• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50

    2014-03-13 05:50:34MuhmmdAzeemAsdBinBiCixiLnJunYnXinhunXiYongZhngZhonghuHe
    The Crop Journal 2014年5期

    Muhmmd Azeem Asd,Bin Bi,Cixi Ln,Jun Yn,Xinhun Xi,Yong Zhng,Zhonghu He,d,*

    aInstitute of Crop Science,National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences(CAAS),Beijing 100081,China

    bWheat Research Institute,Gansu Academy of Agricultural Sciences,Lanzhou 730070,China

    cCotton Research Institute,Chinese Academy of Agricultural Sciences(CAAS),Anyang 455000,China

    dInternational Maize and Wheat Improvement Center(CIMMYT),China Office,c/o CAAS,Beijing 100081,China

    1.Introduction

    Powdery mildew,caused by Blumeria graminis f.sp.tritici(Bgt),is an important disease of wheat worldwide [1],causing significant reductions in both grain quality and yield in susceptible wheat cultivars [2,3],and leading to substantial economic losses in wheat production annually on a global scale[4].The use of powdery mildew resistance genes in elite cultivars is the most cost-effective and sustainable strategy to control this disease[5].

    Over the last three decades,most disease resistance studies have focused on major genes,which are known as qualitative or race specific resistance genes.These genes are simply inherited and easy to manipulate in breeding programs,as they express complete resistance and are usually associated with hypersensitive responses that limit pathogen growth [6].Race specific resistance is often transient due to the occurrence of new pathogen races arising from mutation or increased frequencies of previously rare variants[7,8].More than 70 powdery mildew resistance genes have been cataloged in wheat[9].Most named powdery mildew resistance genes are currently ineffective in China.

    One of the principal challenges in wheat breeding is to develop cultivars with durable disease resistance.Adult-plant resistance (APR) often appears to offer race non-specific and therefore durable resistance based on the additive effects of several genes that delay infection,and reduce growth and reproduction of the pathogen at the adult-plant stage [1].This type of resistance however may not be adequate under all growth conditions,but their additive nature offers opportunities to increase resistance levels to almost immunity[10].Molecular markers made it easier to locate APR genes on chromosomes,and to estimate the additive effect of each gene[11].So far,more than 100 quantitative trait loci (QTL) for powdery mildew resistance have been identified and mapped on almost all wheat chromosomes in a range of different genetic backgrounds(Z.F.Li,pers.comm.),including the Swiss winter wheat cv.Forno[12],French winter wheat lines RE714,Festin,Courtot,and RE9001 [13–16],North American winter wheats Massey and USG3209 [10,17],Japanese wheat cultivar Fukuho-komugi [18],Israeli wheat cultivar Oligoculm[18],CIMMYT wheat lines Opata 85,W7984,and Saar [19,20],Australian wheat cultivar Avocet[20],and Chinese wheat cultivars Bainong 64[21]and Lumai 21[11].Unfortunately,only a few of these genotypes have good adaptability and associated agronomic traits in Chinese environments[22].Wheat landraces are valuable genetic resources;they sometimes carry multiple genes for resistance to several diseases and are more adaptable to local environments[5].It is,therefore,important to explore APR to powdery mildew in wheat landraces.Moreover,closely linked molecular markers to the resistance genes would play an important role in incorporation of APR genes in wheat breeding programs.

    The Chinese wheat landrace Pingyuan 50 was a leading cultivar in the Yellow and Huai Valley Autumn-sown Wheat Zone of China in the 1950s,and has shown APR to stripe rust and powdery mildew in the field for over 60 years.Previously,we mapped QTL for APR to stripe rust in Pingyuan 50[22].The main objectives of the present study were to locate powdery mildew resistance QTL in Pingyan 50 and to determine whether there are pleiotropic or closely linked APR loci involved in stripe rust response.

    2.Materials and methods

    2.1.Plant materials

    A doubled haploid(DH)population of 137 lines from Pingyuan 50/Mingxian 169 was used for QTL analysis.Pingyuan 50 showed APR to powdery mildew in field trials.Mingxian 169,a landrace from Shanxi province,is highly susceptible to all races of Puccinia striiformis f.sp.tritici at the seedling stage [22],whereas it is moderately resistant at the adult plant stage.Both parents were susceptible to Bgt isolate E20 at the seedling stage.Jingshuang 16 was highly susceptible to powdery mildew,and used as a susceptible check in all tests.

    2.2.Evaluation of powdery mildew response

    The DH population was evaluated for powdery mildew response over the 2009–2010 and 2010–2011 wheat seasons at two locations,viz.the CAAS Experimental Station,Beijing,and CAAS Cotton Research Institute,Anyang,Henan province (herein referred to as Beijing 2010,Beijing 2011,and Anyang 2010).Hill plots (50 seeds/hill) were used and genotypes were sown in randomized complete blocks with three replicates.The highly susceptible cv.Jingshuang 16 was planted in every tenth row as a check and around the experimental block as an inoculum spreader.In Beijing,inoculation with Bgt isolate E20 was performed before stem elongation.Disease severities were assessed as percentage cover on penultimate leaves at five and six weeks after inoculation[23]when disease levels reached their maxima around May 20.In Anyang under natural infection,powdery mildew severities were recorded once,when cv.Jingshuang 16 expressed a maximum severity during the third week of May.Attempts to obtain a further site year of data in Anyang in 2011 were abandoned due to dry conditions and lack of disease development.

    2.3.Statistical analysis

    The frequency distribution of powdery mildew responses and correlation coefficients(r)based on maximum disease severities(MDS) in different environments were calculated in Microsoft Excel 2007.The area under the disease progress curve (AUDPC)was calculated according to Bjarko and Line [24].Analysis of variance (ANOVA) was performed using the PROC GLM in the statistical analysis system(SAS Institute 1997).ANOVA information was then used to calculate broad-sense heritability (h2) as:h2= σg2/ (σg2+ σge2/ e + σε2/ re),where σg2,σge2,and σε2are estimates of genotypic,genotype × environment interaction and error variances,respectively,and e and r are the numbers of environments and replicates per environment,respectively.

    2.4.SSR analysis

    A total of 1528 pairs of simple sequence repeat(SSR)primers from published sources including the WMC[25],BARC[26],GWM[27],CFA [28],and CFD [29] series (http://wheat.pw.usda.gov/) were used to scan the parents.Bulked segregant analysis [30]was conducted,using equal amounts of ten resistant and ten susceptible lines based on MDS.Amplification of DNA,electrophoresis of PCR products on polyacrylamide gels and gel staining procedures were performed as described by Bryan et al.[31] and Bassam et al.[32].Five hundred and forty polymorphic SSR markers were used to genotype the entire population for linkage map construction and QTL analysis.

    2.5.Map construction and QTL detection

    Genetic linkage groups were constructed with the software Map Manager QTXb20 [33],and map distances between markers were estimated by the Kosambi mapping function[34].Linkage groups were assigned to each chromosome according to published wheat consensus maps[35].QTL analysis was performed with QTL Cartographer 2.5 software by composite interval mapping [36].A logarithm of odds (LOD) was calculated from 2000 permutations for each trait to declare significance of QTL at P = 0.01.Estimates of phenotypic variance (R2) explained by individual QTL and additive effects at LOD peaks were obtained by QTL Cartographer 2.5.Two QTL on the same chromosome in different environments,having curve peaks within a distance of 20 cM,were considered as a single QTL,and different QTL when distances exceeded 20 cM.

    Fig.1-Frequency distribution of powdery mildew maximum disease severities (MDS) and area under the disease progress curve(AUDPC)values in the DH lines derived from Pingyuan 50/Mingxian 169.Results include average,mean MDS across three environments,and AUDPC in Beijing for more than 2 years.Mean values for parents,Pingyuan 50 and Mingxian 169,are indicated by arrows.

    3.Results

    3.1.Phenotypic analysis

    The MDS of the susceptible check Jingshuang 16 ranged from 80%to 100%,60%to 90%,and 90%to 100%,whereas Pingyuan 50 and Mingxian 169 were 8.5%and 7.1%,7.7%and 6.0%,and 12.3 and 14.5%in Anyang 2010,Beijing 2010,and Beijing 2011,respectively.Both parents showed mean MDS of less than 10% across the three environments.Frequency distributions of MDS and AUDPC for DH lines showed continuous variation in all environments with clear transgressive segregation,indicating quantitative resistance to powdery mildew(Fig.1).In addition,the MDS scores were significantly correlated across three environments (r = 0.63 to 0.85).Analyses of variance of MDS and AUDPC showed significant variation among the DH lines (Table 1).The broad-sense heritabilities of MDS and AUDPC were 0.80 and 0.62,respectively,across the three environments.

    3.2.QTL analysis

    Based on MDS,three QTL from Pingyuan 50 on chromosomes 2BS,3BS,and 5AL,and one from Mingxian 169 on chromosome 3BL,respectively,were detected across environments(Table 2 and Fig.2).They were designated QPm.caas-2BS.2,QPm.caas-3BS,QPm.caas-3BL,and QPm.caas-5AL,respectively.

    The QTL on chromosome 2BS,detected in Beijing 2010,Beijing 2011,and the averaged MDS across all three environments,was located in the marker interval Xbarc13–Xgwm374 and explained 4.0–9.1% of the phenotypic variance across environments(Table 2).

    QPm.caas-3BS was mapped on chromosome 3BS,flanked by SSR markers Xwmc366 and Xgwm77,and accounted for 9.1% of the phenotypic variance with an additive effect of-2.17.The third QTL,QPm.caas-3BL,was close to the centromere on chromosome 3BL linked to markers Xwmc527 and Xwmc418 with a LOD value of 4.4.This QTL identified only in Anyang 2010 explained 18.1% of the phenotypic variation with an additive effect of 2.83.

    QPm.caas-5AL in marker interval Xwmc410–Xbarc261 on chromosome 5AL explained 10.2%of the phenotypic variance with an additive effect-1.04.The total phenotypic variance explained by the detected QTL for MDS ranged from 9.3 to 27.2% in single environments and was 17.7% for the mean across environments.Pingyuan 50 carries three QTL,where as Mingxian 169 carries one(QPm.caas-3BL).

    4.Discussion

    In the present study,the QTL on chromosome 2BS detected in different environments was within a genetic distance of less than 20 cM.We therefore considered them as a single QTL designated QPm.caas-2BS.2.Previously,a QTL was mapped on chromosome 2BS in the Italian wheat cultivar Strampelli [37] and located around SSR marker Xwmc25,which is about 32 cM from QPm.caas-2BS.2 based on a wheat consensus map[35].In addition,previously mapped QTL QPm.crag-2BS[14]and QPm.caas-2BS[11],detected in Festin and Lumai 21,respectively,were located about 12 cM distal and proximal to QPm.caas-2BS.2 [35],which were assumed to be different based on their origins.Large-effect powdery mildew resistance genes Pm26 and Pm42,derived from wild emmer(Triticum turgidum var.dicoccoides),were also mapped in the same vicinity of less than 20 cM from QPm.caas-2BS.2[38,39].Stripe rust resistance QTL QYr.caas-2BS was mapped in the same region as QPm.caas-2BS.2 in this population [22].QTL for stripe rust resistance were also identified at the same position in cv.Louise,Luke and Kariega[40–42].This region of chromosome 2BS has a pleiotropic effect on both powdery mildew and stripe rust responses and therefore could be useful in breeding for resistance to both diseases by marker assisted selection.

    QPm.caas-3BS,identified in marker interval Xwmc366–Xgwm77 on chromosome 3BS and contributed by Pingyuan 50,explained 9.1% of the phenotypic variation.Chen et al.[43]reported a QTL linked with Xwms533 on the short arm of chromosome 3B in Line 2174 with a genetic distance of about 56 cM from QPm.caas-3BS [35].Donini et al.[44] mapped Pm13,derived from Ae.longissimum,to a similar region on 3BS using RFLP markers.QPm.caas-3BS,however,seems to be a new QTL for powdery mildew resistance based on chromosomal location and origin.

    QPm.caas-3BL was mapped to the centromeric region of chromosome 3BL between SSR markers Xwmc527 and Xwmc418,explaining 18.1% of the phenotypic variance.It was contributed by Mingxian 169.Race specific resistance gene Pm41 in wild emmer was mapped to chromosome 3BL,but at a genetic distance of about 34 cM from QPm.caas-3BL[45].Although the genetic distance between QPm.caas-3BS and QPm.caas-3BL is less than 10 cM [35],we considered them as two QTL due to their locations on different chromosome 3B arms.No other QTL for powdery mildew resistance have been reported on chromosome 3BL.

    QPm.caas-5AL in marker interval Xwmc410–Xbarc261 explained 10.2% of the phenotypic variance.Sources of previously mapped QTL in this chromosome include Folke[1],Saar[20],Triticum militinae [46],and Forno [12] with genetic distances of 80,80,77,and 68 cM,respectively,from QPm.caas-5AL based on the wheat consensus map [35].This appears to be a new locus for powdery mildew APR.In addition,the QTL QYr.caas-5AL [22] was mapped in the same

    region of this Pingyuan 50/Mingxian 169 population,suggesting the possibility of a pleiotropic APR locus conferring resistance to both powdery mildew and stripe rust.Yr48,for partial resistance to stripe rust was mapped to the same position[47].This locus needs further investigation to determine whether it confers pleiotropic powdery mildew and stripe rust resistances.

    Table 2-Quantitative trait loci(QTL)detected for APR to powdery mildew in the DH population derived from the Pingyuan 50/Mingxian 169 cross.

    Fig.2-Logarithm of odd(LOD)contours identified by composite interval mapping of powdery mildew APR QTL on chromosomes 2BS,3B and 5AL in the Pingyuan 50/Mingxian 169 DH population.A2010:maximum disease severities (MDS),Anyang 2010;B2010 and B2011,maximum disease severities,Beijing 2010 and 2011,respectively;average:mean MDS across three environments;AUDPC:averaged area under the disease progress curve in Beijing for more than two years.The LOD threshold for significance is 2.0.

    Pingyuan 50 is considered a valuable source of APR to both stripe rust and powdery mildew in local wheat breeding programs,and three QTL for APR to stripe rust were mapped in Pingyuan 50 [20].In the present study,four QTL for APR to powdery mildew were mapped in the same population,and three of them were in Pingyuan 50.Although these QTL were not detected across all environments,QPm.caas-2BS.2 and QPm.caas-5AL were mapped to the same chromosome regions as QYr.caas-2BS and QYr.caas-5AL,respectively,for APR to stripe rust,indicating possible pleiotropic genes for APR to both powdery mildew and stripe rust in Pingyuan 50.Gene pyramiding is a useful approach to enhance disease resistance and a number of genes can be accumulated in a single line.We have pyramided QTL for powdery mildew resistance derived from Bainong 64 and Lumai 21 through marker assisted selection [48].The QTL detected in Pingyuan 50,particularly QPm.caas-2BS.2 and QPm.caas-5AL in combination with three previously identified QTL,including Pm38 from cv.Strampelli and Libellula,should be useful in developing cultivars with potentially durable resistance to both powdery mildew and stripe rust.

    This study was supported by the National Key Basic Research Program of China (2013CB127700),National Natural Science Foundation of China (31261140370 and 31260319),International Collaboration Projects from the Chinese Ministry of Science and Technology (2011DFG32990) and the Ministry of Agriculture(2011-G3),the National High Technology Research Program of China (2012AA101105),and the China Agriculture Research System(CARS-3-1-3).M.A.Asad gratefully acknowledges full scholarship support for Ph.D.studies from the China Scholarship Council(2008GXZA85).

    [1] M.Lillemo,A.Bj?rnstad,H.Skinnes,Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke,Euphytica 185 (2012) 47–59.

    [2] K.L.Everts,S.Leath,P.L.Finney,Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat,Plant Dis.85(2001) 423–429.

    [3] R.L.Conner,A.D.Kuzyk,H.Su,Impact of powdery mildew on the yield of soft white spring wheat cultivars,Can.J.Plant Sci.83 (2003) 725–728.

    [4] A.Morgounov,H.A.Tufan,R.Sharma,B.Akin,A.Bagci,H.J.Braun,Y.Kaya,M.Keser,T.S.Payne,K.Sonder,R.McIntosh,Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1,Eur.J.Plant Pathol.132(2012) 323–340.

    [5] J.M.Wang,H.Y.Liu,H.M.Xu,M.Li,Z.S.Kang,Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f.sp tritici using gene chip,Mol.Biol.Rep.39(2012) 381–387.

    [6] G.Gustafson,G.Shaner,Influence of plant age on the expression of slow-mildewing resistance in wheat,Phytopathology 72(1982) 746–749.

    [7] S.L.K.Hsam,F.J.Zeller,Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.),in: R.R.Belanger,W.R.Bushnell,A.J.Dik,T.L.W.Carver(Eds.),The Powdery Mildews,a Comprehensive Treatise,The American Phytopathological Society,St.Paul,MN,2002,pp.219–238.

    [8] D.Z.Yu,X.J.Yang,L.J.Yang,M.J.Jeger,J.K.M.Brown,Assessment of partial resistance to powdery mildew in Chinese wheat varieties,Plant Breed.120 (2001) 279–284.

    [9] R.A.McIntosh,W.J.Rogers,C.F.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat: 2011 supplement,http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2011.pdf.

    [10] S.X.Liu,C.A.Griffey,M.A.S.Maroof,Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey,Crop Sci.41(2001) 1268–1275.

    [11] C.X.Lan,X.W.Ni,J.Yan,Y.Zhang,X.C.Xia,X.M.Chen,Z.H.He,Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21,Mol.Breed.25(2010) 615–622.

    [12] M.Keller,B.Keller,G.Schachermayr,M.Winzeler,J.E.Schmid,P.Stamp,M.M.Messmer,Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population,Theor.Appl.Genet.98 (1999)903–912.

    [13] N.Chantret,D.Mingeot,P.Sourdille,M.Bernard,J.M.Jacquemin,G.Doussinault,A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat,Theor.Appl.Genet.103 (2001) 962–971.

    [14] D.Mingeot,N.Chantret,P.V.Baret,A.Dekeyser,N.Boukhatem,P.Sourdille,G.Doussinault,J.M.Jacquemin,Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds,Plant Breed.121 (2002) 133–140.

    [15] Y.Bougot,J.Lemoine,M.T.Pavoine,H.Guyomar'ch,V.Gautier,H.Muranty,D.Barloy,A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage,Plant Breed.125 (2006) 550–556.

    [16] H.Muranty,M.T.Pavoine,B.Jaudeau,W.Radek,G.Doussinault,D.Barloy,Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season,Mol.Breed.23(2009) 445–461.

    [17] D.M.Tucker,C.A.Griffey,S.Liu,G.Brown-Guedira,D.S.Marshall,M.A.S.Maroof,Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations,Euphytica 155(2007)1–13.

    [18] S.S.Liang,K.Suenaga,Z.H.He,Z.L.Wang,H.Y.Liu,D.S.Wang,R.P.Singh,P.Sourdille,X.C.Xia,Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat,Phytopathology 96(2006) 784–789.

    [19] A.B?rner,E.Schumann,A.Furste,H.Coster,B.Leithold,M.S.Roder,W.E.Weber,Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat(Triticum aestivum L.),Theor.Appl.Genet.105(2002)921–936.

    [20] M.Lillemo,B.Asalf,R.P.Singh,J.Huerta-Espino,X.M.Chen,Z.H.He,A.Bj?rnstad,The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar,Theor.Appl.Genet.116(2008)1155–1166.

    [21] C.X.Lan,S.S.Liang,Z.L.Wang,J.Yan,Y.Zhang,X.C.Xia,Z.H.He,Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64,Phytopathology 99 (2009) 1121–1126.

    [22] C.X.Lan,S.S.Liang,X.C.Zhou,G.Zhou,Q.L.Lu,X.C.Xia,Z.H.He,Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis,Phytopathology 100(2010) 313–318.

    [23] R.F.Peterson,A.B.Campbell,A.E.Hannah,A diagrammatic scale for estimating rust intensity of leaves and stems of cereals,Can.J.Res.26(1948) 496–500.

    [24] M.E.Bjarko,R.F.Line,Heritability and number of genes controlling leaf rust resistance on four cultivars of wheat,Phytopathology 78 (1988) 457–461.

    [25] P.K.Gupta,S.Rustgi,S.Sharma,R.Singh,N.Kumar,H.S.Balyan,Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat,Mol.Gen.Genomics.270 (2003) 315–323.

    [26] Q.J.Song,E.W.Fickus,P.B.Cregan,Characterization of trinucleotide SSR motifs in wheat,Theor.Appl.Genet.104(2000) 286–293.

    [27] M.S.R?der,V.Korzun,K.Wendehake,J.Plaschke,M.H.Tixier,P.Leroy,M.W.Ganal,A microsatellite map of wheat,Genetics 149 (1998) 2007–2023.

    [28] P.Sourdille,S.Singh,T.Cadalen,G.L.Brown-Guedira,G.Gay,L.Qi,Microsatellite based deletion bin system for the establishment of genetic physical map relationships in wheat (Triticum aestivum L.),Funct.Integr.Genomics 4 (2004)12–25.

    [29] H.Guyomarc'h,P.Sourdille,K.J.Edwards,M.Bernard,Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification,hybridization and sequence comparisons,Theor.Appl.Genet.105 (2002) 736–744.

    [30] R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991) 9828–9832.

    [31] G.J.Bryan,A.J.Collins,P.Stephenson,A.Orry,J.B.Smith,M.D.Gale,Isolation and characterization of microsatellites from hexaploid bread wheat,Theor.Appl.Genet.94(1997)557–563.

    [32] B.J.Bassam,G.Caetano-Anolles,P.M.Gresshoff,Fast and sensitive silver staining of DNA in polyacrylamide gels,Anal.Biochem.196 (1991) 80–83.

    [33] K.F.Manly,R.H.Cudmore Jr.,J.M.Meer,Map Manager QTX,cross-platform software for genetic mapping,Mamm.Genome 12(2001) 930–932.

    [34] D.D.Kosambi,The estimation of map distance from recombination values,Ann.Eugen.12(1943) 172–175.

    [35] D.J.Somers,P.Isaac,K.Edwards,A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.),Theor.Appl.Genet.109(2004)1105–1114.

    [36] S.Wang,C.J.Basten,Z.B.Zeng,Windows QTL Cartographer v2.5,Statistical Genetics,North Carolina State University,2005.

    [37] M.A.Asad,B.Bai,C.X.Lan,J.Yan,X.C.Xia,Y.Zhang,Z.H.He,QTL mapping for adult plant resistance to powdery mildew in Italian wheat cv.Strampelli,J.Integr.Agric.5(2013) 756–764.

    [38] J.K.Rong,E.Millet,J.Manisterski,M.Feldman,A new powdery mildew resistance gene:introgression from wild emmer into common wheat and RFLP-based mapping,Euphytica 115 (2000) 121–126.

    [39] W.Hua,Z.Liu,J.Zhu,C.Xie,T.Yang,Y.Zhou,X.Duan,Q.Sun,Identification and genetic mapping of Pm42,a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var.dicoccoides),Theor.Appl.Genet.119 (2009) 223–230.

    [40] A.H.Carter,X.M.Chen,K.Garland-Campbell,K.K.Kidwell,Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f.sp tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise',Theor.Appl.Genet.119 (2009) 1119–1128.

    [41] Q.Guo,Z.J.Zhang,Y.B.Xu,G.H.Li,J.Feng,Y.Zhou,Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f.sp tritici in wheat cultivars,Phytopathology 98(2008) 803–809.

    [42] V.P.Ramburan,Z.A.Pretorius,J.H.Louw,L.A.Boyd,P.H.Smith,W.H.P.Boshoff,R.Prins,A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega,Theor.Appl.Genet.108 (2004) 1426–1433.

    [43] Y.H.Chen,R.M.Hunger,B.F.Carver,H.L.Zhang,L.L.Yan,Genetic characterization of powdery mildew resistance in U.S.hard winter wheat,Mol.Breed.24 (2009) 141–152.

    [44] P.Donini,R.M.D.Koebner,C.Ceoloni,Cytogenetic and molecular mapping of the wheat Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines,Theor.Appl.Genet.91(1995)738–743.

    [45] G.Q.Li,T.L.Fang,H.T.Zhang,C.J.Xie,H.J.Li,T.M.Yang,E.Nevo,T.Fahima,Q.X.Sun,Z.Y.Liu,Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer(Triticum turgidum var.dicoccoides),Theor.Appl.Genet.119(2009)531–539.

    [46] I.Jakobson,H.Peusha,L.Timofejeva,K.Jarve,Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line,Theor.Appl.Genet.112 (2006) 760–769.

    [47] I.Lowe,L.Jankuloski,S.Chao,X.Chen,D.See,J.Dubcovsky,Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat,Theor.Appl.Genet.123(2011)143–157.

    [48] B.Bai,Z.H.He,M.A.Asad,C.X.Lan,Y.Zhang,X.C.Xia,J.Yan,X.M.Chen,C.S.Wang,Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat,Crop Pasture Sci.63(2012) 606–611.

    性高湖久久久久久久久免费观看| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 欧美日韩亚洲国产一区二区在线观看 | av欧美777| 久久 成人 亚洲| 色精品久久人妻99蜜桃| 久久国产精品男人的天堂亚洲| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 免费一级毛片在线播放高清视频 | 亚洲成人免费av在线播放| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 国产无遮挡羞羞视频在线观看| 亚洲欧洲日产国产| 国产又色又爽无遮挡免费看| 免费在线观看日本一区| 欧美在线一区亚洲| 我要看黄色一级片免费的| 色94色欧美一区二区| 精品高清国产在线一区| 他把我摸到了高潮在线观看 | 色婷婷久久久亚洲欧美| 91字幕亚洲| 中文字幕最新亚洲高清| 1024视频免费在线观看| 飞空精品影院首页| 欧美日韩一级在线毛片| 少妇被粗大的猛进出69影院| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| 精品国内亚洲2022精品成人 | 国产亚洲精品久久久久5区| 国产成人系列免费观看| 亚洲欧美激情在线| 国产aⅴ精品一区二区三区波| 欧美精品一区二区大全| 午夜视频精品福利| 久久99热这里只频精品6学生| 成人黄色视频免费在线看| 一区二区日韩欧美中文字幕| 免费在线观看视频国产中文字幕亚洲| 99热国产这里只有精品6| 精品国产一区二区三区四区第35| 老司机亚洲免费影院| 国产单亲对白刺激| 如日韩欧美国产精品一区二区三区| 亚洲精品美女久久av网站| 91九色精品人成在线观看| 久久中文字幕一级| 少妇 在线观看| 老司机午夜十八禁免费视频| 两个人免费观看高清视频| www.熟女人妻精品国产| 最近最新中文字幕大全免费视频| 国产亚洲av高清不卡| 久久人人爽av亚洲精品天堂| 91麻豆av在线| 国产av又大| 欧美日本中文国产一区发布| 大香蕉久久成人网| 黄色成人免费大全| 夫妻午夜视频| 日韩人妻精品一区2区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久影院123| 肉色欧美久久久久久久蜜桃| 国产av国产精品国产| 亚洲国产欧美在线一区| 亚洲天堂av无毛| 看免费av毛片| 亚洲第一欧美日韩一区二区三区 | 国产成人啪精品午夜网站| 亚洲人成77777在线视频| av线在线观看网站| 国产无遮挡羞羞视频在线观看| 亚洲成人手机| 久久久精品94久久精品| 国产成人精品久久二区二区91| 国产一区二区三区综合在线观看| 真人做人爱边吃奶动态| 免费观看人在逋| 波多野结衣av一区二区av| 亚洲国产欧美在线一区| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三| 九色亚洲精品在线播放| 黑人欧美特级aaaaaa片| 欧美日韩亚洲国产一区二区在线观看 | a级毛片在线看网站| 国产欧美亚洲国产| 国产日韩欧美亚洲二区| 国产亚洲av高清不卡| 日日摸夜夜添夜夜添小说| 国产精品 欧美亚洲| 久久这里只有精品19| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 日韩三级视频一区二区三区| av在线播放免费不卡| 亚洲欧美激情在线| 美国免费a级毛片| 黄色怎么调成土黄色| 在线播放国产精品三级| 欧美成狂野欧美在线观看| 日韩熟女老妇一区二区性免费视频| 十八禁高潮呻吟视频| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻,人人澡人人爽秒播| 搡老熟女国产l中国老女人| 少妇的丰满在线观看| 国产色视频综合| 亚洲av日韩精品久久久久久密| 久久人人爽av亚洲精品天堂| 黑人猛操日本美女一级片| 两人在一起打扑克的视频| 国产欧美日韩一区二区精品| 国产av精品麻豆| 80岁老熟妇乱子伦牲交| 国产精品熟女久久久久浪| 热re99久久国产66热| 在线av久久热| 亚洲成a人片在线一区二区| 中文字幕人妻熟女乱码| 国产成人精品无人区| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 成人黄色视频免费在线看| 狠狠狠狠99中文字幕| 多毛熟女@视频| 一本色道久久久久久精品综合| 麻豆av在线久日| 一个人免费在线观看的高清视频| 国产不卡一卡二| netflix在线观看网站| 国产精品美女特级片免费视频播放器 | 在线观看www视频免费| 国精品久久久久久国模美| 亚洲色图 男人天堂 中文字幕| 女性生殖器流出的白浆| 国产又爽黄色视频| 午夜日韩欧美国产| 看免费av毛片| 精品少妇久久久久久888优播| 久久午夜综合久久蜜桃| 热99re8久久精品国产| 久久久久久久久久久久大奶| 五月开心婷婷网| 国产精品香港三级国产av潘金莲| 亚洲少妇的诱惑av| 精品国产亚洲在线| 亚洲午夜精品一区,二区,三区| 黄色毛片三级朝国网站| 黄色丝袜av网址大全| 久久久久精品国产欧美久久久| 亚洲成a人片在线一区二区| 久久99热这里只频精品6学生| 热99久久久久精品小说推荐| 伊人久久大香线蕉亚洲五| 下体分泌物呈黄色| 美国免费a级毛片| 午夜成年电影在线免费观看| 一级片'在线观看视频| 少妇的丰满在线观看| 日韩大码丰满熟妇| 久久久久久久精品吃奶| 狠狠婷婷综合久久久久久88av| 免费黄频网站在线观看国产| 乱人伦中国视频| 久久人人97超碰香蕉20202| 日本黄色视频三级网站网址 | 久久久欧美国产精品| 精品亚洲成a人片在线观看| 另类精品久久| 欧美成人午夜精品| 久久久精品区二区三区| 精品国产亚洲在线| 亚洲色图综合在线观看| 色尼玛亚洲综合影院| 18禁黄网站禁片午夜丰满| 国产精品一区二区在线观看99| 啦啦啦免费观看视频1| 亚洲熟女毛片儿| 久久影院123| 欧美精品一区二区免费开放| 国产精品一区二区在线观看99| a级片在线免费高清观看视频| 国产又爽黄色视频| tube8黄色片| 人人妻,人人澡人人爽秒播| 少妇 在线观看| 国产亚洲精品一区二区www | tube8黄色片| 麻豆乱淫一区二区| 丁香六月欧美| 精品少妇内射三级| 久久精品国产综合久久久| 亚洲av片天天在线观看| 一区二区三区国产精品乱码| 欧美成人免费av一区二区三区 | 国产男靠女视频免费网站| 在线 av 中文字幕| 欧美日韩av久久| 一本综合久久免费| 在线播放国产精品三级| 在线看a的网站| 久久99一区二区三区| 中文字幕人妻丝袜制服| 99精国产麻豆久久婷婷| 亚洲精品粉嫩美女一区| 亚洲精品久久成人aⅴ小说| 亚洲精品中文字幕在线视频| 午夜激情av网站| av网站在线播放免费| 国产熟女午夜一区二区三区| 69av精品久久久久久 | 亚洲中文av在线| 91成人精品电影| 精品一区二区三区视频在线观看免费 | 俄罗斯特黄特色一大片| 新久久久久国产一级毛片| 老汉色∧v一级毛片| 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 久久久精品区二区三区| 好男人电影高清在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品久久久人人做人人爽| 天堂动漫精品| 欧美日本中文国产一区发布| 国产一区二区激情短视频| 女性生殖器流出的白浆| av视频免费观看在线观看| 午夜福利一区二区在线看| 亚洲精品久久成人aⅴ小说| 他把我摸到了高潮在线观看 | 国产亚洲一区二区精品| 免费在线观看日本一区| 美国免费a级毛片| 色视频在线一区二区三区| 国产一区二区 视频在线| 国产片内射在线| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 久久影院123| 欧美大码av| 精品一区二区三区av网在线观看 | 99国产精品99久久久久| 热re99久久国产66热| 91九色精品人成在线观看| 亚洲自偷自拍图片 自拍| 老司机深夜福利视频在线观看| 久久精品亚洲熟妇少妇任你| 变态另类成人亚洲欧美熟女 | 国产国语露脸激情在线看| 69精品国产乱码久久久| 一进一出抽搐动态| av片东京热男人的天堂| 夜夜夜夜夜久久久久| 777米奇影视久久| 中文字幕最新亚洲高清| 免费日韩欧美在线观看| av天堂在线播放| 国产一区二区三区综合在线观看| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 亚洲av成人一区二区三| 一级a爱视频在线免费观看| 妹子高潮喷水视频| 波多野结衣av一区二区av| 国产真人三级小视频在线观看| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 欧美日韩亚洲综合一区二区三区_| 男女边摸边吃奶| 69精品国产乱码久久久| 最新在线观看一区二区三区| 欧美大码av| 99国产精品99久久久久| 老司机亚洲免费影院| 黄网站色视频无遮挡免费观看| 九色亚洲精品在线播放| 三上悠亚av全集在线观看| 精品一品国产午夜福利视频| 欧美日韩中文字幕国产精品一区二区三区 | 又黄又粗又硬又大视频| 免费日韩欧美在线观看| 黑人巨大精品欧美一区二区mp4| 在线观看www视频免费| 天天躁夜夜躁狠狠躁躁| 免费看a级黄色片| 国产99久久九九免费精品| 50天的宝宝边吃奶边哭怎么回事| 曰老女人黄片| 国产精品久久久久久精品古装| 日本黄色视频三级网站网址 | 自拍欧美九色日韩亚洲蝌蚪91| 国产麻豆69| 午夜成年电影在线免费观看| 精品一区二区三区av网在线观看 | 美女福利国产在线| 精品福利观看| 丝瓜视频免费看黄片| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 国产欧美亚洲国产| 香蕉国产在线看| 日韩中文字幕视频在线看片| 欧美成人免费av一区二区三区 | 成人国产一区最新在线观看| 搡老岳熟女国产| 亚洲熟妇熟女久久| 中文字幕人妻丝袜制服| 欧美乱妇无乱码| 人妻久久中文字幕网| 黄色怎么调成土黄色| 不卡av一区二区三区| 国产高清视频在线播放一区| 午夜福利乱码中文字幕| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 狠狠婷婷综合久久久久久88av| 中国美女看黄片| 99国产精品99久久久久| 久久狼人影院| 在线观看免费日韩欧美大片| 精品国内亚洲2022精品成人 | 操出白浆在线播放| 久久免费观看电影| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 久久久久国产一级毛片高清牌| 久久ye,这里只有精品| 国产成人精品久久二区二区免费| 手机成人av网站| 亚洲 国产 在线| 91成人精品电影| 亚洲,欧美精品.| 极品教师在线免费播放| 欧美日韩成人在线一区二区| 久久久久久亚洲精品国产蜜桃av| 国产区一区二久久| 国产成人啪精品午夜网站| 人人澡人人妻人| 欧美精品啪啪一区二区三区| 动漫黄色视频在线观看| 精品国产一区二区三区四区第35| 黑丝袜美女国产一区| 免费看十八禁软件| 中文字幕最新亚洲高清| av电影中文网址| 国产亚洲一区二区精品| 新久久久久国产一级毛片| 精品乱码久久久久久99久播| 91av网站免费观看| 久久性视频一级片| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 日本黄色视频三级网站网址 | 50天的宝宝边吃奶边哭怎么回事| 色婷婷久久久亚洲欧美| 中文亚洲av片在线观看爽 | 亚洲精品国产一区二区精华液| 91九色精品人成在线观看| 黑人巨大精品欧美一区二区蜜桃| 另类亚洲欧美激情| 国内毛片毛片毛片毛片毛片| 国产极品粉嫩免费观看在线| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 成年动漫av网址| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 一本色道久久久久久精品综合| 精品国产乱子伦一区二区三区| 激情在线观看视频在线高清 | 两个人看的免费小视频| 不卡av一区二区三区| 亚洲 国产 在线| 精品一区二区三区视频在线观看免费 | 国产精品 国内视频| 免费女性裸体啪啪无遮挡网站| 两人在一起打扑克的视频| 热99国产精品久久久久久7| 在线观看人妻少妇| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 色播在线永久视频| 国产亚洲精品第一综合不卡| 18禁美女被吸乳视频| 午夜激情久久久久久久| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 精品少妇黑人巨大在线播放| a级毛片在线看网站| 国产欧美日韩一区二区精品| 国产高清videossex| 岛国在线观看网站| 乱人伦中国视频| 国产精品自产拍在线观看55亚洲 | 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜十八禁免费视频| 中文字幕高清在线视频| 精品国产亚洲在线| 欧美激情 高清一区二区三区| 电影成人av| 亚洲精品乱久久久久久| 久久影院123| 久久 成人 亚洲| 中文字幕制服av| 日本黄色日本黄色录像| 汤姆久久久久久久影院中文字幕| 美女扒开内裤让男人捅视频| 99国产精品一区二区三区| 男女午夜视频在线观看| 一区二区av电影网| www.精华液| 下体分泌物呈黄色| 午夜免费成人在线视频| 十八禁网站网址无遮挡| 亚洲国产欧美一区二区综合| 久久久久国产一级毛片高清牌| 午夜91福利影院| 狠狠精品人妻久久久久久综合| 欧美黑人欧美精品刺激| 亚洲国产欧美一区二区综合| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 一级毛片女人18水好多| 婷婷成人精品国产| 久久av网站| 免费观看a级毛片全部| 50天的宝宝边吃奶边哭怎么回事| 9热在线视频观看99| av天堂在线播放| 午夜福利免费观看在线| 在线观看免费午夜福利视频| 青草久久国产| 国产精品欧美亚洲77777| 国产精品一区二区精品视频观看| 成年动漫av网址| 男女下面插进去视频免费观看| 一级片免费观看大全| 精品少妇久久久久久888优播| 国产亚洲精品久久久久5区| 大香蕉久久成人网| 国产精品一区二区免费欧美| 午夜福利视频精品| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 国产免费福利视频在线观看| 99热网站在线观看| 午夜免费鲁丝| 美女国产高潮福利片在线看| 久久亚洲精品不卡| 国产黄频视频在线观看| 日韩有码中文字幕| 黄片播放在线免费| 好男人电影高清在线观看| 色94色欧美一区二区| 日本一区二区免费在线视频| 久久久久精品国产欧美久久久| 黄色视频在线播放观看不卡| 国产免费av片在线观看野外av| 两性夫妻黄色片| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 精品国产超薄肉色丝袜足j| 国产伦理片在线播放av一区| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| 国产主播在线观看一区二区| 国产成人精品在线电影| 国产成人一区二区三区免费视频网站| 国产1区2区3区精品| 超碰97精品在线观看| 十八禁网站免费在线| tocl精华| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色 | 亚洲久久久国产精品| 欧美乱妇无乱码| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 日韩 欧美 亚洲 中文字幕| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色 | av视频免费观看在线观看| 18在线观看网站| 9色porny在线观看| 婷婷成人精品国产| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 下体分泌物呈黄色| 久久久精品免费免费高清| 久久性视频一级片| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 国产精品九九99| 精品一区二区三区四区五区乱码| 亚洲午夜理论影院| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 高清欧美精品videossex| 另类亚洲欧美激情| 男人操女人黄网站| 丰满少妇做爰视频| 国产在线一区二区三区精| 在线看a的网站| 国产aⅴ精品一区二区三区波| 9191精品国产免费久久| 亚洲第一av免费看| 久久久久国内视频| 脱女人内裤的视频| 黄色 视频免费看| 性高湖久久久久久久久免费观看| 后天国语完整版免费观看| 人人澡人人妻人| 91字幕亚洲| 18禁美女被吸乳视频| 一级毛片电影观看| 久热爱精品视频在线9| 国产精品九九99| 99精品久久久久人妻精品| 人人妻人人添人人爽欧美一区卜| 欧美亚洲日本最大视频资源| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 欧美日韩亚洲高清精品| 老鸭窝网址在线观看| 亚洲国产欧美网| 男女高潮啪啪啪动态图| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 中文字幕色久视频| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 我要看黄色一级片免费的| 国产精品自产拍在线观看55亚洲 | 桃花免费在线播放| 丝袜在线中文字幕| 欧美在线一区亚洲| 国产1区2区3区精品| 十八禁网站网址无遮挡| 777米奇影视久久| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 精品一区二区三区视频在线观看免费 | 国产精品免费一区二区三区在线 | 90打野战视频偷拍视频| av一本久久久久| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 亚洲国产成人一精品久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久成人av| 高清视频免费观看一区二区| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 亚洲中文av在线| av电影中文网址| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 国产欧美亚洲国产| 高潮久久久久久久久久久不卡| 午夜福利一区二区在线看| 在线av久久热| 免费黄频网站在线观看国产| 日韩有码中文字幕| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 曰老女人黄片| 亚洲九九香蕉| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成77777在线视频| 美女福利国产在线| 日韩三级视频一区二区三区| 真人做人爱边吃奶动态| 国产午夜精品久久久久久| 人人澡人人妻人| 欧美午夜高清在线| 成人三级做爰电影| 国产精品香港三级国产av潘金莲| 首页视频小说图片口味搜索| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 麻豆av在线久日| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区黑人| av不卡在线播放| 国产有黄有色有爽视频| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 亚洲欧美一区二区三区久久| 免费女性裸体啪啪无遮挡网站| 成人永久免费在线观看视频 | 多毛熟女@视频|