• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Quantum Computing in Decoherence-Free Subspaces with Double-Dot Spin Qubits?

    2014-03-12 08:44:09FENGZhiBo馮志波ZHANGChunLi張春麗andZHOUYunQing周運清
    Communications in Theoretical Physics 2014年2期

    FENG Zhi-Bo(馮志波), ZHANG Chun-Li(張春麗),and ZHOU Yun-Qing(周運清)

    1School of Electric Engineering,Xuchang University,Xuchang 461000,China

    2Department of Physics,Zhejiang Ocean University,Zhoushan 316000,China

    1 Introduction

    With theoretical signif i cance and practical applications,quantum information processing has been a fascinating research f i eld.[1]As solid-state artif i cial atom,semiconductor quantum dot can be manipulated controllably and scaled up easily,then it is one of the most promising candidates for quantum state engineering.[2?3]Based on the electronic spin degrees of freedom,double-dot qubits have made remarkable progress on coherent manipulations and precise readouts of quantum states.[4?5]In the past few years,one-dimensional transmission line resonator(TLR)on a chip has attracted particular attention.[6?7]The quantized cavity f i eld generated by the TLR can be coupled to semiconductor quantum dots,which thus forms a circuit quantum electrodynamics(QED)device.[8?12]Very recently,the strong couplings between semiconductor quantum dots and superconducting microwave cavity have been realized experimentally,[13?16]which are very helpful to perform quantum information processing with hybrid systems.

    For semiconductor spin-based qubits,decoherence effect is still one of the main obstacles to build a quantum computer.[1,17?18]Many fault-tolerant strategies for removing noise eあects have been proposed,such as geometric quantum computing,[19]dynamical decoupling,[20]and optimal operation.[21]As a quantum error-avoiding way,decoherence-free subspace(DFS)encoding can be resistant to the collective noises according to the symmetry of system-bath interaction.[22?25]Especially,the DFS encoding may be a more robust approach to f i ght against quantum errors,when the decoherence eあects are caused mainly by the collective noises in a multiqubit system.However,how to physically perform the DFS-encoded logic gates on double-dot qubits is highly desirable for fault-tolerant quantum computing.

    In this paper,we propose a theoretical scheme for performing robust quantum gates on the DFS-encoded qubits inside a circuit QED architecture.Through the TLR-assisted interaction,the couplings between any pair of qubits can be realized controllably and selectively,by which we construct a set of universal quantum gates on the DFS-encoded qubits.It is found that the gate f i delities can be enhanced remarkably by eliminating the collective noises.The proposal may provide the potential opportunity of implementing the robust quantum computing with solid-state hybrid systems.

    The rest of paper is organized as follows.In Sec.2,many semiconductor double-dots in a circuit QED are illustrated.In Sec.3,we present the controllable interqubit couplings. Logic quantum gates on the DFS-encoded qubits are given in Sec.4.We analyze the f i delity enhancement by DFS-encoding way in Sec.5.Finally,discussion and conclusion are drawn in Sec.6.

    2 Double-Dot Qubits in a Circuit QED

    As schematically depicted in Fig.1(a),a high Q onedimensional TLR(of length Lxalong the x direction)has a single-mode frequency ωr.[9,26]Many semiconduc-tor double-dot systems are arranged along the x direction.The k-th double-dot is electrically coupled to the TLR via capacitance Ck,k=1,2,...,n.Through a capacitor Ci(Co),the TLR is connected to the input(output)wiring of the waveguide.[9?10]In the considered circuit QED device,the TLR generates a quantized standing-wave f i eld.Here the quantum dots are all situated at the antinodes to achieve the maximum coupling strengths between the dots and the cavity f i eld.Each double-dot includes two adjacent quantum dots,in which two electrons exist totally.And the double-dots are electrically biased to create potential diあerences Δ.[9,12]

    For the operated double-dot,an external f i eld Bz(≈100 mT)is applied along the z axis.The spin parallel states[|(1,1)T+〉=|↑↑〉,|(1,1)T?〉=|↓↓〉]are split from the spin antiparallel ones[|(1,1)T0〉=(|↑↓〉+|↓↑〉)/|(1,1)S〉=(| ↑↓〉? | ↓↑〉)/],where(nu,nd)denotes nu(nd)electrons localized in the up(down)dot,T±,0stand for spin-triplet states,S denotes a spin-singlet one.[9?10]The doubly occupied state|(0,2)S〉is coupled to|(1,1)S〉only,whose tunneling energy is T,see Fig.1(b),and the potential diあerence between them is Δ.Due to the Pauli spin blockade,the coupling between|(0,2)S〉and|(1,1)T0〉is suppressed eあectively.[27?28]In the considered subspace{|(1,1)S〉,|(0,2)S〉},the system Hamiltonian is reduced to[9?10]

    The eigenstates of Hamiltonian of Eq.(1)are|+〉=sinα|(0,2)S〉+cosα|(1,1)S〉and|?〉=cosα|(0,2)S〉?sinα|(1,1)S〉,with α =tan?1[?2T/(+ Δ)].The above Hamiltonian can be rewritten as H= ?ωσz/2,in which the transition frequency between|?〉and|+〉is ω(= ω?? ω+)=/?,ω?(ω+)is the eigenfrequency of the level state|?〉(|+〉),and σz=|?〉〈?|?|+〉〈+|is a Pauli operator.With the experimentally available parameters,the dependences of ωjon Δ are shown in Fig.1(c),where T/2π =1.5 GHz is f i xed,j= ?,+.At the optimal working point Δ=0,the states

    constitute the spin-based qubit states,which are insensitive to the f l uctuations of control electronics.[9]

    Fig.1 (a)Many double-dots are coupled to a one-dimensional TLR.(b)Level structure associated with spin states in a double-dot system.(c)Eigenfrequencies ωjof level states|j〉vs.potential diあerence Δ,with j= ?,+.ωjand Δ are given in units of 2π GHz.

    3 Controllable Interqubit Couplings

    Through the gate capacitance Ck,the k-th double-dot situated at the antinode interacts with the quantized cavity f i eld.Under the rotating wave approximation,the interaction Hamiltonian within the basis{|+〉k,|?〉k}is given by[12,29]Hrk=?λk(a?σ?k+aσ+k),the coupling strength is λk=(eCk/2?Ckt)with Cktbeing the total capacitance of the double-dot,a?(a)denotes the creation(annihilation)operator associated with photon,σ?k=|+〉k〈?|and σ+k=|?〉k〈+|represent the level inversion operators.For simplicity,the coupling coeきcients λkare assumed to be identical hereafter,namely,λk= λ.

    Consider any two qubits,say k=1,2.The total Hamiltonian of the composite system involving the two qubits and cavity f i eld is described by HΣ=H0+H′,[29]where H0= ωra?a+ ω1σ1z/2+ ω1σ2z/2,and H′=δ12σ2z/2+ ∑k=1,2(λa?σ?ke?iδkt+H.c.),with ω1,2being the respective transition frequencies of qubits 1 and 2,a detuning is δ12= ω2? ω1,and we take ? =1.In the dispersive regions,the detunings are much larger than coupling strengths,δ1r,2r(=|ω1,2? ωr|)? λ.Given the cavity f i eld is initially in the vacuum state,H′can be further transformed into the eあective Hamiltonian[30]

    where the coupling strength isJ12= λ2(δ1r+δ2r)/(2δ1rδ2r).Through the cavity-mediated interaction,the interqubit coupling can be realized eあectively.

    The states of qubits 1 and 2 span a product space as{|jj′〉},with j′=+,?.For an arbitrary state vector,it can be expressed as ψ(t)= ∑ Cjj′|jj′〉,where Cjj′ are the normalization coeきcients.The time evolution of ψ(t)is governed by the diあerential equation,i(dψ(t)/dt)=Heあψ(t).We focus on the dependence of coherent transition between|+?〉and|?+〉on the detuning δ12.Physically,with the f i xed transition frequency ω1,the changeable parameter δ12can be obtained only by tuning ω2.

    Utilizing the experimentally feasible parameters,ω1/2π =5 GHz, ωr/2π =6.75 GHz[15]and λ/2π =0.125 GHz,[9]we numerically calculate the occupied probabilities of states|+?〉and|?+〉versus the detuning δ12.Note that we consider the maximum probability of|?+〉and the minimum one of|+?〉,and postulate that the initial state is|+ ?〉.After a specif i c evolution time tn(=π/2J12)=28 ns,the occupied probabilities of|+?〉and|? +〉,as represented in Fig.2,depend on the detuning δ12remarkably.When δ12=0,the system is in|?+〉completely.The probability of|?+〉will be reduced greatly with increasing δ12.As demonstrated in the subf i gure,the probability of|?+〉is less than 4.25×10?3when δ12is in the large detuning region(δ12/2π ≥ 0.3 GHz).

    From the viewpoint of coherent control,the interqubit coupling can be switchable eあectively by adjusting the detuning δ12.[31]When the transition frequencies are resonant with each other,the interqubit coupling exists.On the other hand,the coupling gets vanished at the large detuning δ12.At the same time,we can operate qubits selectively.Towards the practical quantum computing,the controllable and selective interqubit coupling is desirable to f l exibly manipulate the multiqubit system.

    Fig.2 The occupied probabilities of states|?+〉and|+ ?〉as functions of detuning δ12for a given evolution time,the unit of δ12is 2π GHz.

    4 Quantum Gates on DFS-Encoded Qubits

    As mentioned before,the two qubits 1 and 2 span a Hilbert space{|jj′〉},from which we select a subspace{|+ ?〉,|? +〉},and encode the logic qubit states as|0〉L=|+ ?〉and|1〉L=|? +〉,respectively.Owing to the symmetry of system-bath interaction,the subspace can be insensitive to certain collective noises,[22]which is thus referred to as decoherence-free subspace(DFS).The considered DFS{|+ ?〉,|? +〉}is immune to σz-type collective noises.[32]Energy relaxation and dephasing are two factors that induce qubit decoherence.It is found that the dephasing eあect is dominant over the energy relaxation for the semiconductor spin qubit.Generally,the f l uctuations of nucleus spin and external f i elds with low frequencies give rise to the dephasing eあect.[30,33]The present DFS-encoded approach is just helpful to avoid the dephasing eあects caused by the collective noises.

    In the following,taking advantages of the controllable interqubit coupling,we construct the universal logic gates on the DFS-encoded qubits.Firstly,we perform singlelogic-qubit gates.Adjust ω2to make ω2= ω1,and therefore the detuning is δ12=0.From Eq.(3),the evolution operator in the logic qubit basis{|0〉L,|1〉L}is obtained as[32]

    where the identical phase factors e?iJ12tregarding|0〉Land|1〉Lhave been left out.Obviously,two noncommutable single-logic-qubit gates can be achieved by controlling the diあerent evolution times.

    Next we execute a two-logic-qubit conditional gate.Choosing other two physical qubits 3 and 4,we encode similarly the logic-qubit states as|0〉L=|+ ?〉and|1〉L=|? +〉.Thus the DFS-encoded logic-qubit states are|00〉LL=|+ ?〉|+ ?〉,|01〉LL=|+ ?〉|? +〉,|10〉LL=|? +〉|+ ?〉,and|11〉LL=|? +〉|? +〉.By means of an auxiliary state|+〉5of qubit 5,we can perform a controlled-phase gate on the selected logic-qubits.[34]When the transition frequencies satisfy ω5= ω3= ω1,the eあective Hamiltonian of the three-qubit system is expressed as[34]

    where the coupling strengths are J(=J13=J15=J35).According to Hamiltonian(5),the auxiliary qubit 5 is decoupled from the other qubits after a duration time tcp=2π/3J.Then the controlled-phase gate on the logic qubits is achieved as[32]

    with ?00= ?01= ?10=0 and ?11= ?2π/3.

    So far,by virtue of the controllable interqubit couplings,we have obtained a set of universal logic gates on the DFS-encoded qubits,containing two noncommutative single-logic-qubit gates and a two-logic-qubit conditional gate.

    5 Fidelity Enhancement by DFS-Encoding Qubits

    In the multiqubit system,environmental noises acting upon qubits can be usually divided into the individual noises and the collective ones.[32]Since the DFS-encoded qubits are immune to the collective noises,the corresponding decoherence eあects can be eliminated naturally,which is extremely useful to obtain the fault-tolerant gate operations.The decoherence eあects on qubits can be simulated numerically by gate f i delity.As in Ref.[35],we have the f idelity F=where|ψi〉is an ideal output state without the noise eあects,ρ =|ψ〉〈ψ|indicates the reduced density matrix associated with a realistic state|ψ〉.And the time evolution of the density matrix can be addressed by the quantum theory of damping.

    Here take the not-gate as an example to consider the robustness of the DFS-encoded way.The dynamical evolution of the reduced density matrix ρ is described by the Lindblad-type master equation,[36]

    in which Heあis the Hamiltonian of(3)with δ12=0, γkandˉγkφare the relaxation and total dephasing rates of qubit k,respectively,D[L]ρ =(2LρL??L?Lρ?ρL?L)/2,with L=σ?kand σkz.We haveˉγkφ=γkφin the DFS case.Diあerently,the two qubits in the non-DFS case are aあected by both the individual noises and the collective ones,and thenˉγkφ=γkφ+γφ,where γφis the collective dephasing rate for qubits 1 and 2.Due to the virtual exchange of photons,the eあects of the photon leakages on the evolution processes can be neglected safely.[12,37]Theoretically,the DFS-encoded scheme is not aあected by the σz-type collective noises,which is the pivotal reason for performing robust quantum gates.

    Fig.3 The dependence of the not-gate f i delity on γkand γφ in the DFS case(a),and in the non-DFS case(b).The f i delity enhancement ΔF as a function of γkand γφ in(c).Here γkand γφ are given in units of 2π MHz.

    Through calculating Eq.(7)with diあerentˉγkφ,the dependences of the f i delities Fdand Fnon the individual γkand the collective γφare given in Figs.3(a)and 3(b),respectively,here we assume γ1= γ2(= γk)and γ1φ= γ2φ(=2π × 0.2 MHz).In the DFS-encoded case,Fddecreases with the increase of γk,but does not change with γφ,which means that Fdis aあected by the individual noises only,see Fig.3(a).However,the f i delity Fnin the non-DFS case is dependent on both the individual noises and the collective ones,i.e.,Fndecreases as increasing either γkor γφ.To demonstrate explicitly the fi delity enhancement by the DFS encoding,the diあerence ΔF=Fd?Fnis plotted in Fig.3(c).It is clear that ΔF increases with increasing γφ,and ΔF can reach up to 3.22%when γφ/2π =1.0 MHz.[30]Moreover,we can estimate that the f i delity enhancement for the controlledphase gate may be larger than 6.44%since the required time tcpis longer than tn.

    6 Discussion and Conclusion

    Through the TLR in circuit QED setup,the selective and controllable interqubit couplings can be realized only by adjusting the detuning between transition frequencies of qubits,which thus provide the preferable conditions to construct the scalable quantum information processing.[1]Diあerent from the previous case,[37]the noise eあects on semiconductor spin qubits in the present scheme are the pure dephasing mainly.[10,17]The DFS-encoded protocol is just useful to eliminate the dephasing eあects originated from the σz-type collective noises,and therefore the gate f i delities can be enhanced signif i cantly.Additionally,with the interaction Hamiltonian of Eq.(3),many important quantum information tasks with double-dots could be performed,such as quantum state transfer and entanglement.[30]However,as an open question,how to make the collective noises dominant over the individual ones in the multiqubit system needs to be studied further,which is crucial for building the more robust quantum computing in the DFS-encoded scenario.

    In summary,we have theoretically proposed a scheme to perform the robust quantum gates on the DFS-encoded double-dot spin qubits.Many double-dots are connected to a common TLR via gate capacitances.In the dispersive regimes,the controllable and selective interqubit couplings can be realized only by tuning the qubit transition frequencies.Based on the desirable interqubit couplings,we have constructed a set of universal logic gates on the DFS-encoded qubits.It is found that the σz-type collective noises can be eliminated eあectively,and then the fi delity enhancements can be obtained numerically with the accessible parameters.So,the proposed scheme may provide a potential approach towards the scalable robust gates with hybrid quantum circuits.

    [1]T.D.Ladd,F.Jelezko,R.Laf l amme,Y.Nakamura,C.Monroe,and J.L.′OBrien,Nature(London)464(2010)45.

    [2]I.Fushman,D.Euglund,A.Faraon,N.Stoltz,P.Petroあ,and J.Vuˇckovi′c,Science 320(2008)769.

    [3]N.T.T.Nguyen and S.D.Sarma,Phys.Rev.B 83(2011)235322.

    [4]S.M.Clark,K.M.C.Fu,Q.Zhang,T.D.Ladd,C.Stanley,and Y.Yamamoto,Phys.Rev.Lett.102(2009)247601.

    [5]J.Medford,L.Cywi′nski,C.Barthel,C.M.Marcus,M.P.Hanson,and A.C.Gossard,Phys.Rev.Lett.108(2012)086802.

    [6]A.Wallraあ,D.I.Schuster,A.Blais,L.Frunzio,R.S.Huang,J.Majer,S.Kumar,S.M.Girvin,and R.J.Schoelkopf,Nature(London)431(2004)162.

    [7]J.D.Teufel,D.Li,M.S.Allman,K.Cicak,A.J.Sirois,J.D.Whittaker,and R.W.Simmonds,Nature(London)471(2011)204.

    [8]M.Trif,V.N.Golovach,and D.Loss,Phys.Rev.B 77(2008)045434.

    [9]Z.R.Lin,G.P.Guo,T.Tu,F.Y.Zhu,and G.C.Guo,Phys.Rev.Lett.101(2008)230501.

    [10]P.Xue,Phys.Lett.A 374(2010)2601.

    [11]P.Pei,C.Li,J.S.Jin,and H.S.Song,J.Phys.B:At.Mol.Opt.Phys.44(2011)035501.

    [12]Z.B.Feng,Phys.Rev.A 85(2012)014302.

    [13]K.D.Petersson,L.W.McFaul,M.D.Schroer,M.Jung,J.M.Taylor,A.A.Houck,and J.R.Petta,Nature(London)490(2012)380.

    [14]P.Q.Jin,M.Marthaler,A.Shnirman,and G.Sch¨on,Phys.Rev.Lett.108(2012)190506.

    [15]T.Frey,P.J.Leek,M.Beck,A.Blais,T.Ihn,K.Ensslin,and A.Wallraあ,Phys.Rev.Lett.108(2012)046807.

    [16]H.Toida,T.Nakajima,and S.Komiyama,arXiv:condmat/1206.0674v1.

    [17]W.M.Witzel,X.Hu,and S.D.Sarma,Phys.Rev.B 76(2007)035212.

    [18]Y.Hu,F.Kuemmeth,C.M.Lieber,and C.M.Marcus,Nat.Nanotechnol.7(2012)47.

    [19]V.N.Golovach,M.Borhani,and D.Loss,Phys.Rev.A 81(2010)022315.

    [20]C.Barthel,J.Medford,C.M.Marcus,M.P.Hanson,and A.C.Gossard,Phys.Rev.Lett.105(2010)266808.

    [21]M.D.Grace,J.Dominy,W.M.Witzel,and M.S.Carroll,Phys.Rev.A 85(2012)052313.

    [22]L.M.Duan and G.C.Guo,Phys.Rev.Lett.79(1997)1953.

    [23]X.L.Zhang,M.Feng,and K.L.Gao,Quantum Inf.Comput.8(2008)96.

    [24]Z.Y.Xue,S.L.Zhu,and Z.D.Wang,Eur.Phys.J.D 55(2009)223.

    [25]S.L.Wu,L.C.Wang,and X.X.Yi,J.Phys.A:Math.Theor.45(2012)405305.

    [26]Z.B.Feng,Phys.Rev.A 78(2008)032325.

    [27]A.Pfund,I.Shorubalko,K.Ensslin,and R.Leturcq,Phys.Rev.B 76(2007)161308(R).

    [28]J.R.Petta,J.M.Taylor,A.C.Johnson,A.Yacoby,M.D.Lukin,C.M.Marcus,M.P.Hanson,and A.C.Gossard,Phys.Rev.Lett.100(2008)067601.

    [29]J.W.Li,C.W.Wu,and H.Y.Dai,Chin.Phys.Lett.28(2011)090302.

    [30]G.P.Guo,H.Zhang,Y.Hu,T.Tu,and G.C.Guo,Phys.Rev.A 78(2008)020302(R).

    [31]A.Blais,J.Gambetta,A.Wallraあ,D.I.Schuster,S.M.Girvin,M.H.Devoret,and R.J.Schoelkopf,Phys.Rev.A 75(2007)032329.

    [32]Z.B.Feng,H.L.Wang,H.Han,and R.Y.Yan,Phys.Lett.A 374(2010)539.

    [33]X.Hu and S.D.Sarma,Phys.Rev.Lett.96(2006)100501.

    [34]C.Wu,X.L.Feng,X.X.Yi,I.M.Chen,and C.H.Oh,Phys.Rev.A 78(2008)062321.

    [35]D.Parodi,M.Sassetti,P.Solinas,P.Zanardi,and N.Zanghi,Phys.Rev.A 73(2006)052304.

    [36]D.Walls and G.Milburn,Quantum Optics,Springer,Berlin(1994).

    [37]Z.B.Feng,R.Y.Yan,C.Zhang,and L.Fan,Int.J.Theor.Phys.51(2012)2282.

    欧美日韩中文字幕国产精品一区二区三区 | 黄色片一级片一级黄色片| 国产亚洲午夜精品一区二区久久| 两性午夜刺激爽爽歪歪视频在线观看 | 在线av久久热| 久久精品国产综合久久久| 悠悠久久av| 国产免费av片在线观看野外av| 国产男女超爽视频在线观看| 国产区一区二久久| 香蕉久久夜色| tube8黄色片| 亚洲精品粉嫩美女一区| 欧美日韩一级在线毛片| 国精品久久久久久国模美| 国产亚洲一区二区精品| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 热re99久久国产66热| 不卡一级毛片| 91精品三级在线观看| 丝袜人妻中文字幕| 欧美久久黑人一区二区| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 老司机午夜十八禁免费视频| 99九九在线精品视频| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 免费看十八禁软件| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 精品人妻1区二区| 国产欧美亚洲国产| 亚洲国产av影院在线观看| 免费在线观看日本一区| 好男人电影高清在线观看| 十八禁网站网址无遮挡| 人人妻人人澡人人看| 窝窝影院91人妻| 美女视频免费永久观看网站| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 99国产精品一区二区蜜桃av | 日韩免费高清中文字幕av| 人人妻,人人澡人人爽秒播| 女性生殖器流出的白浆| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品va在线观看不卡| 丁香六月天网| 国产成人精品无人区| 亚洲国产欧美在线一区| 亚洲专区国产一区二区| 99精品欧美一区二区三区四区| 黄片大片在线免费观看| 啦啦啦在线免费观看视频4| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 777米奇影视久久| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 一夜夜www| 日韩中文字幕视频在线看片| 亚洲欧美精品综合一区二区三区| 久久av网站| 亚洲五月婷婷丁香| 国产在线精品亚洲第一网站| 18禁观看日本| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 人妻一区二区av| 久久九九热精品免费| 久久影院123| 亚洲熟女毛片儿| 日韩欧美三级三区| 日本wwww免费看| 午夜日韩欧美国产| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 欧美黄色淫秽网站| 伦理电影免费视频| 国产熟女午夜一区二区三区| 波多野结衣一区麻豆| 极品人妻少妇av视频| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 五月开心婷婷网| 视频区图区小说| 亚洲av片天天在线观看| 啦啦啦免费观看视频1| 国产成人精品久久二区二区91| 午夜久久久在线观看| 老司机在亚洲福利影院| 十八禁网站网址无遮挡| 久久久久久亚洲精品国产蜜桃av| 五月天丁香电影| 国产精品香港三级国产av潘金莲| 嫁个100分男人电影在线观看| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 成在线人永久免费视频| 成人三级做爰电影| 成人特级黄色片久久久久久久 | 狂野欧美激情性xxxx| 免费日韩欧美在线观看| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 91九色精品人成在线观看| 日韩成人在线观看一区二区三区| 中亚洲国语对白在线视频| 两个人看的免费小视频| 男女午夜视频在线观看| 久久久久久久精品吃奶| 午夜免费鲁丝| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 久久婷婷成人综合色麻豆| 蜜桃在线观看..| 中文欧美无线码| 国产aⅴ精品一区二区三区波| 天堂俺去俺来也www色官网| 黄色视频不卡| 成年女人毛片免费观看观看9 | 蜜桃国产av成人99| 免费女性裸体啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| 在线av久久热| 超碰97精品在线观看| 国产免费现黄频在线看| 国产亚洲午夜精品一区二区久久| 狠狠精品人妻久久久久久综合| 免费高清在线观看日韩| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 国产片内射在线| 国产成人欧美| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 一级片免费观看大全| 色视频在线一区二区三区| 亚洲全国av大片| 亚洲九九香蕉| 久久人妻av系列| 久久久久久久大尺度免费视频| 国产男女超爽视频在线观看| 午夜成年电影在线免费观看| 自线自在国产av| 国产亚洲精品久久久久5区| 一级毛片电影观看| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 久热这里只有精品99| 久久九九热精品免费| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频| 亚洲国产看品久久| 一进一出抽搐动态| 黄色成人免费大全| 极品教师在线免费播放| 9色porny在线观看| 色在线成人网| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 99国产精品一区二区蜜桃av | 欧美日韩黄片免| 天天添夜夜摸| 丰满迷人的少妇在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影 | 女人高潮潮喷娇喘18禁视频| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| av欧美777| 69精品国产乱码久久久| 一级a爱视频在线免费观看| 亚洲熟妇熟女久久| 男女高潮啪啪啪动态图| 丝袜喷水一区| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 亚洲成人免费av在线播放| 99riav亚洲国产免费| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 老司机福利观看| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频 | 一级毛片电影观看| 亚洲美女黄片视频| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 一本一本久久a久久精品综合妖精| 极品人妻少妇av视频| 变态另类成人亚洲欧美熟女 | 天天躁日日躁夜夜躁夜夜| 欧美变态另类bdsm刘玥| 首页视频小说图片口味搜索| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 99国产精品99久久久久| 午夜福利乱码中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 淫妇啪啪啪对白视频| 午夜福利视频在线观看免费| 99在线人妻在线中文字幕 | 51午夜福利影视在线观看| 在线av久久热| 丰满少妇做爰视频| 精品人妻在线不人妻| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 香蕉久久夜色| 大型黄色视频在线免费观看| 老汉色av国产亚洲站长工具| 一区在线观看完整版| 两个人看的免费小视频| 国产日韩欧美视频二区| 成年动漫av网址| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 真人做人爱边吃奶动态| 少妇 在线观看| 国产主播在线观看一区二区| 交换朋友夫妻互换小说| 欧美成人免费av一区二区三区 | 久久影院123| videos熟女内射| 久久九九热精品免费| 色婷婷久久久亚洲欧美| 在线天堂中文资源库| 欧美成人免费av一区二区三区 | 丁香欧美五月| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 成在线人永久免费视频| 午夜福利视频精品| 中文字幕人妻丝袜一区二区| 精品午夜福利视频在线观看一区 | 久久精品91无色码中文字幕| av不卡在线播放| 女人久久www免费人成看片| 高清在线国产一区| 国产又色又爽无遮挡免费看| 首页视频小说图片口味搜索| 午夜免费成人在线视频| www日本在线高清视频| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| av天堂在线播放| 青草久久国产| 国产精品1区2区在线观看. | 久久精品亚洲av国产电影网| 老司机亚洲免费影院| 岛国毛片在线播放| 一级毛片女人18水好多| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| 欧美乱妇无乱码| 美女国产高潮福利片在线看| 日本a在线网址| 丝袜美足系列| 欧美激情 高清一区二区三区| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 美女主播在线视频| 国产成人欧美| 亚洲熟女精品中文字幕| 亚洲熟女毛片儿| 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频| 大陆偷拍与自拍| 国精品久久久久久国模美| a级片在线免费高清观看视频| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 国产无遮挡羞羞视频在线观看| 日韩人妻精品一区2区三区| 欧美人与性动交α欧美软件| 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美视频二区| 视频在线观看一区二区三区| 久热爱精品视频在线9| 国产免费福利视频在线观看| 一本大道久久a久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 99国产精品免费福利视频| 伦理电影免费视频| 国产欧美日韩一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 午夜两性在线视频| 十八禁人妻一区二区| 老司机在亚洲福利影院| 母亲3免费完整高清在线观看| 香蕉久久夜色| 午夜福利免费观看在线| 色播在线永久视频| 国产精品一区二区在线观看99| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| 国产高清videossex| 午夜福利欧美成人| 亚洲avbb在线观看| 日韩欧美一区视频在线观看| 夜夜夜夜夜久久久久| 另类精品久久| 日本av免费视频播放| av免费在线观看网站| 久久久久久久精品吃奶| 欧美日韩精品网址| 1024视频免费在线观看| 国产精品免费视频内射| 18在线观看网站| 黄色视频在线播放观看不卡| 男女边摸边吃奶| 在线 av 中文字幕| 久久久久久久久久久久大奶| 国产精品免费视频内射| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 日本av免费视频播放| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 757午夜福利合集在线观看| 久久人妻熟女aⅴ| 成人永久免费在线观看视频 | 一二三四在线观看免费中文在| 国产福利在线免费观看视频| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 欧美日韩精品网址| 国产黄色免费在线视频| 精品国产亚洲在线| 久久久国产成人免费| 丝袜在线中文字幕| 女警被强在线播放| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 99久久人妻综合| 黄色片一级片一级黄色片| 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看av| 久久久久久久国产电影| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲综合一区二区三区_| 啦啦啦视频在线资源免费观看| 日韩三级视频一区二区三区| 中文字幕高清在线视频| 亚洲性夜色夜夜综合| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 岛国在线观看网站| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 午夜福利在线观看吧| 777久久人妻少妇嫩草av网站| 69av精品久久久久久 | 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 国产色视频综合| 999久久久精品免费观看国产| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| 免费观看a级毛片全部| 午夜视频精品福利| 99久久国产精品久久久| 亚洲美女黄片视频| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 日日夜夜操网爽| 视频区欧美日本亚洲| 成人精品一区二区免费| 91av网站免费观看| 成年人午夜在线观看视频| 最近最新中文字幕大全免费视频| 一级毛片精品| 国产伦理片在线播放av一区| 99久久精品国产亚洲精品| 久久久精品区二区三区| 交换朋友夫妻互换小说| 亚洲av成人一区二区三| 久久天堂一区二区三区四区| 桃花免费在线播放| 久久久精品区二区三区| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 日韩欧美一区视频在线观看| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 最近最新免费中文字幕在线| 欧美 亚洲 国产 日韩一| 捣出白浆h1v1| 法律面前人人平等表现在哪些方面| 精品亚洲乱码少妇综合久久| 欧美乱妇无乱码| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 国产一区二区 视频在线| 99re在线观看精品视频| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 在线看a的网站| 99九九在线精品视频| 国产一区二区三区综合在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲综合色网址| 男女午夜视频在线观看| 一区二区av电影网| 亚洲精品国产区一区二| 亚洲人成电影免费在线| 国产男女内射视频| 国产精品二区激情视频| netflix在线观看网站| 国内毛片毛片毛片毛片毛片| 黄色视频在线播放观看不卡| 日本av免费视频播放| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 欧美激情高清一区二区三区| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 91字幕亚洲| 欧美黄色淫秽网站| 少妇被粗大的猛进出69影院| 亚洲色图综合在线观看| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 色精品久久人妻99蜜桃| 12—13女人毛片做爰片一| 女警被强在线播放| 啦啦啦免费观看视频1| 国产高清videossex| 捣出白浆h1v1| 一区二区三区乱码不卡18| 亚洲黑人精品在线| 国产成人欧美| 欧美黄色淫秽网站| 一进一出好大好爽视频| 国产免费视频播放在线视频| 亚洲国产精品一区二区三区在线| 建设人人有责人人尽责人人享有的| 国产欧美日韩综合在线一区二区| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| kizo精华| 免费一级毛片在线播放高清视频 | 9热在线视频观看99| 亚洲五月婷婷丁香| 99国产极品粉嫩在线观看| 2018国产大陆天天弄谢| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 51午夜福利影视在线观看| 老司机亚洲免费影院| 亚洲欧美一区二区三区黑人| 国产精品熟女久久久久浪| 亚洲国产看品久久| 大陆偷拍与自拍| 亚洲精华国产精华精| 麻豆乱淫一区二区| 久久性视频一级片| 999精品在线视频| 青草久久国产| 欧美日韩亚洲高清精品| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 性少妇av在线| 亚洲伊人色综图| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 亚洲成a人片在线一区二区| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 99久久人妻综合| 极品人妻少妇av视频| 精品亚洲成国产av| 一本色道久久久久久精品综合| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区 | 90打野战视频偷拍视频| 成人精品一区二区免费| 日韩视频一区二区在线观看| 亚洲色图综合在线观看| 91成年电影在线观看| av电影中文网址| 51午夜福利影视在线观看| 午夜激情av网站| 国产成人影院久久av| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 在线观看www视频免费| 这个男人来自地球电影免费观看| 亚洲五月色婷婷综合| 最新的欧美精品一区二区| 久久久久久免费高清国产稀缺| 中文字幕人妻熟女乱码| 日韩欧美国产一区二区入口| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| 国产成人系列免费观看| 婷婷丁香在线五月| 国产又爽黄色视频| 高清av免费在线| av欧美777| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 法律面前人人平等表现在哪些方面| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| h视频一区二区三区| 男女高潮啪啪啪动态图| 亚洲成人国产一区在线观看| 我的亚洲天堂| 国产精品二区激情视频| 国产av国产精品国产| 亚洲av电影在线进入| av电影中文网址| 亚洲国产精品一区二区三区在线| 精品福利观看| 久久久久国内视频| 动漫黄色视频在线观看| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| 日本wwww免费看| 久久久国产欧美日韩av| 亚洲综合色网址| 另类亚洲欧美激情| 久久国产精品人妻蜜桃| 国产精品二区激情视频| 真人做人爱边吃奶动态| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| 最新的欧美精品一区二区| 蜜桃国产av成人99| 一级片'在线观看视频| 女人久久www免费人成看片| 一级a爱视频在线免费观看| 日本vs欧美在线观看视频| 免费在线观看完整版高清| 不卡av一区二区三区| 亚洲熟女精品中文字幕| avwww免费| 精品卡一卡二卡四卡免费| 桃红色精品国产亚洲av| 国产日韩欧美在线精品| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 精品亚洲乱码少妇综合久久| 9色porny在线观看| 国产福利在线免费观看视频| 伊人久久大香线蕉亚洲五| 国产高清国产精品国产三级| 中文字幕另类日韩欧美亚洲嫩草| 悠悠久久av| 免费av中文字幕在线| 国产精品av久久久久免费| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 免费高清在线观看日韩| 超碰97精品在线观看| 亚洲精品国产一区二区精华液| 国产成人精品在线电影| 亚洲精品在线美女| 国产男女内射视频| 大陆偷拍与自拍| 蜜桃国产av成人99| 夫妻午夜视频| 一个人免费在线观看的高清视频| 激情视频va一区二区三区| 亚洲第一欧美日韩一区二区三区 | 黄色丝袜av网址大全| 91av网站免费观看| 久久久久久久国产电影| 国产精品一区二区在线不卡| 亚洲七黄色美女视频| 亚洲 国产 在线| 黑人欧美特级aaaaaa片| 亚洲黑人精品在线| 91成人精品电影| 久久影院123| 欧美在线一区亚洲| 国产日韩欧美亚洲二区|