• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation Platform of Underwater Quadruped Walking Robot Based on MotionGenesis Kane 5.3 and Central Pattern Generator

    2014-03-14 06:45:56KeYangXuYangWangTongGeChaoWu

    Ke Yang,Xu-Yang Wang,Tong Ge,Chao Wu

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University,Shanghai 200240,China)

    1 Introduction

    Multi-legged robot locomotion has been an area of keen interest to the researchers over the years because of the advantages of the superior mobility in irregular terrain and the less hazardous influences on environment comparing with the wheeled robots[1].It introduces more flexibility and terrain adaptability at the cost of low speed and the increased control complexity[2].In order to develop dynamic model and control algorithm of legged robots,it is important to have good models which can describe the kinematic and dynamic behavior of the complex multi-legged robotic mechanism[2].Soyguder et al.[3]constructed a spring loaded inverted pendulum model of a quadrupedal pronking gait robot.Agarwal et al.[4]presented a detailed model of realistic four-legged robot.Wang et al.[5]analyzed the kinematics and dynamics of a quadruped walking robot with parallel leg mechanism.Poulakakis et al.[6]compared the models and experiments involving Scout II,an untethered fourlegged running robotwith only one actuatorper compliant leg.Remy et al.[7-8]applied the principles of passive dynamic walking onto the three-dimensional motion of a simplified quadrupedal model.However, the dynamic model of underwater quadruped walking robot based on Kane dynamic equations is still leaking.In thispaper,the Kane dynamic modelofthe underwater quadruped walking robot was constructed to be processed with a commercial package MotionGenesis Kane 5.3.

    The control strategy for walking robots must take a series of factors into account[9],of which are noted: speed,walking stability,form and consistence of terrain.Iida et al.[10]exploited the body dynamics to control the behavior of quadruped robot.Kurazume et al.[11]presented feedforward and feedback dynamic trot gait control for quadruped walking robot.Maufroy et al.[12]intended to show the basis of a general legged locomotion controller with the ability to integrate both posture and rhythm motion controls and shift continuously from one control method to the other according to the walking speed.Buchli et al.[13]presented adaptive controller which consisted of adaptive frequency oscillators in different configurations and produced dynamic gaits such as bounding and jumping.Kimura et al.[14-16]made a quadruped robot walk with medium speed on irregular terrain in an outdoor environment by using a neural system model.The control strategies proposed above were successfully used to control the quadruped robot walking on land, but the control strategies which can be used to realize adaptive walking in underwater environment is still leaking.

    In this paper,the Kane dynamic model of underwater quadruped walking robot is constructed,which can be processed with a commercial package MotionGenesis Kane 5.3. Then, a CPG-based controller is proposed,which can be used to control the walking of the underwater quadruped walking robot.Finally,a simulation platform is constructed for an underwater quadruped walking robot based on Kane dynamic model and CPG-based controller.In our simulation platform,it needs to investigate:how CPG parameters and coefficients of spring and damper affect the walking speed of the underwater quadruped walking robot.Walking with maximum speed is implemented in our simulation platform.

    2 Dynamic Model

    2.1 Mechanical System

    In this section,the mechanical system of the underwater quadruped walking robot is described.The robot consists of nine segments which are concatenated one dimensionally via joints.A motor is mounted onto each joint,and thus,each joint can be independently controlled.Fig.1 shows the segment of the underwater quadruped walking robot.

    Fig.1 Underwater quadruped walking robot

    2.2 Hydrodynamic Forces

    The hydrodynamic forces acting on the underwater quadruped walking robot include:buoyancy,drag force and drag moment,add mass force and add mass moment.As shown in Fig.1,the body of underwater quadruped walking robot is rectangular box;the leg of underwater quadruped walking robot consists of two rectangular boxesand one cylinder;the footof underwater quadruped walking robot is cylinder.So,it just needs to deduce the formula of hydrodynamic forces of rectangular box and cylinder.The geometric parameters are shown in Table 1.

    The hydrodynamic forces of rectangular box have been introduced in Ref.[17].So,it just introduces formulas of hydrodynamic forces of cylinder.The buoyancy is proportional to the mass of the fluid displaced by cylinder through the center of buoyancy of cylinder.

    where ρ is the density of the fluid;V is the volume of the fluid displaced by cylinder.

    Table 1 Geometric parameters of underwater quadruped walking robot

    The drag force and drag moment can be expressed as follows[18]:

    where FDis drag force;MDis drag moment;CDis drag coefficient;R'is the radius of cylinder;L'is the length of cylinder;v(z)⊥represents the translational velocity relative to the fluid and normal to z direction along the length of cylinder.

    The added inertia forces and moments acting on the cylinder due to the motion of the surrounding fluid are expressed in the vector form as[17]:

    where Cais the added mass coefficient;CAis the added inertia moment coefficient;ρV is the mass of the fluid with the same volume of the cylinder;Ixxf,Iyyf,and Izzfare the central moment of inertia of the fluid with the same volume ofthe cylinder;acmisthe linear acceleration of the center-of-mass(cm)of cylinder; α= [αxαyαz] is the angular acceleration of cylinder.

    2.3 Model Description

    An outline of the model structures is described in Section 2.3.1.More detailed explanations regarding how to represent those structures in the MotionGenesis Kane 5.3 are discussed in later sections.

    2.3.1 Outline of the model

    The model has nine rigid body segments in total: B(Body),LFL,LFF,RFL,RFF,LHL,LHF,RHL,RHF(as shown in Fig.1).Those segments are interconnected with joints.The body has 6 degree of freedom(DOF)(3 translations and 3 rotations).The joint has 1 DOF.The total number DOF of the robot model is 14.The adjacent segments are noted by“joint”(for example,LFH,LFA etc.),as shown in Fig.2.The model has eight joints in total:LFH,LFA,RFH,RFA,LHH,LHA,RHH,and RHA.

    The global(inertia)coordinate system is named“N”(Fig.2).Each segment has a local coordinate system attached to the end of the segment.Two vectors that compose the coordinate system are named as“(segment name)(x>,y>or z>)”(for example,LFLx>,LFLy>,LFL z>for the left forward leg; Fig.2).J represents the end of foot.The generalized coordinates of the system are defined as:

    The segment except body and the jointare represented by three characters.The meaning of each character is shown in Table 2.

    Fig.2 Schematic diagram of underwater quadruped walking robot

    Table 2 Meaning of character

    2.3.2 Constraint conditions

    Linkage of segments,i.e.,relative relations of segments,has been determined as shown in Tables 3 and 4.The relative relations between body and legs can be represented by the similar way.So,it just depicts the relative relations of body,left forward leg (LFL),and leftforward foot(LFF).“Bcm”represents center-of-mass of body.“No”represents the origin of the global(inertia)coordinate system“N”.

    Table 5 shows how depict forces and moments act on the underwater quadruped walking robot.For ease of description,left forward leg(LFL)is taken as an example.Table 5 just includes typical forces and moments acted on the LFL.The rest forces and moments acted on the LFL can be dealt with the same way.mLis the mass of leg.Ix,Iy,and Iz are the central moment of inertia of leg.

    Table 3 Position constraint

    Table 4 Rotation constraint

    2.3.3 Contact force between foot and ground

    The ground reaction forces rely on the interaction between feet and floor because the contact point changes in every step.To solve this problem,the ground reaction forces are represented as a spring and damper acting at the feet.The ground reaction forces in Nx>and Nz>direction are given as:

    where(xf,zf)is the coordinate of the end of foot;(x0,z0)is the origin coordinate when the foot contact with ground;kpx,kpzare coefficients of spring;kdx,kdzare coefficients of damper.

    Fig.3 shows the relation between zfand the coefficients of spring and damper in Nz>direction when underwater quadruped walking robot is static.From Fig.3,it can be seen that zfdecreases slowly when kpzchanges from 2000 to 20000(kdzis fixed),and zfalmost no change when kdzchanges from 1000 to 10000(kpzis fixed).The minimum value of zfis 0.0041 m(zf=0 represents the ground).Fig.4 shows how kdzaffects the rate of convergence.

    Fig.3 Relation between zf,kpzand kdz

    Fig.4 Relation between kdzand the rate of convergence

    3 CPG-based Controller

    In this section,a CPG-based controller for legs based on CPG and PD controller is constructed.CPG provides the target angles of legs for PD controller,and actual angles,which come from dynamic model,provide feedback for PD controller.

    3.1 CPG Model

    A CPG model consists of two mutually inhibiting neurons.Each neuron in this CPG modelis represented by the following nonlineardifferential equations[15]:

    where u{e,f}iis the membrane potentials of an extensor neuron or a flexor neuron in the ith CPG model;v{e,f}iis the variable that represents the degree of adaptation; τ1and τ2are the time constants;β is the adaptation coefficient;u0is the tonic driving input;wfeis a connecting weight between extensor and flexor neurons;wijis the connecting weight between ith CPG modeland jth CPG model;Feed{e,f}irepresents feedback signal from the robot;y{e,f}iis output of extensor or flexor neurons in the ith CPG model;yiis the output of ith CPG model.The output amplitude of CPG keeps a linear relation with u0[19];the output period of CPG keeps a linear relation with τ1while the value of τ1/τ2is constant[19].

    3.2 CPG-based Controller

    For a quadruped walking robot,the CPG network is constructed through connecting four CPG modules,each of which provides a target angle for a hip joint of a leg.And a trot gait for walking is chosen.For diagonal legs,the CPG module generates target angle with 0° phase difference;otherwise, the CPG module generates target angle with 180°phase difference(as shown in Fig.5).The oscillation periods of CPG model are equal.The trot gait can be obtained through adjusting the parameter wij.

    Fig.5 Target angles of legs come from CPG

    In the following experiments,the hip joints are controlled by CPG-based controller, but, for simplicity,the ankle joints are controlled by PD-controller(as shown in Fig.6).The angle of ankle joint qi(i=11,12,13,14)can be expressed as:

    Fig.6 CPG-based controller

    4 Simulation

    In this section,it investigates the relation between the coefficients of spring and damper and walking speed of underwater quadruped walking robot,the relation between CPG parameters and walking speed of underwaterquadruped walking robot. Itrealizes walking with maximum speed of underwater quadruped walking robot on the underwater flat ground.

    4.1 Effect of Coefficients of Spring and Damper

    Fig.7 shows the relation between velocity of Bcmand coefficients of spring and damper in Nz>direction when kpzchanges from 2000 to 20000 and kdzchanges from 1000 to 10000.The maximum velocity of Bcmis 0.27 m/s,which is obtained at the point(kpz=4000,kdz=1000).

    Fig.7 Relation between velocity of Bcmand coefficients of spring and damper in Nz>direction

    Fig.8 shows how coefficients of spring and damper in Nx>direction affect the velocity of Bcm(kpz=4000,kdz=1000).When kpxvaries from 400 to 4000 and kdxvaries from 200 to 2000,the maximum velocity of Bcm(v=0.29 m/s)is obtained at the point(kpx=2800,kdx=800).

    4.2 Effect of CPG Parameters

    Fig.9 shows how CPG parameters affect the velocity of Bcm(τ1/τ2=1/3,kpx=2800,kdx= 800,kpz=4000,kdz=1000).When u0changes from 0.2 to 2 and τ1changes from 0.05 to 0.6,the maximum velocity of Bcm(v=0.34)is obtained at the point(u0=1.4,τ1=0.15).

    Fig.8 Relation between velocity of Bcmand coefficients of spring and damper in Nx>direction

    Fig.9 Relation between velocity of Bcmand CPG parameters

    4.3 Walking with Maximum Velocity on Underwater Flat Ground

    Fig.10 shows the trajectory of Bcmin Nx>direction when the underwater quadruped walking robot walk with the maximum velocity on the underwater flat ground.

    Fig.10 Trajectory of Bcmin Nx>direction

    Fig.11 shows the change of trajectory of Bcmin Nz>direction(the initial value is Z=-0.8 m).Alternating movement of legs will lead to the change of Bcmin vertical direction.The touch between feet and ground also induces the change of Bcm.That is because the forces between feet and ground are represented as a spring and damper,and the feet will fall into ground when the feet contact with the ground.

    Fig.11 Trajectory of Bcmin Nz>direction

    5 Conclusions

    In this paper,a simulation platform is constructed for an underwater quadruped walking robot based on Kane dynamic model and CPG-based controller.The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5.3. The function of the simulation platform can be described as:

    1)Researching the relation between coefficients of spring and damper and stability of the underwater quadruped walking robot;

    2)Researching the relation between CPG parameters and adaptive walking of underwater quadruped walking robot;

    3)Researching how CPG parametersand coefficients of spring and damper affect the walking speed of underwater quadruped walking robot;

    4)Researching how hydrodynamic coefficients affect the walking speed of underwater quadruped walking robot.

    In this paper,it mainly studies two questions:in the stationary state,the relation between coefficients of spring and damper in Nz>direction and stability of underwater quadruped walking robot;in the motion state,the effect of CPG parameters and coefficients of spring and damper on walking speed of the underwater quadruped walking robot.The simulation results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.

    [1]Mahapatra A,Roy S S.Computer aided dynamic simulation of six-legged robot.International Journal of Recent Trends in Engineering,2009,2(2):146-151.

    [2]Roy S S,Singh A K,Pratihar D K.Analysis of six-legged walking robots.Proceedings of the 14thNational Conference on Machines and Mechanisms.Durgapur:International Federation of the Theory of Machines and Mechanisms (IFToMM),2009.259-265.

    [3]Soyguder S,Alli H.Computer simulation and dynamic modeling of a quadrupedal pronking gait robot with SLIP model.Computer and Electrical Engineering,2012,38 (1):161-174.

    [4]Agarwal S,Mahapatra A,Roy S S.Dynamics and optimal feet force distributions of a realistic four-legged robot.International Journal of Robotics and Automation,2012,1 (4):223-234.

    [5]Wang H B,Sang L F,Hu X,et al.Kinematics and dynamics analusis of a quadruped walking robot with parallel leg mechanism.Chinese Journal of Mechanical Engineering,2013,26(4):1-11.

    [6] Poulakakis I,Smith J A,Buehler M.Modeling and experiments of untethered quadrupedal running with a bounding gait:the scout II robot.The International Journal of Robotics Research,2005,24(4):239-256.

    [7]Remy C D,Hutter M,Sierwart R.Passive dynamic walking with quadrupeds —extensions towards 3D.Proceedings of IEEE International Conference on Robotics and Automation.Piscataway:IEEE Computer Society,2010.5231-5236.

    [8]Remy C D,Buffinton K,Siegwart R.Stability analysis of passive dynamic walking of quadrupeds.The International Journal of Robotics Research,2010,29(9):1173-1185.

    [9]Vladareanu L,Melinte D O.Dynamic force-position control of the walking robots motion on slope.Applied Mechanics and Materials,2012,186(1):98-104.

    [10]Iida A,Gomez G,Pfeifer R.Exploiting body dynamics for controlling a running quadruprd robot.Proceedings of 12thInternational Conference on Advanced Robotics.Piscataway:IEEE Computer Society,2005.229-235.

    [11]Kurazume R,Yoneda K.Feedforward and feedback dynamic trot gait control for quadruped walking vehicle.Autonomous Robots,2002,12(2):157-172.

    [12]Maufroy C,Kimura H,Takase K.Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/ unloading.Autonomous Robots,2010,28(3):331-353.

    [13]Buchli J,Ijspeert A J.Self-organized adaptive legged locomotion in a compliant quadruped robot.Autonomous Robots,2008,25(4):331-347.

    [14]Fukuoka Y,Kimura H,Cohen A H.Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts.The International Journal of Robotics Research,2003,22(3/4):187-202.

    [15]Kimura H,F(xiàn)ukuoka Y,Cohen A H.Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts.The International Journal of Robotics Research,2007,26(5):475-490.

    [16]Kimura H,F(xiàn)ukuoka Y,Konaga K.Adaptive dynamic walking of a quadruped robot using a neural system model.Advanced Robotics,2001,15(8):859-878.

    [17]Safak K K,Adams G G.Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion.Autonomous Robots,2002,13(3):223-240.

    [18]Tran T J,Shoults G A,Yang S P.A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method.Autonomous Robots,1996,3(2/3):269-283.

    [19]Wu X D,Ma S G.Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change.Autonomous Robots,2010,28(3):283-294.

    亚洲欧美一区二区三区黑人| 国产野战对白在线观看| 久久人人爽人人片av| 亚洲专区国产一区二区| 免费黄频网站在线观看国产| 热99久久久久精品小说推荐| 亚洲精品国产区一区二| 自线自在国产av| 欧美日韩亚洲高清精品| 国产精品久久久av美女十八| 老司机影院毛片| 十八禁人妻一区二区| 久久九九热精品免费| 久久久久国产一级毛片高清牌| 中文字幕最新亚洲高清| 亚洲午夜精品一区,二区,三区| 亚洲三区欧美一区| 欧美在线黄色| 欧美日韩亚洲综合一区二区三区_| 母亲3免费完整高清在线观看| 少妇人妻 视频| av一本久久久久| netflix在线观看网站| 精品少妇一区二区三区视频日本电影| 十八禁高潮呻吟视频| 国产伦理片在线播放av一区| 国产精品久久久久久人妻精品电影 | 国产麻豆69| 国产精品一区二区在线不卡| 在线观看www视频免费| 丝瓜视频免费看黄片| 国产在线观看jvid| 欧美在线一区亚洲| 最新在线观看一区二区三区 | 亚洲精品中文字幕在线视频| 考比视频在线观看| 国产精品久久久久久人妻精品电影 | 丁香六月天网| 国产av一区二区精品久久| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 夫妻午夜视频| 最近手机中文字幕大全| 亚洲熟女毛片儿| 欧美精品高潮呻吟av久久| 在线天堂中文资源库| 美女大奶头黄色视频| 性少妇av在线| 高清不卡的av网站| 老汉色∧v一级毛片| 久久精品熟女亚洲av麻豆精品| www.av在线官网国产| 亚洲激情五月婷婷啪啪| 女警被强在线播放| 亚洲av电影在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 女人被躁到高潮嗷嗷叫费观| 久久天堂一区二区三区四区| 亚洲av日韩在线播放| 视频区图区小说| 亚洲av电影在线观看一区二区三区| 老司机影院成人| 韩国精品一区二区三区| 大香蕉久久网| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区在线不卡| 777久久人妻少妇嫩草av网站| 亚洲国产精品国产精品| 精品久久久久久久毛片微露脸 | 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| 午夜免费鲁丝| 国产精品久久久久久精品古装| 午夜福利乱码中文字幕| 国产女主播在线喷水免费视频网站| 99久久精品国产亚洲精品| 亚洲国产中文字幕在线视频| 看免费av毛片| 亚洲午夜精品一区,二区,三区| 亚洲专区中文字幕在线| 天天添夜夜摸| 91麻豆av在线| 麻豆乱淫一区二区| 成年人免费黄色播放视频| 国产精品一国产av| 免费在线观看日本一区| 精品人妻一区二区三区麻豆| 性色av乱码一区二区三区2| 爱豆传媒免费全集在线观看| 国产亚洲av高清不卡| 宅男免费午夜| 亚洲国产av新网站| 国产在视频线精品| 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 国产成人精品在线电影| 欧美激情极品国产一区二区三区| 黄片小视频在线播放| 国产野战对白在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠精品人妻久久久久久综合| 中文字幕制服av| 狂野欧美激情性bbbbbb| 韩国高清视频一区二区三区| 国产精品久久久久久精品古装| 狠狠精品人妻久久久久久综合| 国产日韩欧美亚洲二区| 天天影视国产精品| 新久久久久国产一级毛片| 精品视频人人做人人爽| 深夜精品福利| 少妇裸体淫交视频免费看高清 | av一本久久久久| 在现免费观看毛片| 亚洲第一av免费看| 黄频高清免费视频| 各种免费的搞黄视频| 亚洲欧美清纯卡通| 国产xxxxx性猛交| 又大又爽又粗| 亚洲av日韩在线播放| 成人国语在线视频| 欧美精品啪啪一区二区三区 | 好男人电影高清在线观看| 在线看a的网站| 超色免费av| 亚洲欧洲精品一区二区精品久久久| 一本色道久久久久久精品综合| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 国产高清videossex| 狂野欧美激情性bbbbbb| 尾随美女入室| 午夜av观看不卡| 中文字幕最新亚洲高清| 亚洲精品在线美女| 亚洲av美国av| 亚洲五月婷婷丁香| 欧美久久黑人一区二区| 狠狠精品人妻久久久久久综合| 国产一卡二卡三卡精品| 久久久久精品人妻al黑| 最黄视频免费看| 在线观看一区二区三区激情| 1024视频免费在线观看| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 国产精品二区激情视频| 日本午夜av视频| 黄色怎么调成土黄色| 悠悠久久av| 建设人人有责人人尽责人人享有的| 日本91视频免费播放| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 老熟女久久久| 免费观看av网站的网址| 夫妻午夜视频| 亚洲精品在线美女| 国产在线免费精品| 国产黄频视频在线观看| 国产免费视频播放在线视频| 丁香六月天网| 高清黄色对白视频在线免费看| 色综合欧美亚洲国产小说| 免费日韩欧美在线观看| 国产真人三级小视频在线观看| 九草在线视频观看| 精品久久久久久电影网| 精品国产国语对白av| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 波多野结衣一区麻豆| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲国产一区二区在线观看 | 亚洲七黄色美女视频| 各种免费的搞黄视频| 欧美精品啪啪一区二区三区 | 黄色 视频免费看| 久久精品国产亚洲av涩爱| 国产一区二区三区av在线| 高潮久久久久久久久久久不卡| 亚洲国产成人一精品久久久| 久久国产精品大桥未久av| 成人国语在线视频| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 男人舔女人的私密视频| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 亚洲成人免费电影在线观看 | 欧美黄色淫秽网站| 国产成人av激情在线播放| 2021少妇久久久久久久久久久| 咕卡用的链子| 九色亚洲精品在线播放| 悠悠久久av| 日韩精品免费视频一区二区三区| 捣出白浆h1v1| 啦啦啦 在线观看视频| 少妇裸体淫交视频免费看高清 | 欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 国产精品熟女久久久久浪| 一区福利在线观看| 成年人黄色毛片网站| 国精品久久久久久国模美| 女性被躁到高潮视频| 嫩草影视91久久| 久久毛片免费看一区二区三区| 99国产综合亚洲精品| 日韩av在线免费看完整版不卡| 制服人妻中文乱码| 好男人电影高清在线观看| 国产熟女欧美一区二区| 国产精品 欧美亚洲| 久久国产精品影院| 91精品三级在线观看| 又大又黄又爽视频免费| 亚洲自偷自拍图片 自拍| 成人国产一区最新在线观看 | av有码第一页| 成年女人毛片免费观看观看9 | 一边摸一边抽搐一进一出视频| 精品亚洲成a人片在线观看| 亚洲精品美女久久av网站| 国产熟女午夜一区二区三区| 精品高清国产在线一区| 精品人妻在线不人妻| 最新的欧美精品一区二区| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 日本a在线网址| 欧美日韩视频高清一区二区三区二| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 桃花免费在线播放| 超碰97精品在线观看| 国产免费福利视频在线观看| 中文字幕高清在线视频| 久久久欧美国产精品| 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| 色94色欧美一区二区| 美女扒开内裤让男人捅视频| 在线观看人妻少妇| 免费在线观看黄色视频的| 亚洲专区国产一区二区| 大型av网站在线播放| 99国产精品99久久久久| 国产伦理片在线播放av一区| 欧美另类一区| 欧美97在线视频| 午夜老司机福利片| 天堂俺去俺来也www色官网| 香蕉丝袜av| 午夜免费鲁丝| 国产伦理片在线播放av一区| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 久久九九热精品免费| 久久久久网色| 欧美激情高清一区二区三区| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 夫妻午夜视频| 日韩电影二区| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 精品福利永久在线观看| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 校园人妻丝袜中文字幕| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 成年av动漫网址| 久久这里只有精品19| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲综合一区二区三区_| 首页视频小说图片口味搜索 | 老司机深夜福利视频在线观看 | 久久精品久久久久久久性| 夫妻性生交免费视频一级片| 美女扒开内裤让男人捅视频| 国产视频一区二区在线看| 尾随美女入室| 久久99一区二区三区| 欧美久久黑人一区二区| 丝袜喷水一区| 亚洲欧美一区二区三区黑人| 久久影院123| 国产成人欧美| 人体艺术视频欧美日本| 亚洲天堂av无毛| 91九色精品人成在线观看| 精品人妻1区二区| 天天躁夜夜躁狠狠久久av| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 久久人妻福利社区极品人妻图片 | 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o | 久久久国产精品麻豆| 亚洲av成人精品一二三区| av电影中文网址| 自线自在国产av| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 久久综合国产亚洲精品| 999久久久国产精品视频| 欧美黄色片欧美黄色片| 亚洲av综合色区一区| 免费在线观看完整版高清| 色网站视频免费| 波多野结衣一区麻豆| 美女福利国产在线| 午夜福利视频在线观看免费| 欧美精品一区二区免费开放| 超色免费av| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 国产深夜福利视频在线观看| 精品久久久久久久毛片微露脸 | 久久精品久久久久久久性| 亚洲国产精品成人久久小说| 欧美+亚洲+日韩+国产| 热99久久久久精品小说推荐| 国产亚洲精品第一综合不卡| 久久女婷五月综合色啪小说| 免费不卡黄色视频| 手机成人av网站| 久久亚洲国产成人精品v| 麻豆国产av国片精品| 99九九在线精品视频| 在线观看免费视频网站a站| 久久九九热精品免费| 精品久久久精品久久久| 精品亚洲成国产av| 人成视频在线观看免费观看| 黄片播放在线免费| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 乱人伦中国视频| 日韩av在线免费看完整版不卡| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀 | 美女中出高潮动态图| av又黄又爽大尺度在线免费看| av在线app专区| 久久这里只有精品19| 自线自在国产av| 18禁黄网站禁片午夜丰满| 国产免费视频播放在线视频| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 国产成人系列免费观看| 午夜激情久久久久久久| 一区福利在线观看| 国产片内射在线| 搡老岳熟女国产| 女人精品久久久久毛片| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 国产成人系列免费观看| 七月丁香在线播放| 丝袜喷水一区| 高清av免费在线| 国产日韩欧美在线精品| 国产成人啪精品午夜网站| 男女无遮挡免费网站观看| 久久久久国产一级毛片高清牌| 国产在线观看jvid| 一边亲一边摸免费视频| 国产又色又爽无遮挡免| 天堂8中文在线网| www.999成人在线观看| 亚洲欧美日韩高清在线视频 | 久久狼人影院| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 一区二区三区四区激情视频| 免费高清在线观看日韩| 无限看片的www在线观看| 性色av乱码一区二区三区2| 欧美国产精品va在线观看不卡| 满18在线观看网站| 一边摸一边抽搐一进一出视频| 伊人亚洲综合成人网| 丝袜脚勾引网站| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 久久国产精品影院| 亚洲美女黄色视频免费看| 热re99久久精品国产66热6| 成人手机av| 免费看av在线观看网站| 久9热在线精品视频| 老司机靠b影院| 欧美日韩一级在线毛片| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 免费久久久久久久精品成人欧美视频| 另类亚洲欧美激情| 黄片播放在线免费| 成人亚洲精品一区在线观看| 99国产精品一区二区三区| 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 日本av免费视频播放| 在线亚洲精品国产二区图片欧美| 亚洲免费av在线视频| 丁香六月天网| 亚洲国产中文字幕在线视频| 黄片小视频在线播放| 久久精品久久精品一区二区三区| 成在线人永久免费视频| 一边摸一边抽搐一进一出视频| 一级,二级,三级黄色视频| 久久人人爽人人片av| 国产精品偷伦视频观看了| 国产一级毛片在线| 99久久精品国产亚洲精品| 国产成人系列免费观看| 伦理电影免费视频| 九草在线视频观看| 日韩免费高清中文字幕av| 大型av网站在线播放| 97人妻天天添夜夜摸| a级毛片在线看网站| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 亚洲精品国产av蜜桃| 国产成人免费观看mmmm| 久热这里只有精品99| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 亚洲精品国产av蜜桃| 又大又黄又爽视频免费| 日本欧美视频一区| 男女高潮啪啪啪动态图| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区蜜桃| 亚洲成国产人片在线观看| 午夜免费观看性视频| 久久热在线av| 国产高清不卡午夜福利| 欧美精品亚洲一区二区| 欧美日韩视频精品一区| 国产亚洲av片在线观看秒播厂| 啦啦啦在线观看免费高清www| 亚洲欧美色中文字幕在线| 男女国产视频网站| 一二三四社区在线视频社区8| 国精品久久久久久国模美| 国产熟女欧美一区二区| 精品少妇一区二区三区视频日本电影| 日韩大码丰满熟妇| 亚洲av成人不卡在线观看播放网 | 精品少妇内射三级| 纵有疾风起免费观看全集完整版| 丰满饥渴人妻一区二区三| 免费在线观看黄色视频的| 欧美av亚洲av综合av国产av| 青春草亚洲视频在线观看| 啦啦啦 在线观看视频| 国产在视频线精品| 亚洲精品自拍成人| 超碰97精品在线观看| 免费在线观看黄色视频的| 搡老岳熟女国产| 久久国产精品人妻蜜桃| 国产成人精品在线电影| 777久久人妻少妇嫩草av网站| 日本色播在线视频| 无遮挡黄片免费观看| 激情五月婷婷亚洲| 国产精品九九99| 又黄又粗又硬又大视频| 亚洲人成电影观看| 男人舔女人的私密视频| 成人三级做爰电影| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| 国产一区二区在线观看av| 午夜福利乱码中文字幕| 亚洲色图综合在线观看| 亚洲一码二码三码区别大吗| 黄色 视频免费看| 爱豆传媒免费全集在线观看| 18禁国产床啪视频网站| 欧美日韩国产mv在线观看视频| 男女边摸边吃奶| 午夜视频精品福利| av网站在线播放免费| 欧美人与善性xxx| 一本综合久久免费| 18在线观看网站| 自线自在国产av| 亚洲欧洲日产国产| videosex国产| 午夜激情av网站| 免费在线观看黄色视频的| 亚洲国产看品久久| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 精品国产超薄肉色丝袜足j| 国产97色在线日韩免费| 欧美黄色片欧美黄色片| 亚洲自偷自拍图片 自拍| 国产精品成人在线| 国产一区有黄有色的免费视频| 国产精品一区二区免费欧美 | 一本色道久久久久久精品综合| 熟女av电影| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频 | 久久亚洲精品不卡| 久久国产亚洲av麻豆专区| 欧美精品人与动牲交sv欧美| 好男人电影高清在线观看| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 一级a爱视频在线免费观看| 女警被强在线播放| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| 这个男人来自地球电影免费观看| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 大话2 男鬼变身卡| 黄网站色视频无遮挡免费观看| 日韩大片免费观看网站| 国产精品二区激情视频| 中文乱码字字幕精品一区二区三区| 最黄视频免费看| 日韩 欧美 亚洲 中文字幕| 久久99热这里只频精品6学生| 狠狠婷婷综合久久久久久88av| 国产亚洲一区二区精品| 欧美黄色淫秽网站| 老汉色av国产亚洲站长工具| 亚洲精品日本国产第一区| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 一级黄片播放器| 国产成人免费观看mmmm| 99re6热这里在线精品视频| 热99国产精品久久久久久7| 美女主播在线视频| 国产精品香港三级国产av潘金莲 | 满18在线观看网站| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产色婷婷电影| 美女脱内裤让男人舔精品视频| 啦啦啦啦在线视频资源| 大片电影免费在线观看免费| 久久久国产精品麻豆| 麻豆乱淫一区二区| 日韩大片免费观看网站| 亚洲国产日韩一区二区| 久热爱精品视频在线9| 最新在线观看一区二区三区 | 久久ye,这里只有精品| 国产精品av久久久久免费| 久久久精品区二区三区| 极品人妻少妇av视频| 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 又大又黄又爽视频免费| 宅男免费午夜| 老司机亚洲免费影院| 亚洲欧洲国产日韩| 亚洲国产精品999| 成年人午夜在线观看视频| 久久久精品国产亚洲av高清涩受| 免费看不卡的av| 婷婷色综合www| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人系列免费观看| 午夜福利视频精品| 一区二区三区精品91| 美女中出高潮动态图| 国产免费一区二区三区四区乱码| 国产一区二区三区av在线| 国产精品香港三级国产av潘金莲 | 中国美女看黄片| 国产一区有黄有色的免费视频| 久久国产亚洲av麻豆专区| 免费高清在线观看视频在线观看| 国产免费又黄又爽又色| 亚洲av片天天在线观看| 亚洲熟女精品中文字幕| 久久毛片免费看一区二区三区| 免费在线观看视频国产中文字幕亚洲 |