• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Supernova Neutrinos on the Earth for Large θ13?

    2014-03-12 08:44:19XUJing徐晶HUANGMingYang黃明陽HULiJun胡立軍GUOXinHeng郭新恒andYOUNGBingLin楊麟
    Communications in Theoretical Physics 2014年2期

    XU Jing(徐晶), HUANG Ming-Yang(黃明陽), HU Li-Jun(胡立軍), GUO Xin-Heng(郭新恒),and YOUNG Bing-Lin(楊麟)

    1College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    2Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    3Department of Physics and Astronomy,Iowa State University,Ames,Iowa 5001,USA

    4Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    In the universe,core-collapse supernovas(SNs)are among the most energetic explosions.[1?3]They not only mark the catastrophic end of some stars,which turn into neutron stars or black holes after explosions,but also are responsible for the richness of heavy elements.[4?6]SN1987A has attracted worldwide interests and has been studied extensively since it came into our sight several decades ago.[7?8]During the explosions of the type II SN,most of the binding energy is released as neutrinos,which are very useful for acquiring information about the intrinsic properties and the explosion dynamics of SN.[3,7]

    For the past few decades,in most theoretical models,it had been believed that the neutrino mixing angle θ13was smaller than 3°,or even smaller than 1.5°.In Refs.[9–10],the authors studied possible methods to measure this neutrino mixing angle while θ13< 3°.However,in recent years,some new experimental results indicated a large θ13(by large θ13we mean θ13? 9°).[11?16]Last year the Daya Bay experiment measured the value of θ13to 5.2σ accuracy and obtained the result θ13=8.8°± 0.8°,[15]which is much larger than 3°.Table 1 shows a summary of the recent experimental results about θ13.In this paper,we will study detection of SN neutrinos on the Earth in the case of large θ13.

    SN neutrinos are produced from the core-collapse of SN and propagate outward to the surface of SN.Then they travel a long cosmic distance to reach the detector on the Earth. In this process,they pass through the SN matter and the Earth matter. During their propagation,SN neutrinos are subject to the Mikheyev–Smirnov–Wolfenstein(MSW)eあects,[17?18]the shock wave eあects,[19?20]the neutrino collective eあects,[21]and the Earth matter eあects.[9?10,22]Diあerent from the case in vacuum,the behavior of neutrino oscillation changes when neutrinos propagate in matter.The neutrino matter eあects,resulting from the interaction between matter and neutrinos,was found by Wolfenstein,Mikheyev,and Smirnov,then named as MSW eあects.Inside the SN,the large mixing angle solution of neutrinos results in the crossing probability,PL~0,at the low resonance region.Therefore,we only need to consider the crossing possibility,PH,at the high resonanceregion.[18,23]Since the shock wave eあects may change the density profi le of SN as well as the position of the high resonance,and θ13is not as small as expected before,the expression of PHfor large θ13under the shock wave eあects needs to be further developed.[10,18,24]By scanning the ranges of relevant parameters in the neutrino spectra,it is possible to obtain the maximum and minimum event numbers of SN neutrinos detected on the Earth.

    Table 1 Summary of experimental results about θ13.Numbers with(without)brackets are for normal(inverted)mass hierarchy.

    This paper is organizedas follows.In Sec.2,we present a brief overview of SN explosions and the production of SN neutrinos.In Sec.3,we describe the four physical effects on the detection of SN neutrinos including the MSW eあects,the shock wave eあects,the neutrino collective effects,and the Earth matter eあects.In this section,how to obtain the expression of PHin the high resonance region for large θ13is presented in detail.In Sec.4,using the latest result of the Daya Bay experiment,θ13=8.8°± 0.8°,we take into account the four physical eあects and calculate the event numbers of SN neutrinos detected on the Earth.The results illustrate how the relevant SN neutrino parameters impact on the variation of event numbers and how many SN neutrinos can be detected at the Daya Bay experiment.Finally,in Sec.5 we give the summary and discussions.

    2 SN Explosions and SN Neutrino Spectra

    According to the presence or absence of hydrogen lines in their spectra,supernovas can be classif i ed into two types,type I and type II.In this paper,we only pay attention to the type II supernovas,one main source of neutrinos in the universe,which are also named as core-collapse supernovas having hydrogen lines in their spectra.[25]The explosion process of core-collapse supernovas can be divided into several phases,and more details about the scenario of explosion can be found in Ref.[1].In recent years,some impressive progresses have been made on the simulations of the post-bounce core-collapse SN,indicating how the luminosities and energies of SN neutrinos change in the accretion and cooling phases.[26?27]

    An SN explosion approximately releases a total energy of EB=3×1053erg,about 99%of which is radiated away as SN neutrinos.[28]The relation between the total SN energy and the luminosity of diあerent f l avor neutrinos is given by[29]

    where νxrepresent νμ,ντ,ˉνμ,andˉντ.The luminosity f l ux of the SN neutrinos Lα(α=νe,ˉνe,νx)decays in time as

    The range of τ was obtained by f i tting the experimental data of SN1987A:τ=1.74–4.19 s.[28,30]

    Basically,the SN neutrino spectra are parameterized to match the result of Monte Carlo simulations.Here,we use the “alpha f i t” distribution,which was given by the Garching group(we will call it “Garching” distribution later in this paper).It can be expressed as[31]

    where 〈Eα〉is the average energy of neutrino and βαis the dimensionless pinching parameter.For diあerent neutrinos,their values are typically[1,32]

    The ranges of luminosity ratios for diあerent f l avor neutrinos are the following in this model:

    3 Four Physical Eあects on SN Neutrinos

    When neutrinos propagate outward to the surface of SN,they can be subject to the SN shock wave eあects,the MSW eあects,and the collective eあects.Before arriving at the detectors,they travel through the Earth matter and are aあected by the Earth matter eあects.In this section,we will consider all the above four physical eあects on SN neutrinos.

    3.1 MSW Eあects and Conversion Probability

    The MSW eあects are caused by neutrino interactions with matter,which are determined by the matter den-sity prof i le and the mixing angles.By using the Landau’s method,the conversion probability PHfor neutrinos to jump from one mass eigenstate to another at the high resonance layer can be expressed as[18]

    The factor F is given by

    where neis the electron density,r is the distance to the center of SN,and the adiabaticity parameter γ is def i ned as[18]

    with Δm2being the mass square diあerence of two mass eigenstates.

    For the SNs,n≈?3,the expression of F in the case of ne∝rnin Eq.(7)is

    In Eq.(9)

    with

    Eq.(9)can be expressed as a hypergeometric function:

    In the case of θ ∈ [0,π/8],using the Euler integral representation,[33]one has

    We make the Taylor expansion for F near the point 1/n=0,

    The f i rst two coeきcients in Eq.(15)can be obtained straightforwardly,

    Comparing with the numerical result of the right-hand side of Eq.(14)in the case 1/n→0,we fi nd that the fi rst two terms in Eq.(15)give dominant contributions and other items are negligible,so F can be approximately written as the following equation,Eq.(17),which is identical to the expression in Ref.[18].

    For the case of n=?3,the comparison between the numerical result of the right-hand side of Eq.(14)and that given by Eq.(17)is shown in Fig.1.It can be seen that for n=?3,Eq.(17)is a very good approximation to2F1in Eq.(14).

    Fig.1 Numerical result of F as a function of θ for n=?3.The solid and dashed curves represent the results when F takes the expression of Eqs.(14)and(17),respectively.

    3.2 SN Shock Wave Eあects and PH

    The SN shock wave eあects play an important role in the SN neutrino oscillations.As pointed out in Ref.[34]and further studied in Refs.[35–37],after the core bounce,the shock wave propagates inside the SN during the period of neutrino emission and modi fi es the density profi le of the star.In several seconds,the forward shock wave may reach the resonance region where the conversion of diあerent fl avor SN neutrinos maximize,thus affecting the transition probability PHin the high resonance region.[19,23]Recent simulations indicate that reverse shock waves can be formed when the velocity of the material becomes larger than the local sound speed,therefore it can eあect the density as well.[38?39]It was also pointed out that the turbulence eあects should be included in the supernova simulations.[40]

    In the following,we will consider the main character of shock wave eあects by taking into account the forward shock wave eあects,which are analytically approximated and characterized by a density jump as shown in Ref.[37].

    In general,the density distribution of SN might be divided into two phases roughly by time:t< 1 s and t≥ 1 s.The changes of the density prof i le and the calculation expressions of PHunder the inf l uence of shock wave eあects were discussed in Refs.[10,37]in detail,and we refer the reader to these references.For post-bounce time t<1 s,without shock wave eあects,the density prof i le can be approximated by its static limit ρ0as given by[34]

    In Eq.(18)n=?2.4.It has been proven that in this case Eq.(17)is a very good approximation to Eq.(14).The diあerence between the numerical results from these two equations are negligible when θ13=8.8°.

    Because the Daya Bay experimental result,θ13=8.8°± 0.8°,is quite diあerent from the condition θ13< 3°in Refs.[9–10],it is necessary to make clear the behavior of PHfor large θ13.In Eqs.(6)–(8),it can be found that PHdepends on F and γ,which are related to θ13and the neutrino energy E.In Figs.2,3,and 4,it is shown how the crossing probability PHchanges as a function of the neutrino energy E,the time t,and the mixing angle θ13,respectively.

    Fig.2 The crossing probability at the high resonance region PHas a function of the neutrino energy E for three neutrino mixing angles at t=6 s.The solid,dashed,and dotted curves correspond to θ13=3°,6°,9°,respectively.

    Fig.3 The crossing probability at the high resonance region PHas a function of the time t for three neutrino energies at θ13=9°.The solid,dashed,and dotted curves correspond to neutrino energy E=11,16,25 MeV,respectively.

    Fig.4 The crossing probability at the high resonance region PHas a function of the neutrino mixing angle θ13:(a)for three diあerent times at E=11 MeV.The solid,dashed and dotted curves correspond to t=2 s,4 s,6 s,respectively;(b)for three diあerent neutrino energies at t=6 s.The solid,dashed,and dotted curves correspond to E=11,16,25 MeV,respectively.

    In Fig.2,it can be seen that the value of PHdepends on the energy of SN neutrino.Whatever value θ13takes,the value of PHhas a great “jump” approximately at E=10 MeV.For θ13=3°,the curve of PHstill has obvious continuous f l uctuations from about 15 MeV to higher energy.For θ13=6°and θ13=9°,the value of PHchanges smoothly and decreases slowly when E≥30 MeV.Figure 3 shows the curves of PHfor three typical neutrino energies when the time ranges from 0 s to 10 s.We can see that as the energy increases the curve becomes fatter.In other words,the greater the neutrino energy,the longer time PHkeeps at high values.In general,the value of PHreaches the maximum value when the time is between 4–6 s.

    In Fig.4(a),it is found that for a certain neutrino energy,at diあerent times,the value of PHchanges smoothly in the range of θ13=5°? 10°.However,the curve for t=6 s has rapid f l uctuations between 0°and 5°.In Fig.4(b),all the curves corresponding to three neutrino energies have obvious f l uctuations when θ13is between 0°and 5°.This is far from the real θ13value.Figures 2,3,and 4 illustrate that PHis zero near the real value of θ13(8.8°)when there are no shock wave eあects.However,when the shock wave eあects turn on PHis not zero in a range of time.

    3.3 Collective Eあects and Earth Matter Eあects

    The neutrino collective eあects,which mechanism is totally diあerent from that of the MSW eあects,are caused by the neutrino-neutrino interactions inside the core-collapse SN.Recently,it has been realized to be a crucial feature at very high densities of the core and can change the emitted fl uxes of diあerent fl avor neutrinos substantially.[21,32]

    Up to now,there have been a signi fi cant amount of studies on the neutrino collective eあects.[21,29,32,41?45]In Ref.[32],it was shown that the collective eあects depend on the inherent features of SN neutrinos,such as their initial total energy,relative luminosities of diあerent fl avors,and the neutrino mass hierarchy.[1,46?47]In this paper,in order to study the collective eあects quantitatively,we set Pννas the survival probability that the neutrinos(antineutrinos)ν(νˉ)remain as their original states after the collective eあects.In Ref.[21]the authors introduced a simpli fi ed picture to describe the characteristics of the collective eあects:

    for neutrinos andˉPνν=1 for antineutrinos,where ECis a critical energy.We take EC=10 MeV in our later calculation.[21]

    When reaching the Earth,the neutrinos are mass eigenstates,then they oscillate in f l avors while going through the Earth matter.In Refs.[9–10],the authors studied Earth matter eあects in detail.For simplicity,we do not repeat it here but refer the reader to these references.

    4 Detecting SN Neutrinos on the Earth

    There are three reaction channels with which one may detect SN neutrinos at the Daya Bay experiment:the inverse beta decay,neutrino-electron reactions,and neutrino-carbon reactions.The reaction formulas and the means of calculation were discussed in Refs.[9–10]and the relevant eあective cross sections mentioned in Refs.[48–49]are still applicable when θ13is large.

    4.1 Calculation of Event Numbers

    A detailed description of the Daya Bay experiment can be found in Refs.[50–51].There are eight detectors located at diあerent sites of the Daya Bay experiment.The total detector mass is about 300 tons and the depth of the detectors h?400 m.The Daya Bay Collaboration uses Linear Alkyl Benzene(LAB)as the main part of the liquid scintillator.LAB has a chemical composition including C and H with the ratio of the number of C and H being about 0.6.Then,the total numbers of target protons,electrons,and12C areWith all of the four physical eあects being taken into account,the SN neutrino f l uxes at the detector are expressed as

    where the survival probabilities p andˉp are given by

    for the normal mass hierarchy and

    for the inverted mass hierarchy.P2eis the probability that a neutrino mass eigenstate enters the surface of the Earth and arrives at the detector as an electron neutrino νe.[52]

    The event numbers N(i)of SN neutrinos in the reaction channel“i” can be calculated by integrating over the neutrino energy,the product of the target number NT,the cross section of the given channel σ(i),and the neutrino fl ux function at the detector FαD,

    where α stands for the neutrino or antineutrino of a given fl avor,and D is the distance between the SN and the Earth.[9]

    4.2 Scanning over the Relevant Parameters

    In Sec.2,we gave the ranges of the average energies of neutrinos〈Eα〉and ranges of dimensionless pinching parameters βαin the parametrization of SN neutrino f l uxes as listed in Eq.(4).It is expected to obtain the maximum and minimum values of neutrino event numbers in the Daya Bay experiment from our calculation results.To achieve this objective,scanning over the ranges of all the parameters related to the calculation of four physical effects on detecting SN neutrinos is necessary.Notice that the luminosity ratios of diあerent f l avor neutrinos in Eq.(5)should be considered as well.In fact,as will be shown in the next subsection,the luminosity ratios do have eあects on neutrino event numbers.

    Comparing the three reaction channels,it can be seen that the cross sections for the neutrino-electron scattering channel(~ 10?45)are much smaller than the other two reaction channels(~ 10?43).[9]Hence,we will only consider the inverse beta-decay and the neutrino-carbon reactions in the following analysis.It also can be seen that the inverse beta-decay does not involve any parameters about νesince νeis not involved in the inverse beta-decay.Based on simulation results the luminosity of νeandˉνecan be taken to be equal,[31]so we can def i ne

    Scanning over the ranges of all the parameters in Eqs.(4)and(5),we obtain the following parameter values for the distribution in Eq.(3):

    for the inverse beta decay,and

    for the neutrino-carbon reactions.

    From Eq.(5)it can be seen that M varies between two extreme values,1.25 and 2.In order to see the inf l uence of the luminosity ratio itself on event numbers,we only change the values of M in Eqs.(24)–(27)to the other extreme values,with keeping 〈Eα〉and βαunchanged,then we obtain the following comparison groups of parameters for Eqs.(24)–(27),respectively:

    for the inverse beta decay,and

    for the neutrino-carbon reactions.It is noted that no matter how the value of M changes,the total energy of all f l avor neutrinos is a constant and the results with parameters in comparison groups are always between the maximum and minimum event numbers.

    4.3 The SN Neutrino Event Numbers under the Inf l uence of Four Physical Eあects

    In this subsection,we give the numerical results of SN neutrino event numbers detected at the Daya Bay experiment.Consider a “standard” supernova at a distance D=10 kpc from the Earth,which releases total energy EB=3×1053erg,and take τ=3 s as the decay time of its luminosity.[28?30]The values of relevant parameters have already been given in the previous subsections.Given the Daya Bay experimental result,we take θ13=8.8°in our calculations.

    With the inf l uence of all the four physical eあects being taken into account,supposing a neutrino reaches the detector with the incident angle α,[9?10]we calculate the neutrino event numbers with the neutrino spectra of the“Garching” distribution and plot the neutrino event numbers N as a function of α in Figs.5 and 6 for the inverse beta-decay and the neutrino-carbon interactions,respectively.In order to show the inf l uence of the luminosity ratio conveniently,the results of two groups with the same〈Eα〉and βαbut diあerent M are plotted in the same f i gures.For example,in Fig.5(a)there are four styles of numerical curves representing the results of“Max” (M=2)and “Max-C”(M=1.25)for both normal and inverted mass hierarchies.

    Generally speaking,the maximum variation of neutrino event numbers appears at α ~ 93°when α changes due to the Earth matter eあects for both reactions.Meanwhile,the variations in the inverse beta-decay are more obvious than those in the neutrino-carbon reactions.Also for both reactions,the numerical results show signif i cant diあerences between the normal hierarchy and the inverted hierarchy even for the same values of 〈Eα〉and βαand the same luminosity ratio M.For example,comparing the solid curve(normal)and the dashed curve(inverted)in Fig.5(a),it can be seen that the distance between the two curves are roughly 60 although they have the same parameter values as listed in Eq.(24).This point shows that event numbers largely depend on the mass hierarchy.

    On the other hand,it is found that even with the same values of〈Eα〉and βαand with the same mass hierarchy,event numbers still change with the luminosity ratio M.For instance,in Fig.6(a),the solid curve(M=2)is about 15 more than the dotted curve(M=1.25)although they both correspond to the normal hierarchy and the same〈Eα〉and βαas listed in Eqs.(26)and(30).However,we should note that in Figs.5(a)and 5(b),the solid curves(normal)are very close to the dotted curves(normal)and the diあerence between them is less than about 3.By contrast,the diあerence between the dashed curves(inverted)and dot-dashed curves(inverted)in Figs.5(a)and 5(b)is signif i cantly greater,which is more than 20.This shows that for the inverse beta-decay reaction,if the mass hierarchy is normal,event numbers change in a relatively narrow range over the values of M,while if the mass hierarchy is inverted,this is not the case.For the neutrinocarbon interaction in Figs.6(a)and 6(b),it is shown that the variations of event numbers are remarkable with the changes of luminosity ratio no matter which mass hierarchy it is.Based on the above analysis,it is obvious that the luminosity ratio M plays an important role in determining the event numbers.

    Fig.5 The event numbers for the inverse beta-decay with the parametrization form in Eq.(3). “α” is the incident angle of the SN neutrino reaching the detector. “N(I)” represents normal(inverted)mass hierarchy.In Fig.5(a)“Max” and “Max-C” correspond to parameter values listed in Eqs.(24)and(28),respectively;in Fig.5(b)“Min” and “Min-C” correspond to parameter values listed in Eqs.(25)and(29),respectively.

    Fig.6 The event numbers for the neutrino-carbon interactions with the parametrization form in Eq.(3).“α” is the incident angle of the SN neutrino reaching the detector. “N(I)” represents normal(inverted)mass hierarchy.In Fig.6(a)“Max” and “Max-C” correspond to parameter values listed in Eqs.(26)and(30),respectively;in Fig.6(b)“Min” and “Min-C” correspond to parameter values listed in Eqs.(27)and(31),respectively.

    The summary of event numbers for the two reaction channels with the“Garching”distribution are given in Tables 2 and 3.The numerical results illustrate that the event numbers and the change rates due to the Earth matter eあects depend on the parameters 〈Eα〉and βα,as well the mass hierarchy.Furthermore,the luminosity ratio M has an important inf l uence on the event numbers and the change rates while other parameters remain unchanged.Comparing the results with the “Min” and“Min-C”groups of parameters for the inverse beta-decay,for example,in the case of inverted mass hierarchy,when M=1.25 the event numbers at the incipient angle and the change rates are 78.98 and 0.18%,respectively;while when M=2 these two corresponding numbers are 99.31 and 0.30%,both of which are signif i cantly more than the former two.For another example,focusing on the results of the“Max”and“Max-C”groups of the neutrino-carbon interactions,in the case of normal mass hierarchy,when M=1.25 the event numbers at the incipient angle and the change rates are 61.49 and 0.15%,respectively;while when M=2 these two numbers are 77.4 and 0.22%,respectively,which are also much larger.

    Table 2 Summary of event numbers of the inverse beta-decay for the parametrization form given in Eq.(3).“Max” and “Max-C” correspond to parameter values in Eqs.(24)and(28),respectively;“Min” and “Min-C”correspond to parameter values in Eqs.(25)and(29),respectively. “N(I)” represents normal(inverted)mass hierarchy.The numbers in the columns “Incipient” and “Min” are the event numbers when the SN neutrino incident angle is zero and is the angle in the column “Angle”,respectively.The column “Angle” gives the angles at which the event numbers are the minimum and the Earth matter eあects are the strongest. “Ratio” gives the percentages of the Earth matter eあects.

    Table 3 Summary of event numbers of the neutrino-carbon interaction for the parametrization form given in Eq.(3). “Max” and “Max-C” correspond to parameter values in Eqs.(26)and(30),respectively;“Min” and“Min-C” correspond to parameter values in Eqs.(26)and(30),respectively.“N(I)” represents normal(inverted)mass hierarchy.The numbers in the columns“Incipient” and “Min” are the event numbers when the SN neutrino incident angle is zero and is the angle in the column “Angle”,respectively.The column “Angle” gives the angles at which the event numbers are the minimum and the Earth matter eあects are the strongest. “Ratio” gives the percentages of the Earth matter eあects.

    Table 4 The event number ranges in the Daya Bay experiment with all the uncertainties taken into account.“N(I)” represents normal(inverted)mass hierarchy.

    In Table 4 we give neutrino event numbers detected at the Daya Bay experiment when all the uncertainties are taken into account in the cases of normal and inverted mass hierarchies,respectively.We can see that the event numbers range from 63.66~135.58 and 50.05~94.9 for the inverse beta-decay and the neutrino-carbon interactions,respectively.

    5 Summery and Discussions

    Given the new experimental result about θ13from the Daya Bay Collaboration,we deduce the expression of the neutrino conversion probability in the high resonance region inside SN,PH,in the case of large θ13(? 8.8°),by applying the available knowledge for PH.PHis expressed in the form of hypergeometric function.In the derivation,we take the shock wave eあects into account.Furthermore,we give numerical results of PHas functions of θ13,t,and E.It is found that PHis zero near the real value of θ13when there are no shock wave eあects.However,it is not zero in a certain region of time(roughly 3 s~8 s depending on neutino energies)if the shock wave eあects are considered.Our work is diあerent from previous studies which were usually done in the case of small θ13(< 3°).[9?10]

    We consider the inf l uence of all the four physical eあects on the detection of SN neutrinos,including the MSW effects,the SN shock wave eあects,the neutrino collective eあects,and the Earth matter eあects.Scanning over all the relevant parameters in the form of“Garching” neutrino energy distribution,we calculate the event numbers for two reaction channels,the inverse beta-decay and the neutrino-carbon reactions,both of which can be detected at the Daya Bay experiment.It is found that the event numbers depend on the parameters 〈Eα〉, βα,and Lα,as well as the mass hierarchy.We emphasize that the event numbers depend on the luminosity ratio substantially.This point has not been discussed before.Finally,we give the range of SN neutrino event numbers detected at the Daya Bay experiment.

    Although a lot of eあort has been made on identifying the four physical eあects on detection of SN neutrinos,there are still a lot of problems,which need to be solved.One example is the neutrino collective eあects in the case of large θ13.Progress in this direction will aあect the detection of SN neutrinos.Now the Daya Bay II experiment is under consideration.Its detector mass will be about 70 times of the total detector mass of the Daya Bay experiment.This will make it much more possible to detect SN neutrinos in the future.

    [1]K.Kotake,K.Sato,and K.Takahashi,Rept.Prog.Phys.69(2006)971.

    [2]S.Akiyama,J.C.Wheeler,D.L.Meier,and I.Lichtenstadt,Astrophys.J.584(2003)954.

    [3]H.A.Bethe,Rev.Mod.Phys.62(1990)801;G.E.Brown,H.A.Bethe,and G.Baym,Nucl.Phys.A 375(1982)481.

    [4]J.M.Lattimer and M.Prakash,Astrophys.J.550(2003)426.

    [5]J.M.Bardeen,B.Carter,and S.W.Hawking,Commun.Math.Phys.31(1973)161.

    [6]D.Lal,Earth and Planetary Science Letters 104(1991)424.

    [7]W.D.Arnett,Astrophys.J.A 319(1987)136.

    [8]R.M.Bionta,G.Blewitt,C.B.Bratton,D.Casper,A.Ciocio,et al.,Phys.Rev.Lett.58(1987)1494.

    [9]X.H.Guo,M.Y.Huang,and B.L.Young,Phys.Rev.D 79(2009)113007.

    [10]M.Y.Huang,X.H.Guo,and B.L.Young,Phys.Rev.D 82(2010)033011.

    [11]F.Ardellier and I.Barabanov,et al.,[arXiv:hep-ex/0606 025].

    [12]J.M.Wang,et al.,Astrophy.J.Lett.701(2009)7.

    [13]K.Abe,et al.,Phys.Rev.Lett.107(2011)041801.

    [14]P.Adamson,et al.,Phys.Rev.Lett.107(2011)181802.

    [15]F.P.An,et al.,[Daya-Bay Collaboration],Phys.Rev.Lett.108(2012)171803.

    [16]Y.Abe,et al.,Phys.Rev.Lett.108(2012)131801.

    [17]L.Wolfenstein,Phys.Rev.D 17(1978)2369;ibid.20(1979)2634.

    [18]T.K.Kuo and J.Pantaleone,Rev.Mod.Phys.61(1989)937.

    [19]T.Takiwaki,et al.,Astrophys.J.616(2005)1086.

    [20]G.L.Fogli,et al.,J.Cosmol.Astropart.Phys.0504(2005)002.

    [21]B.Dasgupta and A.Dighe,Phys.Rev.D 77(2008)113002.

    [22]C.Lunardini and A.Y.Smirnov,Nucl.Phys.B 616(2001)307.

    [23]S.P.Mikheyev and A.Y.Smirnov,Nucl.Phys.B 42(1985)913.

    [24]M.Kachelriess,A.Strumia,R.Tomas,and J.W.F.Valle,Phys.Rev.D 65(2002)073016.

    [25]T.J.Loredo and D.Q.Lamb,Phys.Rev.D 65(2002)063002.

    [26]L.Hudepohl,et al.,Phys.Rev.Lett.104(2010)251101.

    [27]S.Chakraborty,et al.,Phys.Rev.D 84(2011)025002;Phys.Rev.Lett.107(2011)151101.

    [28]D.N.Spergel,et al.,Science 237(1987)1471.

    [29]G.L.Fogli,et al.,J.Cosmol.Astropart.Phys.0904(2009)030.

    [30]T.J.Loredo and D.Q.Lamb,et al.,Acad.Sci.571(1989)601;T.J.Loredo and D.Q.Lamb,Phys.Rev.D 65(2002)063002.

    [31]M.T.Keil and T.U.Munchen,Preprint[astro-ph/0308 228];M.T.Keil,et al.,Astrophys.J.590(2003)971.

    [32]S.Chakraborty and S.Choubey,et al.,J.Cosmol.Astropart.Phys.1006(2010)007.

    [33]A.P.Prudnikov,Yu.A.Brychokov,and O.I.Marichev,Integrals and Series,Gordon and Breach,New York(1990).

    [34]R.C.Schirato and G.M.Fuller,Preprint[astro-ph/0205 390](2002).

    [35]K.Takahashi,et al.,Astropart.Phys.20(2003)189.

    [36]R.Tomas,et al.,Astropart.Phys.0409(2004)015.

    [37]G.L.Fogli,E.Lisi,A.Mirizzi,and D.Montanino,Phys.Rev.D 68(2003)033005.

    [38]J.P.Kneller,G.C.McLaughlin,and J.Brockman,Phys.Rev.D 77(2008)045023.

    [39]S.Galais,et al.,Phys.Rev.D 81(2010)053002.

    [40]T.Lund and J.P.Kneller,Phys.Rev.D 88(2013)023008,[arXiv:1304.6372[astro-ph.HE]].

    [41]H.Y.Duan and J.P.Kneller,J.Phys.G 36(2009)113201.

    [42]H.Y.Duan,G.M.Fuller,and Y.Z.Qian,Phys.Rev.D 74(2006)123004;ibid.76(2007)085013;ibid.75(2007)125005;Phys.Rev.Lett.99(2007)241802.

    [43]S.Hannestad,G.G.Raあelt,G.Sigl,and Y.Y.Y.Wong,Phys.Rev.D 74 (2006)105010; ibid.76 (2007)029901(E).

    [44]G.G.Raあelt and A.Y.Smirnov,Phys.Rev.D 76(2007)081301(R);ibid.76(2007)125008.

    [45]G.L.Fogli,E.Lisi,et al.,J.Cosmol.Astropart.Phys.0712(2007)010;0910(2009)002.

    [46]C.Lunardini and A.Y.Smirnov,J.Cosmol.Astropart.Phys.0306(2003)009.

    [47]K.Takahashi and K.Sato,Prog.Theor.Phys.109(2003)919.

    [48]L.Cadonati,F.P.Calaprice,and M.C.Chen,Astropart.Phys.16(2002)361.

    [49]A.Burrows,S.Reddy,and T.A.Thompson,Nucl.Phys.A 777(2006)356.

    [50]F.P.An,et al.,[Daya-Bay Collaboration],Nucl.Instrum.Meth.A 685(2012)1.

    [51]X.H.Guo,et al.,[Daya-Bay Collaboration],[arXiv:hepex/0701029].

    [52]A.N.Ioannisian and A.Yu.Smirnov,Phys.Rev.Lett.93(2004)241801;A.N.Ioannisian,et al.,Phys.Rev.D 71(2005)033006.

    最近的中文字幕免费完整| 真实男女啪啪啪动态图| 美女国产视频在线观看| 欧美三级亚洲精品| 大又大粗又爽又黄少妇毛片口| 男人狂女人下面高潮的视频| 国产精品美女特级片免费视频播放器| 人妻少妇偷人精品九色| 春色校园在线视频观看| 美女内射精品一级片tv| 久久精品久久精品一区二区三区| 国产男人的电影天堂91| 亚洲精品,欧美精品| 欧美三级亚洲精品| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品论理片| 国产探花极品一区二区| 日韩欧美国产在线观看| 亚洲久久久久久中文字幕| 欧美丝袜亚洲另类| 久久精品综合一区二区三区| 村上凉子中文字幕在线| .国产精品久久| 久久久久国产网址| 赤兔流量卡办理| 国产精品永久免费网站| 99热全是精品| 国产淫片久久久久久久久| 最后的刺客免费高清国语| 观看美女的网站| 亚洲国产欧洲综合997久久,| 26uuu在线亚洲综合色| 三级国产精品欧美在线观看| 国产精品乱码一区二三区的特点| 秋霞伦理黄片| 日韩欧美国产在线观看| 免费看日本二区| 欧美性猛交╳xxx乱大交人| 久久婷婷人人爽人人干人人爱| 亚洲av中文av极速乱| 亚洲成人av在线免费| 蜜桃久久精品国产亚洲av| av女优亚洲男人天堂| 国产av不卡久久| 在线观看一区二区三区| av播播在线观看一区| 精品久久久久久久久久久久久| 久久精品夜色国产| 亚洲av免费高清在线观看| 国产精品一区www在线观看| 桃色一区二区三区在线观看| 亚洲国产精品久久男人天堂| 国产精品野战在线观看| 久久久久国产网址| 国产伦一二天堂av在线观看| 波多野结衣巨乳人妻| 人人妻人人看人人澡| 精品少妇黑人巨大在线播放 | 欧美日韩精品成人综合77777| 成年女人看的毛片在线观看| 欧美不卡视频在线免费观看| 免费看av在线观看网站| 国产黄色视频一区二区在线观看 | 伦理电影大哥的女人| 亚洲国产精品合色在线| 三级经典国产精品| 特级一级黄色大片| 成人高潮视频无遮挡免费网站| 看免费成人av毛片| 国产成人freesex在线| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线| 少妇裸体淫交视频免费看高清| a级毛片免费高清观看在线播放| 五月玫瑰六月丁香| 国产成人免费观看mmmm| 26uuu在线亚洲综合色| 成人国产麻豆网| 少妇丰满av| 男人舔女人下体高潮全视频| 26uuu在线亚洲综合色| 亚洲熟妇中文字幕五十中出| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 国产视频首页在线观看| 激情 狠狠 欧美| 日本免费a在线| 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 国产亚洲最大av| 日韩强制内射视频| 男女国产视频网站| 有码 亚洲区| 亚洲欧洲日产国产| 九色成人免费人妻av| 男女国产视频网站| 精品久久久久久久末码| 久久久久网色| 大香蕉97超碰在线| 毛片女人毛片| 国模一区二区三区四区视频| 午夜福利在线观看吧| 精品久久久久久久末码| 国模一区二区三区四区视频| 少妇裸体淫交视频免费看高清| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜爱| 午夜精品在线福利| 亚洲国产色片| 韩国高清视频一区二区三区| 嘟嘟电影网在线观看| 成人二区视频| 免费黄网站久久成人精品| 99久久成人亚洲精品观看| 小蜜桃在线观看免费完整版高清| 日本熟妇午夜| 国产高清不卡午夜福利| 国产爱豆传媒在线观看| 国产乱人视频| 只有这里有精品99| 久久精品久久久久久噜噜老黄 | 久久国内精品自在自线图片| 国产片特级美女逼逼视频| 非洲黑人性xxxx精品又粗又长| 久久久久久久国产电影| 99久久成人亚洲精品观看| 国产成人a区在线观看| 亚洲丝袜综合中文字幕| 精品少妇黑人巨大在线播放 | 国产精品爽爽va在线观看网站| 青春草亚洲视频在线观看| 少妇裸体淫交视频免费看高清| 久久久精品欧美日韩精品| 亚洲精品国产成人久久av| 69av精品久久久久久| 亚洲四区av| 韩国高清视频一区二区三区| 久久久久久久国产电影| 嘟嘟电影网在线观看| 亚洲精品乱码久久久v下载方式| 别揉我奶头 嗯啊视频| 色尼玛亚洲综合影院| 看片在线看免费视频| 久久精品国产亚洲av涩爱| av福利片在线观看| 亚洲精品乱码久久久久久按摩| 久久久午夜欧美精品| 男人舔女人下体高潮全视频| 亚洲一级一片aⅴ在线观看| 欧美一区二区国产精品久久精品| 免费搜索国产男女视频| 成人无遮挡网站| 毛片一级片免费看久久久久| 69av精品久久久久久| 亚洲五月天丁香| 午夜福利视频1000在线观看| 欧美色视频一区免费| 午夜爱爱视频在线播放| 国产黄色视频一区二区在线观看 | 少妇猛男粗大的猛烈进出视频 | 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 麻豆乱淫一区二区| 啦啦啦啦在线视频资源| 国产精品蜜桃在线观看| 国产91av在线免费观看| 久久精品国产鲁丝片午夜精品| 国产亚洲av片在线观看秒播厂 | 18禁在线无遮挡免费观看视频| 欧美成人一区二区免费高清观看| 亚洲国产最新在线播放| 亚洲av免费高清在线观看| 国产中年淑女户外野战色| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验| 国产精品国产高清国产av| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 国产成人91sexporn| 成人漫画全彩无遮挡| 日韩av在线大香蕉| 国产片特级美女逼逼视频| 欧美另类亚洲清纯唯美| 国产精品人妻久久久久久| 熟女电影av网| 五月伊人婷婷丁香| 丰满乱子伦码专区| av卡一久久| 桃色一区二区三区在线观看| 国产高清三级在线| 一个人看视频在线观看www免费| 日本免费一区二区三区高清不卡| 热99在线观看视频| 中文精品一卡2卡3卡4更新| 色播亚洲综合网| 中文字幕免费在线视频6| 国产成人精品一,二区| .国产精品久久| 国产爱豆传媒在线观看| 久久99热这里只有精品18| 69人妻影院| 91久久精品国产一区二区成人| 午夜爱爱视频在线播放| 国产亚洲av片在线观看秒播厂 | 最后的刺客免费高清国语| 特大巨黑吊av在线直播| 麻豆一二三区av精品| 成人亚洲欧美一区二区av| 久久久亚洲精品成人影院| 亚洲精品成人久久久久久| 国产高清国产精品国产三级 | 97热精品久久久久久| 免费黄色在线免费观看| 免费看日本二区| 亚洲在线自拍视频| 人体艺术视频欧美日本| 国产精品久久久久久精品电影| 一级毛片电影观看 | 久久人妻av系列| 女人久久www免费人成看片 | 国产淫片久久久久久久久| 亚洲精华国产精华液的使用体验| 只有这里有精品99| 日韩成人av中文字幕在线观看| 国产69精品久久久久777片| 日本一本二区三区精品| 亚洲成色77777| 亚洲av中文av极速乱| 综合色av麻豆| 一个人观看的视频www高清免费观看| av女优亚洲男人天堂| 久久人妻av系列| 小说图片视频综合网站| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品成人久久小说| 亚洲美女搞黄在线观看| 久久鲁丝午夜福利片| 亚洲成人中文字幕在线播放| 观看美女的网站| 99久国产av精品| 内射极品少妇av片p| 婷婷色综合大香蕉| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 免费看光身美女| 国产 一区精品| 我要看日韩黄色一级片| 久久精品国产99精品国产亚洲性色| 内射极品少妇av片p| 日本与韩国留学比较| 一个人免费在线观看电影| 18禁动态无遮挡网站| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 亚洲四区av| 成年av动漫网址| 国产色爽女视频免费观看| 国内精品一区二区在线观看| 看非洲黑人一级黄片| 国产高清国产精品国产三级 | 99热全是精品| 少妇高潮的动态图| 婷婷六月久久综合丁香| 最近中文字幕高清免费大全6| 亚洲国产色片| 联通29元200g的流量卡| 亚洲av中文av极速乱| 五月玫瑰六月丁香| www日本黄色视频网| 国产精品av视频在线免费观看| 久久精品熟女亚洲av麻豆精品 | 免费不卡的大黄色大毛片视频在线观看 | 欧美另类亚洲清纯唯美| 久久久精品大字幕| av福利片在线观看| 蜜臀久久99精品久久宅男| 色哟哟·www| 亚洲最大成人手机在线| 内地一区二区视频在线| 久久久欧美国产精品| 欧美激情久久久久久爽电影| 2021天堂中文幕一二区在线观| АⅤ资源中文在线天堂| 六月丁香七月| 国产久久久一区二区三区| 国产白丝娇喘喷水9色精品| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦啦在线视频资源| av在线亚洲专区| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 一级毛片电影观看 | 午夜精品一区二区三区免费看| 大话2 男鬼变身卡| 国产亚洲91精品色在线| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 永久免费av网站大全| 国产精品日韩av在线免费观看| 熟女人妻精品中文字幕| 成人午夜精彩视频在线观看| 91午夜精品亚洲一区二区三区| 嫩草影院精品99| 蜜桃久久精品国产亚洲av| 看免费成人av毛片| 久久精品夜夜夜夜夜久久蜜豆| АⅤ资源中文在线天堂| 久久久国产成人免费| 国产av一区在线观看免费| 身体一侧抽搐| 亚洲伊人久久精品综合 | 欧美另类亚洲清纯唯美| 国内精品美女久久久久久| 青青草视频在线视频观看| 九九爱精品视频在线观看| 久久久午夜欧美精品| 18禁在线播放成人免费| 成人亚洲精品av一区二区| 色综合色国产| 亚洲国产精品专区欧美| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 成人毛片a级毛片在线播放| 99热网站在线观看| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 国产在线男女| 精品熟女少妇av免费看| 91久久精品国产一区二区三区| 婷婷色av中文字幕| av福利片在线观看| 亚洲av成人av| 桃色一区二区三区在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 亚洲av中文av极速乱| 亚洲精品日韩av片在线观看| 一级毛片电影观看 | 日韩欧美在线乱码| 亚洲三级黄色毛片| 夫妻性生交免费视频一级片| 黄片wwwwww| 欧美zozozo另类| 亚洲精品456在线播放app| 91狼人影院| 26uuu在线亚洲综合色| 淫秽高清视频在线观看| 国产精品一区www在线观看| 十八禁国产超污无遮挡网站| 九九在线视频观看精品| 国产成人免费观看mmmm| 国模一区二区三区四区视频| 久久久a久久爽久久v久久| 全区人妻精品视频| 免费大片18禁| 欧美成人午夜免费资源| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| 青春草亚洲视频在线观看| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品 | 最近手机中文字幕大全| 国产一区有黄有色的免费视频 | 一级黄片播放器| 午夜视频国产福利| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 一本一本综合久久| 国产大屁股一区二区在线视频| 亚洲av成人精品一区久久| 成人亚洲欧美一区二区av| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 久久久午夜欧美精品| 综合色av麻豆| 又爽又黄无遮挡网站| 精品酒店卫生间| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 免费搜索国产男女视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久国产网址| 国产精品av视频在线免费观看| 亚洲综合精品二区| 观看免费一级毛片| 国语自产精品视频在线第100页| 亚洲伊人久久精品综合 | 欧美成人一区二区免费高清观看| 99热这里只有精品一区| 国产精品一区二区在线观看99 | 少妇人妻一区二区三区视频| 国产精华一区二区三区| 日韩成人伦理影院| 亚洲av男天堂| 欧美色视频一区免费| 亚洲av中文字字幕乱码综合| 成人毛片60女人毛片免费| 国产精品,欧美在线| 男插女下体视频免费在线播放| av在线老鸭窝| 免费观看在线日韩| 亚洲精品乱久久久久久| 亚洲最大成人手机在线| 中文字幕久久专区| 午夜福利网站1000一区二区三区| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 永久免费av网站大全| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 国产探花在线观看一区二区| 久久久亚洲精品成人影院| 国产一区二区在线av高清观看| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看| 亚洲欧美精品专区久久| 免费观看人在逋| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 国产av不卡久久| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 午夜老司机福利剧场| 天堂网av新在线| 22中文网久久字幕| 亚洲最大成人av| 一卡2卡三卡四卡精品乱码亚洲| 高清av免费在线| 两个人的视频大全免费| 国产一区二区在线av高清观看| 三级毛片av免费| www.av在线官网国产| 日韩欧美三级三区| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 五月玫瑰六月丁香| 青春草国产在线视频| 欧美激情久久久久久爽电影| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产亚洲网站| 熟妇人妻久久中文字幕3abv| 我的女老师完整版在线观看| 色视频www国产| 最近中文字幕2019免费版| 嫩草影院精品99| 青春草视频在线免费观看| 亚洲av.av天堂| 麻豆av噜噜一区二区三区| 亚洲av二区三区四区| 亚洲精品乱久久久久久| 国产视频内射| 一个人看的www免费观看视频| 欧美精品国产亚洲| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 亚洲美女视频黄频| 中文字幕精品亚洲无线码一区| 少妇熟女aⅴ在线视频| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 看片在线看免费视频| 日本色播在线视频| 毛片女人毛片| 看黄色毛片网站| 男女下面进入的视频免费午夜| 老司机影院成人| 久久久久免费精品人妻一区二区| 亚洲欧洲国产日韩| 日韩 亚洲 欧美在线| 不卡视频在线观看欧美| 国产私拍福利视频在线观看| 免费在线观看成人毛片| 久久国内精品自在自线图片| 久久精品熟女亚洲av麻豆精品 | 老师上课跳d突然被开到最大视频| 91久久精品电影网| 一个人免费在线观看电影| 国产日韩欧美在线精品| 哪个播放器可以免费观看大片| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 婷婷六月久久综合丁香| 欧美3d第一页| 日韩精品青青久久久久久| 国产精品一二三区在线看| 99视频精品全部免费 在线| av卡一久久| 国内精品一区二区在线观看| 在线观看美女被高潮喷水网站| 亚洲成av人片在线播放无| 久久精品影院6| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 国产精品麻豆人妻色哟哟久久 | 成人三级黄色视频| 热99re8久久精品国产| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放| 成人综合一区亚洲| 日韩中字成人| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 久久精品人妻少妇| 久久国内精品自在自线图片| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 黄色欧美视频在线观看| 精品久久久久久电影网 | 在线观看av片永久免费下载| 亚洲精品国产av成人精品| 亚洲中文字幕日韩| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 国产精品久久视频播放| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 亚洲综合色惰| 99久国产av精品| 男人舔奶头视频| 国产精华一区二区三区| 大香蕉久久网| 18禁在线播放成人免费| 联通29元200g的流量卡| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 日本与韩国留学比较| 久久精品久久久久久久性| 日韩中字成人| 真实男女啪啪啪动态图| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 美女大奶头视频| 麻豆乱淫一区二区| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 欧美区成人在线视频| 久久久久九九精品影院| 网址你懂的国产日韩在线| 久久精品久久精品一区二区三区| 18+在线观看网站| a级毛片免费高清观看在线播放| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 免费av毛片视频| 久久精品国产亚洲av天美| 久久久久精品久久久久真实原创| 色视频www国产| 亚洲av中文av极速乱| 三级毛片av免费| 成人毛片60女人毛片免费| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品色激情综合| 99久久成人亚洲精品观看| 亚洲国产精品sss在线观看| 日本黄色片子视频| 欧美日本亚洲视频在线播放| 国产精品国产三级国产专区5o | 国产精品熟女久久久久浪| 小说图片视频综合网站| 91精品伊人久久大香线蕉| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 日韩成人伦理影院| 久久久精品94久久精品| 亚洲欧美成人精品一区二区| 日本av手机在线免费观看| 国语自产精品视频在线第100页| 嫩草影院入口| 中文亚洲av片在线观看爽| 久久午夜福利片| 美女脱内裤让男人舔精品视频| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 久久精品久久久久久久性| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 国产精品三级大全| 亚洲无线观看免费| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 嫩草影院新地址| 国产色婷婷99| www.色视频.com| 日本三级黄在线观看| 亚洲欧美成人综合另类久久久 | 欧美性猛交黑人性爽| a级毛色黄片| 午夜福利高清视频| 国产黄色视频一区二区在线观看 | 午夜免费激情av| 男的添女的下面高潮视频| 麻豆av噜噜一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全电影3| 国产精品三级大全| 国产精品国产高清国产av|