yutao.Experimental study and numerical simulation of flow field over wrap around Fin-body combination.Journal of Nanjing University of Science and Technology,2012,36(3):505-510.

    [6]Wu Xiaosheng.Investigation into aerodynamic characteristics of folding wing guided bomb.Transactions of Beijing Institute of Technology,2010,30(9):1024-1027.

    [7]Wu Pin,Zhao Runxiang,Tan Junjie,et al.The analysis of aerodynamic character on glide bullet to increase range.Journal of Ballistics,2001,13(4):38-41.

    [8]Wu Pin,Zhao Runxiang,Guo Xifu.Aerodynamic character calculation and analysis of two sets of empennages bullet.Acta Aerodynamic Sinica,2002,20(4):411-415.

    [9]Mani M,Cary A.A Structured and Hybrid Unstructured Grid Euler and Navier-Stokes Solver for General Geometry.Reston VA:AIAA,2004.2004-1103.

    [10]Yan Chao,Yu jian,Xu Jinglei,et al.On the achievements and prospects for the methods of computional fluid dynamics.Advances in Mechanics,2011,25(5):102-113.

    [11]Zhang Laiping,He Lixin,Liu Wei,et al.Reviews of high-order methods on unstructured and hybrid grid.Advances in Mechanics,2013,43(2):202-236.

    [12]Van Leer B.Computational fluid dynamics:science or toolbox?Reston VA:AIAA,2001.2001-2520.

    [13]Menter F R.Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows.Washington DC:NASA,1992.NASA TM 103975.

    [14]College of East China Engineering.Wind Tunnel Report of Standard Projectiles in Subsonic and Supersonic.Nanjing: College of East China Engineering,1985.6-12.

    [15]Zang Guocai,Li Shuchang.Aerodynamics of Projectile.Beijing:Ordnance Industry Press,1989.

    [16]Li Jianping,Bai Chunhua.Analysis of flight stability and rear flow field of the cargo projectile.Journal of Aerospace Power,2010,25(1):107-113.

    亚洲精品av麻豆狂野| 午夜视频精品福利| 两个人免费观看高清视频| 在线国产一区二区在线| 欧美日韩瑟瑟在线播放| 啦啦啦免费观看视频1| 国产一区二区激情短视频| 国产色视频综合| 精品久久久久久久久久久久久 | 身体一侧抽搐| 亚洲第一青青草原| 午夜福利视频1000在线观看| 亚洲天堂国产精品一区在线| 国产视频一区二区在线看| 2021天堂中文幕一二区在线观 | 欧美日韩瑟瑟在线播放| 一区二区日韩欧美中文字幕| 日本a在线网址| 国产日本99.免费观看| 免费观看精品视频网站| 国产一级毛片七仙女欲春2 | 国产成+人综合+亚洲专区| 自线自在国产av| 天堂动漫精品| av福利片在线| 国产1区2区3区精品| 身体一侧抽搐| 国产午夜精品久久久久久| 国产色视频综合| 制服人妻中文乱码| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文日韩欧美视频| av中文乱码字幕在线| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 国产免费男女视频| 久久狼人影院| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 99久久精品国产亚洲精品| 人人澡人人妻人| 久热爱精品视频在线9| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 男女那种视频在线观看| 一区二区三区激情视频| 国产午夜精品久久久久久| 午夜免费激情av| 日本在线视频免费播放| 成年版毛片免费区| 欧美黄色片欧美黄色片| 久99久视频精品免费| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 色综合站精品国产| 欧美中文日本在线观看视频| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 国产精华一区二区三区| 成人欧美大片| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 成熟少妇高潮喷水视频| 黑人巨大精品欧美一区二区mp4| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| www.精华液| 国产精品98久久久久久宅男小说| 久久久久久久久久黄片| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 两个人免费观看高清视频| 18美女黄网站色大片免费观看| 国产精品 欧美亚洲| 一级黄色大片毛片| 欧美激情极品国产一区二区三区| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播 | 狠狠狠狠99中文字幕| 精品日产1卡2卡| 久久久久国产精品人妻aⅴ院| 美女免费视频网站| a级毛片在线看网站| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 国产精品,欧美在线| 禁无遮挡网站| 国产成人精品久久二区二区免费| 午夜福利18| 日本a在线网址| 午夜久久久在线观看| 久久国产精品影院| 国产亚洲欧美98| 日日夜夜操网爽| 亚洲 国产 在线| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 国产免费男女视频| 日韩欧美三级三区| xxxwww97欧美| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 久久九九热精品免费| 黄片播放在线免费| 男人舔奶头视频| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 久久久久久大精品| 亚洲国产精品久久男人天堂| 日韩欧美 国产精品| a级毛片a级免费在线| 精品一区二区三区四区五区乱码| 91老司机精品| 欧美精品亚洲一区二区| 在线观看免费视频日本深夜| 国产熟女xx| 国产99白浆流出| 日韩精品青青久久久久久| 日本 av在线| 精品久久久久久久毛片微露脸| 久9热在线精品视频| 中文在线观看免费www的网站 | 正在播放国产对白刺激| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 亚洲第一青青草原| 男女视频在线观看网站免费 | 国产片内射在线| 亚洲va日本ⅴa欧美va伊人久久| 999久久久国产精品视频| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影| 免费在线观看成人毛片| 久久青草综合色| 亚洲三区欧美一区| 黄色女人牲交| а√天堂www在线а√下载| av片东京热男人的天堂| xxxwww97欧美| 久久久久久久久中文| 国产高清视频在线播放一区| 巨乳人妻的诱惑在线观看| 91成年电影在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲人成电影免费在线| 老司机福利观看| 麻豆一二三区av精品| 国产精品1区2区在线观看.| 成人国产一区最新在线观看| 婷婷六月久久综合丁香| 天堂动漫精品| 久久久精品欧美日韩精品| 欧美乱妇无乱码| 91大片在线观看| 自线自在国产av| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 亚洲一区二区三区不卡视频| 午夜福利一区二区在线看| 一本一本综合久久| 欧美激情 高清一区二区三区| 免费看十八禁软件| 一本综合久久免费| 波多野结衣高清作品| 老司机午夜十八禁免费视频| 久久香蕉精品热| 欧美性猛交黑人性爽| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 一a级毛片在线观看| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 国产亚洲欧美98| 又紧又爽又黄一区二区| 精品国产乱码久久久久久男人| 级片在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 午夜久久久久精精品| 国产精品1区2区在线观看.| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 午夜激情av网站| 国产午夜精品久久久久久| 成人亚洲精品av一区二区| 久久香蕉精品热| 久久中文字幕人妻熟女| 国产在线精品亚洲第一网站| 日韩 欧美 亚洲 中文字幕| 制服诱惑二区| 婷婷精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清无吗| 99久久无色码亚洲精品果冻| 看片在线看免费视频| 国产高清激情床上av| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合 | 一本精品99久久精品77| 久久久久亚洲av毛片大全| 久久精品成人免费网站| 久久久久国产精品人妻aⅴ院| 久久久水蜜桃国产精品网| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 免费看十八禁软件| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 制服人妻中文乱码| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色| 久久久久久免费高清国产稀缺| 欧美日韩乱码在线| 久久久久久久久中文| 精品国产美女av久久久久小说| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 欧美在线一区亚洲| 国产伦一二天堂av在线观看| 久久久久久国产a免费观看| 久久伊人香网站| av天堂在线播放| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 美女午夜性视频免费| 精品熟女少妇八av免费久了| 国语自产精品视频在线第100页| 精品久久久久久久毛片微露脸| 老司机福利观看| 久热爱精品视频在线9| 国产亚洲精品av在线| 色老头精品视频在线观看| 午夜免费成人在线视频| 日韩欧美免费精品| 狂野欧美激情性xxxx| 在线观看66精品国产| 久久久久久国产a免费观看| 国内精品久久久久久久电影| 国产精品电影一区二区三区| 午夜视频精品福利| 久久天堂一区二区三区四区| 国产精品久久视频播放| 日韩欧美国产在线观看| 亚洲三区欧美一区| 欧美性猛交黑人性爽| 色综合欧美亚洲国产小说| 国产亚洲精品久久久久久毛片| 国产精品九九99| 成人国语在线视频| 不卡av一区二区三区| 免费在线观看影片大全网站| 日韩精品免费视频一区二区三区| 91av网站免费观看| 免费av毛片视频| а√天堂www在线а√下载| x7x7x7水蜜桃| 一级毛片精品| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频 | 亚洲精品美女久久av网站| 人人妻人人澡人人看| 国产伦在线观看视频一区| 国产又色又爽无遮挡免费看| 精品国产乱码久久久久久男人| 久99久视频精品免费| 成年版毛片免费区| 99热只有精品国产| 欧美日韩福利视频一区二区| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 男女之事视频高清在线观看| 亚洲男人的天堂狠狠| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 欧美乱妇无乱码| 国产激情偷乱视频一区二区| 国产一区在线观看成人免费| 久久精品成人免费网站| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆 | 国产激情久久老熟女| 成年女人毛片免费观看观看9| 日韩欧美在线二视频| 99国产极品粉嫩在线观看| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 久久婷婷成人综合色麻豆| 淫秽高清视频在线观看| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 欧美 日韩 在线 免费| 在线天堂中文资源库| 夜夜夜夜夜久久久久| 免费在线观看视频国产中文字幕亚洲| 久久久久亚洲av毛片大全| 亚洲七黄色美女视频| 高清在线国产一区| 日韩免费av在线播放| 一级片免费观看大全| 国产高清videossex| 国产高清视频在线播放一区| 国产精品久久久久久亚洲av鲁大| 欧美激情极品国产一区二区三区| 成人国语在线视频| av免费在线观看网站| 天堂√8在线中文| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 欧美乱妇无乱码| 在线国产一区二区在线| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 亚洲最大成人中文| 巨乳人妻的诱惑在线观看| 可以在线观看的亚洲视频| 久久久久国产精品人妻aⅴ院| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 女性被躁到高潮视频| 丰满的人妻完整版| 最近最新免费中文字幕在线| 欧美丝袜亚洲另类 | 免费高清视频大片| 99热这里只有精品一区 | 久久久久久久精品吃奶| 中出人妻视频一区二区| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 成年人黄色毛片网站| 可以在线观看毛片的网站| 午夜免费成人在线视频| 成人午夜高清在线视频 | 国产高清激情床上av| а√天堂www在线а√下载| 99热6这里只有精品| 欧美日本视频| 在线视频色国产色| 欧美日韩乱码在线| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久久免费视频| 国产精品乱码一区二三区的特点| www日本黄色视频网| tocl精华| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 亚洲色图 男人天堂 中文字幕| 中文字幕av电影在线播放| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 人人澡人人妻人| 国产精品久久久久久亚洲av鲁大| a在线观看视频网站| 国产黄片美女视频| 黄频高清免费视频| 热re99久久国产66热| 亚洲国产毛片av蜜桃av| 俄罗斯特黄特色一大片| 日韩一卡2卡3卡4卡2021年| 国产乱人伦免费视频| 宅男免费午夜| 丝袜人妻中文字幕| 久久精品国产99精品国产亚洲性色| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 久久精品国产99精品国产亚洲性色| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久亚洲精品国产蜜桃av| 成人特级黄色片久久久久久久| 51午夜福利影视在线观看| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观 | 精品国产国语对白av| 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 免费在线观看视频国产中文字幕亚洲| 精华霜和精华液先用哪个| 免费搜索国产男女视频| 欧美最黄视频在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 真人做人爱边吃奶动态| 午夜影院日韩av| 亚洲精华国产精华精| 欧美久久黑人一区二区| 亚洲美女黄片视频| 欧美黑人巨大hd| 中文字幕久久专区| 999久久久国产精品视频| 最近最新中文字幕大全免费视频| 一卡2卡三卡四卡精品乱码亚洲| 97碰自拍视频| 母亲3免费完整高清在线观看| 看免费av毛片| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 国产亚洲精品av在线| 欧美午夜高清在线| 久99久视频精品免费| 在线十欧美十亚洲十日本专区| 99精品欧美一区二区三区四区| 免费在线观看黄色视频的| 日本熟妇午夜| 黄色视频不卡| 99热这里只有精品一区 | 国产日本99.免费观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av| 亚洲av片天天在线观看| 久久久久久久久久黄片| 国产成人欧美在线观看| 亚洲午夜精品一区,二区,三区| 国产精品 欧美亚洲| 不卡一级毛片| 国产精品久久视频播放| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看| 国产在线精品亚洲第一网站| 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 又大又爽又粗| 欧美 亚洲 国产 日韩一| 亚洲狠狠婷婷综合久久图片| 国产成人av激情在线播放| 1024香蕉在线观看| 亚洲精品国产一区二区精华液| 国产一卡二卡三卡精品| 国产精品野战在线观看| 18禁美女被吸乳视频| av免费在线观看网站| 制服诱惑二区| 国产野战对白在线观看| 午夜成年电影在线免费观看| 免费高清视频大片| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 日韩欧美一区视频在线观看| 免费在线观看日本一区| 香蕉丝袜av| 黄色成人免费大全| 久久久国产成人免费| 女人高潮潮喷娇喘18禁视频| 日本三级黄在线观看| 男女床上黄色一级片免费看| 中文资源天堂在线| 日本 欧美在线| 丝袜在线中文字幕| 欧美中文日本在线观看视频| 1024香蕉在线观看| 亚洲av片天天在线观看| 欧美黑人巨大hd| 黄色 视频免费看| 欧美色欧美亚洲另类二区| 亚洲精品久久成人aⅴ小说| 亚洲欧美日韩高清在线视频| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 日韩有码中文字幕| 亚洲国产看品久久| 人妻丰满熟妇av一区二区三区| 听说在线观看完整版免费高清| 老司机在亚洲福利影院| av福利片在线| 日韩 欧美 亚洲 中文字幕| 人人澡人人妻人| 欧美性猛交╳xxx乱大交人| 国语自产精品视频在线第100页| 欧美色视频一区免费| 久久久国产欧美日韩av| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 亚洲国产精品合色在线| 1024手机看黄色片| 18禁黄网站禁片免费观看直播| 久久热在线av| 黑丝袜美女国产一区| 一级a爱视频在线免费观看| 可以在线观看的亚洲视频| 美女午夜性视频免费| 我的亚洲天堂| 亚洲欧美一区二区三区黑人| 亚洲精品国产区一区二| 欧美中文日本在线观看视频| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区不卡视频| 一区二区三区精品91| 欧美又色又爽又黄视频| 国产片内射在线| 90打野战视频偷拍视频| 变态另类成人亚洲欧美熟女| bbb黄色大片| 国产又色又爽无遮挡免费看| 国产精品电影一区二区三区| cao死你这个sao货| 一区二区三区高清视频在线| 欧美另类亚洲清纯唯美| 亚洲中文av在线| 亚洲av五月六月丁香网| 免费在线观看黄色视频的| 男人舔女人下体高潮全视频| 国产精品电影一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲中文av在线| 白带黄色成豆腐渣| 在线观看免费午夜福利视频| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 欧美zozozo另类| 国产精品综合久久久久久久免费| 午夜久久久在线观看| 国产精品日韩av在线免费观看| 老司机在亚洲福利影院| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品电影 | 精品久久久久久久末码| www.自偷自拍.com| 久久久久精品国产欧美久久久| 91成年电影在线观看| 精品不卡国产一区二区三区| 老司机午夜十八禁免费视频| 国产精品免费一区二区三区在线| 一本大道久久a久久精品| 久久久久九九精品影院| 在线视频色国产色| 免费在线观看日本一区| 免费搜索国产男女视频| 韩国精品一区二区三区| 国产片内射在线| 俄罗斯特黄特色一大片| 妹子高潮喷水视频| 成熟少妇高潮喷水视频| 久久久久久国产a免费观看| 国产精品98久久久久久宅男小说| 老司机午夜十八禁免费视频| 99热只有精品国产| 国产精品乱码一区二三区的特点| av福利片在线| 色综合亚洲欧美另类图片| 国产亚洲精品一区二区www| 成年人黄色毛片网站| 精品国产一区二区三区四区第35| 久久国产亚洲av麻豆专区| 视频在线观看一区二区三区| 免费看a级黄色片| 我的亚洲天堂| 啪啪无遮挡十八禁网站| 亚洲精品在线观看二区| 欧美大码av| 51午夜福利影视在线观看| 久久久久久九九精品二区国产 | 黄色成人免费大全| 成年免费大片在线观看| 中文字幕人妻丝袜一区二区| 欧美国产精品va在线观看不卡| 操出白浆在线播放| 久久天堂一区二区三区四区| 搞女人的毛片| 欧美人与性动交α欧美精品济南到| 午夜a级毛片| 黑人操中国人逼视频| 久久性视频一级片| 久久狼人影院| 久久精品国产综合久久久| 午夜精品在线福利| 亚洲国产看品久久| 99久久99久久久精品蜜桃| 给我免费播放毛片高清在线观看| 中文字幕人成人乱码亚洲影| 波多野结衣巨乳人妻| 一区二区三区精品91| 国产又色又爽无遮挡免费看| 亚洲av片天天在线观看| 午夜精品在线福利| 草草在线视频免费看| 亚洲一区二区三区不卡视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美一区二区三区在线观看| 国产伦一二天堂av在线观看| 国产真实乱freesex| 1024香蕉在线观看| 女性被躁到高潮视频| 亚洲欧美激情综合另类| 亚洲精品美女久久久久99蜜臀| 亚洲精品一卡2卡三卡4卡5卡| 成人国语在线视频|