• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ONEOptimal:A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra?

    2014-03-12 08:44:03MIAOQian苗倩HUXiaoRui胡曉瑞andCHENYong
    Communications in Theoretical Physics 2014年2期

    MIAO Qian(苗倩),HU Xiao-Rui(胡曉瑞),and CHEN Yong(陳)

    Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    1 Introduction

    Symmetry group theory for diあerential equations built by Sophus Lie[1]plays an important role in constructing explicit solutions for integrable and non-integrable nonlinear equations.For any given subgroup of the full symmetry group,the original nonlinear system can be reduced to a system with fewer independent variables by solving the corresponding characteristic equations.Since there are almost always an inf i nite amount of such subgroups,it is usually not feasible to list all possible groupinvariant solutions to the system.It is anticipated to f i nd those complete but inequivalent group-invariant solutions,that is to say,to classify all the group-invariant solutions.For this problem,some eあective and systematic methods have been developed by Ovsiannikov[2]and Olver[3]respectively,which introduce the concept of“optimal system”for group-invariant solutions.More details on how to perform the classif i cation of subgroup under the adjoint action are clarif i ed in Ref.[3].The problem of f i nding an optimal system of subgroups is equivalent to that of f i nding an optimal system of subalgebras,so people always concentrate on the latter.The classif i cation of symmetry subalgebras for many important partial diあerential equations(PDEs)in physics can be found in[4–14].However,the operation for the classif i cation of subalgebras shows quite complicated and the inf i nitesimal techniques do not seem to be overly useful.To the best of our knowledge,despite these numerous results,there is no literature on the process mechanization by the aid of computer.

    Diあerent algorithms and packages in computer algebra systems have also been developed implementing Lie symmetry computations and related methods:SPDE by Schwarz,[15]LIE and BIGLIE by Head[16?17]in MUMATH and MATHLIE by Baumann[18]in Mathematica.For Maple there are also some useful packages:PDEtools by Cheb–Terrab[19]which is distributed since Release 11,DES-OLV by Vu and Carminati,[20?21]and LieAlgebras provided in the built-in DiあerentialGeometry package.

    Here we devote to constructing one-parameter optimal system of f i nite dimensional Lie algebra on the computer.Then based on the one-dimensional case,higherdimensional optimal system can be constructed.Even in the one-dimensional case,it still requires a lot of mechanical and monotonous calculations by rule of thumb,so it must be a signif i cant job to implement the process mechanization.

    In this paper,we present one Maple package named ONEOptimal to construct one-dimensional optimal system of Lie algebra for nonlinear systems.For a given Lie algebra,the package ONEOptimal is used to f i nd the centers of the vector f i elds,generate the commutator table as well as the adjoint representation table and give out one invariant(i.e.Killing-form).Then,the function Classify can carry out classif i cation and simplif i cation according to the Killing-form automatically.Our program provides a basis for many possible applications.

    This paper is arranged as follows.In Sec.2,a brief review of the methods to construct one-dimensional optimal system for Lie algebra is given.In Sec.3,a systematic computational algorithm based on Olver’s method is established.In Sec.4,the programm commands in the Maple package ONEOptimal are explained.In Sec.5,some diあerent types of examples are given to illustrate and verify the eあectiveness of our program.Finally,a brief conclusion is given in Sec.6.

    2 Theoretical Methods

    Optimal System Let G be a Lie group.An optimal system of s-parameter subgroups is a list of conjugacy inequivalent s-parameter subgroups with the property that any other subgroup is conjugate to precisely one subgroup in the list.Similarly,a list of s-parameter subalgebras forms an optimal system if every s-parameter subalgebra of g is equivalent to a unique member of the list under some element of the adjoint representation ??=Ad g(?),g∈G.

    The method to construct one-dimensional optimal system of Lie algebra was f i rst proposed by Ovisiannikov,[2]taking advantage of the global matrix of adjoint representation.Then a lightly diあerent way was adopted in[3]to deal with one-dimensional subalgebras,making use of the adjoint representation table.It is also pointed out that for one-dimensional subalgebras,the problem of f i nding an optimal system is essentially the same as the problem of classifying the orbits of the adjoint transformations.The essence of this method is that the Killing form of the Lie algebra is an “invariant” for the adjoint representation.Based on the sign of the Killing form,the representatives for each equivalence class were obtained.In this paper,we will apply this method to develop our Maple package.

    For m-dimensional Lie algebra G,its one-dimensional optimal system is computed by the na¨Ive approach of taking a general element v in G and subjecting it to various adjoint transformations so as to “simplify” it as much as possible.Given a nonzero vector

    the key task is to simplify as many of the coeきcients aias possible through judicious applications of adjoint maps to v,where vi(i=1,...,m)are m generators in the vector fi elds of G.The adjoint representation is

    for?v1,v2∈ G.In this process,the detection of an invariant is important since it places restrictions on how far we can expect to simplify v.A real function φ def i ned on G is called an invariant if φ(Adg(v))= φ(v)for all v in G and g in the Lie group G generated by G.Usually,the famous Killing form[10]is computed as an invariant to simplify v.

    The general steps developed by Olver to construct onedimensional optimal system of subalgebras are:

    Step 1 For a nonlinear PDE,get the Lie point symmetry with its generators by the classical Lie symmetry method.

    Step 2 Work out the commutator table(ignoring the inf i nite-dimensional subalgebras which contain arbitrary functions)and the corresponding adjoint representation table for the m-dimensional subalgebra G.

    Step 3 Calculate the Killing form from the commutator table,i.e.f i nding an invariant of G.

    Step 4 For the nonzero vector f i eld(1),on the basis of the Killing form and adjoint representation table calculated in Step 2,select the appropriate group generated by vkto act on v to cancel some coeきcients aias many as possible.

    One remark is given as follows:

    Remark 1 It should be noted that,Olver did not mention the concept of“center” in his method.For simplicity,we have taken the centers of G into account in our algorithm.For the Lie subalgebras G,v1is known as the center if the results of commutator to v1with all other generators are zero.Then,if all the elements except the center v1can form a subalgebra G1of G,we only need to consider the one-dimensional optimal system os1of G1,and construct one-dimensional optimal system os of G by adding cv1to each element in os1,where c is an arbitrary constant.Otherwise,the center v1should not be removed from G.

    3 Key Algorithm for Constructing One-Dimensional Optimal System

    On the basis of the process presented in Sec.2,we have designed the corresponding mechanization algorithm.Since there have been a lot of software packages to get Lie point symmetries in Step 1,we no longer study it here and start from the obtained Lie algebra instead of the original PDE.For the m-dimensional Lie algebra G,the algorithm to construct one-dimensional optimal system can be divided into six main steps:

    Step 1 Single out the centers of the given generators vs and delete the centers,which have no eあect on the closure of G.

    Step 2 Obtain the commutator table of G through computation.Here we def i ne the function of commutator operator,and the calculation result is returned in a linear combination form of each generator.The corresponding expression to each generator is also pointed out in the output.

    Step 3 Give out the corresponding adjoint representation table using the Lie series(2)in conjunction with the commutator table.

    Step 4 Referring to the def i nition of Killing form,calculate the invariant from the commutator table.

    Step 5 Acting on the general non-zero vector f i eld(1)by the groups generated by every element vi(i=1,2,...,m),it results in

    with?aij=?aij(aij,∈)(i=1,2,...,m;j=1,2,...,m).Take the elements?aijto constitute a coeきcient matrix named Cmk,and work out the corresponding solution matrix named Sokwith respect to∈.Here,k specif i es the current steps.

    Step 6 Depending on the sign of the invariant Killing form,there are several diあerent cases according to the expression form of Killing form.For each case,enter into next step.

    Step 7 For each reference variable aiin current case,two subcases(ai=0 and ai/=0)are considered at most.

    Step 7.1 If ai=0,we make the coeきcient,which contains aivanish.

    Step 7.2 If ai/=0,we check whether there are coeき-cients whose denominator contains aiand make it vanish,if any.

    Step 8 Check the current solution matrix Sokto verify whether there are some coeきcients that can be eliminated,that is to say,whether there is any new reference variable ai.If any such aiexists,enter into Step 7.If no coeきcient can be eliminated further,the current case terminates.

    All the steps above can be completely mechanized by computer.

    4 MaplePackage ONEOptimal

    Based on the above algorithm,we have developed an automated Maple package ONEOptimal on Maple versions 13 and above.The package is initialized by the command with(ONEOptimal).Here we brief l y describe some inputoutput parameters and package commands available in ONEOptimal.In Table 1,the abbreviations are used for the input parameters.In Table 2,the abbreviations are used for the output parameters.

    Table 1 Input parameters for package ONEOptimal.

    Some main package commands and corresponding inputs are given in the following listing.In ONEOptimal,the main routine is Get Optimal(vs,cs,pf).This procedure calls six sub-procedures:

    fi nd center(vs,xs,var):Singles out the centers from vs with respect to xs and var,and deletes the centers,which have no eあect on the closure of G.

    commutator table(vf,xs,var):Generates commutator table for G with the(i,j)-th entry indicating[Vi,Vj].

    ad table(vf,order):Computes the adjoint representation table of G with the(i,j)-th entry indicating Adexp(∈Vi)(Vj).For simplicity,the truncated power series expansions up to order in the calculation result are all replaced by the original series name.

    K form(X):Computes the Killing form on the basis of the commutator table X.

    Classify(kf,C):Classif i es the original system to several cases according to Killing form kf and executes opti-mization.

    show optimal():Prints out the optimized results.Other package commands and corresponding inputs are given in the following listing:

    LinearCo(expr,vf,var):Writes the expression expr as a linear combination of the generators in vf with respect to var.

    lie bracket cal(a,b,var):Computes the commutator of a pair of vectors a and b.Here,both a and b are single generators,while the result is returned as a linear combination expression.

    Lie bracket(a,b):Computes the commutator of a and b.Here,a and b can be linear combination of generators.

    ad operator(a,b,order):Acts by adjoint maps generated by a and b up to order order.Here both a and b are single generators.

    ad(a,b):Acts by adjoint maps generated respectively by a and b.Here a and b can be linear combination of generators.Command ad(Vm,Eqn)can also be used to observe and adjust the coeきcient in Eqn.

    replace(result,j,ex,order):Replaces the truncated series expansion trse in the coeきcient of Vjin result with the name of the original series.Here,ex represents the coeきcient of∈determined from current trse.

    coeきcient obtain(eq): Computes the coeきcient matrix Cmkobtained by adjoint maps generated respectively by all generators Viand eq.

    coeきcient solve(C):Solves out ε from every element(expression about∈)in the coeきcient matrix C,and provides the solution matrix to C.

    deno reduce(d,C):Eliminates some Viaccording to the specif i ed generator d from the equation corresponding to matrix C.Here,for d is nonzero,it is possible to eliminate Viif d appears in the denominator of column i in solution matrix corresponding to C.

    reduce(column set,C):Eliminates a best Viin column set from Eqkcorresponding to C in current step k.

    reduce all(column set,C):Eliminates all Viin column set from Eqkcorresponding to C in current step k.

    case classify(case elements,C,level,nonzero set,f l ag):Classif i es current case to n subcases for each reference variable aiin coeきcient set case elements:ai=0(when f l ag=0,2)and ai/=0(when f l ag=1,2).

    check column(s,level,nonzero set):Checks Soswhether the current case can be simplif i ed further,that is to say,whether there are some columns that can be eliminated.Here,s represents the step number.

    check row(s):Picks out the best row number whose corresponding adjoint representation has most ε in Cms.

    optimal calculate(s,nonzero set):Calculates the reduced adjoint representation result according to nonzero set for the case in Step s.

    5 Illustrative Examples

    In this section,several diあerent kinds of examples are given to illustrate the eあectiveness of our package ONEOptimal.

    5.1 Examples with One Variable in Killing Form

    Example 1 Consider the four-dimensional symmetry algebra g of the Korteweg-de Vries equation

    which is generated by the vector f i elds

    From Table 3

    Table 3 The commutator table for Example 1.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras of this algebra is those spanned by:

    Depending on the sign of a3,we can make the coeき-cient of V3either+1,?1 or 0.Thus the result is consistent with the result given by Olver[3]

    The average running time for this example is 0.2622 seconds.

    Example 2 Consider the four-dimensional symmetry algebra g of the Navier–Stokes equation

    which is generated by the vector f i elds

    From Table 4

    Table 4 The commutator table for Example 2.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras is provided by those generated by:

    Depending on the sign of a4,we can make the coeき-cient of V4either+1,?1 or 0.Thus the result is consistent with the result given by Hu[22]

    where α is an arbitrary constant.

    The average running time for this example is 0.2356 seconds.

    5.2 Examples with Two Variables in Killing Form

    Example 3 Consider the seven-dimensional symmetry algebra g of the Zakharove–Kuznetsov equation[23]

    which is generated by the vector f i elds

    From Table 5

    Table 5 The commutator table for Example 3.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras is provided by those generated by:

    Depending on the sign of a4,a5,a6,a7,we can adjust the coeきcient of V4,V5,V6,V7to suitable value.Thus this result is consistent with Ref.[24].

    where α is an arbitrary constant.

    The average running time for this example is 1.2043 seconds.

    Example 4 Consider the seven-dimensional symmetry algebra g of the two layers of atmosphere model equation

    which is generated by the vector f i elds

    From Table 6

    Table 6 The commutator table for Example 4.

    the Killing form is obtained

    A one-dimensional optimal system is those spanned by:

    This is consistent with Ref.[25]after adjusting the coeきcients which contain ∈.

    where λ /=0,α,β,μ are arbitrary constants.

    The average running time for this example is 0.7489 seconds.

    5.3 Examples with Three Variables in Killing Form

    Example 5 Consider the six-dimensional algebra g of the heat equation

    which is generated by the vector f i elds

    From Table 7

    Table 7 The commutator table for Example 5.

    the Killing form is obtained

    A one-dimensional optimal system is:

    This result is consistent with Refs.[3,11]after adjusting the coeきcients which contain ∈.

    where a,b are arbitrary constants.

    The average running time for this example is 0.7427 seconds.

    Example 6 Consider six-dimensional algebra g of the quasilinear equation[26]

    which is generated by the vector f i elds

    From Table 8

    Table 8 The commutator table for Example 6.

    the Killing form is obtained

    A one-dimensional optimal system is provided by:

    This result is in accordance with Ref.[27]after adjusting the coeきcients which contain ∈.

    The average running time for this example is 1.1356 seconds.

    5.4 More Examples of Real Two-,Three-and Four-Dimensional Lie Algebras

    Consider some nontrivial real Lie algebras listed in the fi rst column of Table 9,which have appeared in Ref.[28].Based on the existing nonzero commutation relations presented in the second column,the Killing forms,classi fication results from our program and running times are listed in the last three columns,respectively.Depending on the sign of a1,a2,a3,a4,we can adjust the coeきcients of V1,V2,V3,V4,which contain∈to suitable value such as?1,1,0.In comparison,the output from our program is consistent with Ref.[28].

    Table 9 One-dimensional optimal systems of real two-,three-,and four-dimensional Lie algebras.Parameter description:a1,a2,a3,a4are arbitrary constants.

    5.5 Examples of Some Classical Lie Algebras

    Finally,we also consider some classical Lie algebras using our program.Their corresponding nonzero commutation relations,Killing forms,classif i cation results,and running times are given in Table 10.

    Table 10 One-dimensional optimal systems of classical Lie algebras.

    6 Conclusions

    In this paper,we have presented and clarif i ed the Maple package ONEOptimal to construct one-dimensional optimal system of Lie algebra based on Olver’s method.The program ONEOptimal can compute the commutator table,adjoint representation table and Killing form automatically,while it can also execute the optimization process step by step.ONEOptimal is very easy to perform as it requires minimal user input and the output with instructions is easy to understand.The program will play a signif i cant role in the search of group invariant solutions.How to involve the cases with more variables in the Killing form and realize the mechanization of highdimensional optimal system of subalgebras is worthy of our further study.

    Appendix:The Detailed Usage of Package ONEOptimal

    The package ONEOptimal will work on Maple 13 or higher version.In the following two classical examples(Examples 1 and 5 in Sec.5)are given to illustrate how to use this package.The detailed input and output are demonstrated as follows.

    Example 1 Consider the KdV equation(4),one can proceed as follows:

    #Import the package ONEOptimal

    >with(ONEOptimal):

    #Defination of the function with variables

    >alias(phi=phi(x,t,u));

    #Defination of the vector fields

    >kdv:={diff(phi,x),diff(phi,t),t*diff(phi,x)+diff(phi,u),

    x*diff(phi,x)+3*t*diff(phi,t)-2*u*diff(phi,u)};

    #Run the main routine Get_Optimal

    >Get_Optimal(kdv,{},0); #{}--There is no constant in this algebra.

    0--Do not show the detailed matrices Cm and So.

    The output is:

    There is no center.

    The commutator table for this algebra is:

    with the generators:

    The adjoint representation table is constructed

    The Killing form is:

    Step 1

    The coeきcient matrix is:

    The corresponding solution matrix is:

    Case 1

    Case 2

    Case 2.1

    Case 2.2

    Case 2.2.1

    Case 2.2.2

    In this example,depending on the sign of a3,we can make the coeきcient of V3either+1,?1 or 0 in Case 2.1.Summarize the above cases,the one-dimensional optimal system equals to:V2,V1+V3,V1?V3,V1,V3,V4.

    Example 5 Consider the heat equation(25),one can proceed as follows:

    #Import the package ONEOptimal

    >with(ONEOptimal):

    #Defination of the function with variables

    >alias(phi=phi(x,t,u));

    #Defination of the vector fields

    >heat:={u*diff(phi,u),2*t*diff(phi,x)-x*u*diff(phi,u),x*diff(phi,x)+2*t*diff(phi,t),4*t*x*diff(phi,x)+4*t^2*diff(phi,t)-(x^2+2*t)*u*diff(phi,u),diff(phi,t),diff(phi,x)};

    #Run the main routine Get_Optimal

    >Get_Optimal(heat,{},0);#{}--There is no constant in this algebra.0--Do not show the detailed matrices Cm and So.

    The output is:

    The center of the algebra is:

    The centers can not be deleted.

    The commutator table for this algebra is:

    with the generators:

    The adjoint representation table is constructed:

    The Killing form is:

    Step 1

    The coeきcient matrix is:

    The corresponding solution matrix is:

    Case 1

    Case 2

    Case 2.1

    Case 3

    Case 3.1

    Case 3.1.1

    Case 3.1.2

    Case 4

    Case 4.1

    Case 4.2

    Case 4.2.1

    Case 4.2.2

    In this example,depending on the sign of a5,we can make the coeきcient of V5only+1 in Case 1 and either+1 or?1 in Case 3.1.1.The coeきcient of V1can be set either+1,?1 or 0 in Case 3.1.2,but arbitrary in both Case 1 and Case 2.1.Summarize the above cases,this one-dimensional optimal system equals to:V4+V5+bV1,V3+aV1,V2+V5,V2?V5,V5+V1,V5?V1,V5,V2,V6,V1,where a,b∈R.

    [1]S.Lie,Arch.Math.6(1881)328.

    [2]L.V.Ovsiannikov,Group analysis of diあerential equations,Academic,New York(1982).

    [3]P.J.Olver,Applications of Lie Groups to Diあerential Equations,2nd ed.,Springer,New York(1993).

    [4]F.Galas and E.W.Richter,Physica D 50(1991)297.

    [5]J.C.Fuchs,J.Math.Phys.32(1991)1703.

    [6]S.V.Coggeshall and J.Meyer-Ter-Vehn,J.Math.Phys.33(1992)3585.

    [7]L.Gagnon and P.Winternitz,J.Phys.A 21(1988)1493.

    [8]L.Gagnon and P.Winternitz,J.Phys.A 22(1989)469.

    [9]L.Gagnon,B.Grammaticos,A.Ramani,and P.Winternitz,J.Phys.A 22(1989)499.

    [10]N.H.Ibragimov,CRC Handbook of Lie Group Analysis of Diあerential Equations,CRC Press,Boca Raton(1994).

    [11]K.S.Chou,G.X.Li,and C.Z.Qu,J.Math.Anal.Appl.261(2001)741.

    [12]X.R.Hu and Y.Chen,Commun.Theor.Phys.52(2009)997.

    [13]Z.Z.Dong and Y.Chen,Commun.Theor.Phys.54(2010)389.

    [14]X.R.Hu,Y.Chen,and L.J.Qian,Commun.Theor.Phys.55(2011)737.

    [15]F.Schwarz,SIAM Rev.30(1988)450.

    [16]A.K.Head,Program LIE for Lie Analysis of Diあerential Equations on IBM Type PCs,User’s Manual(2000).

    [17]A.K.Head,Program BIGLIE for Lie Analysis of Diあerential Equations on IBM Type PCs,User’s Manual(2000).

    [18]G.Baumann,Symmetry Analysis of Diあerential Equations with Mathematica,Springer,New York(2000).

    [19]E.S.Cheb-Terrab and K.von Bulow,Comp.Phys.Commun.90(1995)116.

    [20]K.T.Vu,J.Butcher,and J.Carminati,Comp.Phys.Commun.176(2007)682.

    [21]J.Carminati and K.Vu,J.Symbolic Comput.29(2000)95.

    [22]X.R.Hu,Z.Z.Dong,and Y.Chen,Z.Naturforsch.65a(2010)1.

    [23]G.C.Das,J.Sarma,Y.T.Gao,and C.Uberoi,Phys.Plasmas.7(2000)2374.

    [24]Z.Z.Dong,Y.Chen,and Y.H.Lang,Chin.Phys.B 19(2010)090205.

    [25]Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.66a(2011)75.

    [26]G.Aronsson,Ark.Mat.6(1967)551.

    [27]I.L.Freire and A.C.Faleiros,Nonlinear Anal.74(2011)3478.

    [28]J.Patera and P.Winternitz,J.Math.Phys.18(1977)1449.

    丝袜喷水一区| 亚洲三区欧美一区| 国产精品98久久久久久宅男小说| 久久这里只有精品19| av超薄肉色丝袜交足视频| 麻豆av在线久日| 国产有黄有色有爽视频| 久久人妻熟女aⅴ| 国产一区二区三区在线臀色熟女 | 91九色精品人成在线观看| 99精品在免费线老司机午夜| 搡老熟女国产l中国老女人| 国产老妇伦熟女老妇高清| 日本五十路高清| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 国产在线精品亚洲第一网站| 欧美亚洲日本最大视频资源| 黄片小视频在线播放| 一级片免费观看大全| 一本—道久久a久久精品蜜桃钙片| 熟女少妇亚洲综合色aaa.| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 下体分泌物呈黄色| 久热这里只有精品99| 90打野战视频偷拍视频| 一本—道久久a久久精品蜜桃钙片| 亚洲avbb在线观看| 岛国在线观看网站| 国产av一区二区精品久久| 亚洲av日韩在线播放| 首页视频小说图片口味搜索| 下体分泌物呈黄色| 免费在线观看完整版高清| 麻豆av在线久日| 成人18禁在线播放| 建设人人有责人人尽责人人享有的| 亚洲欧美色中文字幕在线| 黄色视频,在线免费观看| 无人区码免费观看不卡 | 国产一区二区激情短视频| 国产av又大| 亚洲情色 制服丝袜| 国产亚洲av高清不卡| 久久精品国产亚洲av香蕉五月 | 亚洲成国产人片在线观看| 亚洲欧美一区二区三区久久| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 精品国产亚洲在线| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲av国产电影网| 窝窝影院91人妻| 中文亚洲av片在线观看爽 | 满18在线观看网站| 免费av中文字幕在线| 手机成人av网站| 精品国产一区二区三区四区第35| 99国产精品一区二区蜜桃av | 精品卡一卡二卡四卡免费| 成人国产一区最新在线观看| 肉色欧美久久久久久久蜜桃| av片东京热男人的天堂| 亚洲专区字幕在线| 精品人妻在线不人妻| 母亲3免费完整高清在线观看| aaaaa片日本免费| 亚洲av片天天在线观看| 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区 | 国产免费av片在线观看野外av| 天堂中文最新版在线下载| 女人精品久久久久毛片| 老司机深夜福利视频在线观看| 国产在线一区二区三区精| 国产一区二区三区在线臀色熟女 | 国产av又大| 99精品在免费线老司机午夜| 91成人精品电影| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 老司机午夜十八禁免费视频| 国产免费视频播放在线视频| cao死你这个sao货| 一区二区三区精品91| 精品久久久久久久毛片微露脸| 国产精品九九99| 91av网站免费观看| 日本av免费视频播放| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 久久青草综合色| 一区二区三区乱码不卡18| 国产精品亚洲一级av第二区| 大型黄色视频在线免费观看| 欧美av亚洲av综合av国产av| 亚洲男人天堂网一区| 男女免费视频国产| 在线观看免费日韩欧美大片| 十分钟在线观看高清视频www| 黑人猛操日本美女一级片| 欧美性长视频在线观看| 亚洲全国av大片| 日韩欧美一区二区三区在线观看 | 久久影院123| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 嫩草影视91久久| 国产一卡二卡三卡精品| 精品久久久久久久毛片微露脸| 亚洲中文av在线| 99精国产麻豆久久婷婷| 麻豆av在线久日| 老司机午夜十八禁免费视频| 青青草视频在线视频观看| 手机成人av网站| 国产男靠女视频免费网站| kizo精华| 99精国产麻豆久久婷婷| 男人操女人黄网站| 国产一区二区在线观看av| 黄片播放在线免费| 欧美人与性动交α欧美软件| 免费在线观看影片大全网站| 在线观看一区二区三区激情| 欧美日韩中文字幕国产精品一区二区三区 | 色尼玛亚洲综合影院| 50天的宝宝边吃奶边哭怎么回事| 欧美乱码精品一区二区三区| 激情视频va一区二区三区| 色在线成人网| 国产伦理片在线播放av一区| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频| 精品久久蜜臀av无| 久久热在线av| 精品福利观看| 免费看a级黄色片| 国产欧美亚洲国产| 超色免费av| 亚洲免费av在线视频| 亚洲精品久久午夜乱码| 国产成+人综合+亚洲专区| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区久久久樱花| 高清毛片免费观看视频网站 | 亚洲欧美激情在线| 少妇精品久久久久久久| 午夜福利,免费看| 亚洲七黄色美女视频| 久久这里只有精品19| 国产高清国产精品国产三级| 成年版毛片免费区| 国产一区有黄有色的免费视频| 岛国毛片在线播放| 国产精品亚洲av一区麻豆| 岛国在线观看网站| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 99国产精品免费福利视频| 午夜老司机福利片| 亚洲欧美日韩另类电影网站| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 成人影院久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲精华国产精华精| 久久青草综合色| 日韩成人在线观看一区二区三区| 超色免费av| 91九色精品人成在线观看| 在线永久观看黄色视频| 日本vs欧美在线观看视频| 色老头精品视频在线观看| 国产伦理片在线播放av一区| 91麻豆av在线| 三上悠亚av全集在线观看| 黄频高清免费视频| 啦啦啦在线免费观看视频4| 国产野战对白在线观看| 香蕉国产在线看| 在线观看舔阴道视频| kizo精华| 一级片'在线观看视频| 妹子高潮喷水视频| 亚洲av日韩在线播放| 午夜免费鲁丝| 久久亚洲精品不卡| 性少妇av在线| 婷婷成人精品国产| 麻豆av在线久日| netflix在线观看网站| 啦啦啦免费观看视频1| 成人黄色视频免费在线看| 美国免费a级毛片| 在线观看免费视频网站a站| 日韩有码中文字幕| 亚洲五月色婷婷综合| 91成年电影在线观看| 高清av免费在线| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕| 我要看黄色一级片免费的| 亚洲精品一二三| 国产成人av教育| 麻豆成人av在线观看| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 日韩免费av在线播放| 一级片免费观看大全| 大片免费播放器 马上看| 国产不卡一卡二| 后天国语完整版免费观看| av天堂久久9| 妹子高潮喷水视频| 久久亚洲真实| 人妻久久中文字幕网| 亚洲中文字幕日韩| cao死你这个sao货| 又黄又粗又硬又大视频| 国产在线视频一区二区| 法律面前人人平等表现在哪些方面| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 成人国产一区最新在线观看| 一区二区三区精品91| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看| av网站在线播放免费| 久久久久久人人人人人| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 精品久久蜜臀av无| 丁香六月天网| 久9热在线精品视频| 在线观看www视频免费| 黄色视频,在线免费观看| 天堂8中文在线网| h视频一区二区三区| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 国产在线观看jvid| 亚洲免费av在线视频| 成人av一区二区三区在线看| 高清毛片免费观看视频网站 | 日韩中文字幕视频在线看片| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 又紧又爽又黄一区二区| 天天操日日干夜夜撸| 真人做人爱边吃奶动态| 19禁男女啪啪无遮挡网站| 成人影院久久| 国产免费av片在线观看野外av| aaaaa片日本免费| 亚洲精品中文字幕在线视频| 久久性视频一级片| 成人特级黄色片久久久久久久 | 一级毛片精品| 久热这里只有精品99| 亚洲免费av在线视频| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯 | 男人舔女人的私密视频| 久久精品成人免费网站| 在线观看66精品国产| 少妇裸体淫交视频免费看高清 | 欧美在线一区亚洲| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 国产男女内射视频| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | 在线观看www视频免费| 国产福利在线免费观看视频| 一区二区三区国产精品乱码| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕色久视频| tube8黄色片| 日本wwww免费看| 久久久久久人人人人人| 美女主播在线视频| 亚洲精品中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 欧美在线黄色| 十分钟在线观看高清视频www| 婷婷成人精品国产| 大香蕉久久成人网| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 亚洲,欧美精品.| www.熟女人妻精品国产| 久久天堂一区二区三区四区| av天堂久久9| 午夜福利一区二区在线看| 亚洲第一欧美日韩一区二区三区 | a在线观看视频网站| av免费在线观看网站| 精品免费久久久久久久清纯 | 国产男靠女视频免费网站| bbb黄色大片| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 我要看黄色一级片免费的| 午夜福利在线免费观看网站| 亚洲 欧美一区二区三区| 宅男免费午夜| 精品一区二区三区av网在线观看 | 精品久久久久久电影网| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 亚洲精品成人av观看孕妇| 一个人免费在线观看的高清视频| 国产人伦9x9x在线观看| 国产伦理片在线播放av一区| 人人澡人人妻人| 精品人妻在线不人妻| 国产精品免费大片| 久久毛片免费看一区二区三区| 精品久久蜜臀av无| 丁香六月天网| 亚洲第一欧美日韩一区二区三区 | 麻豆国产av国片精品| 中文亚洲av片在线观看爽 | 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 国产日韩欧美亚洲二区| 99热网站在线观看| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 国产精品国产高清国产av | 久久久久国产一级毛片高清牌| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 午夜视频精品福利| 女警被强在线播放| 亚洲少妇的诱惑av| 在线av久久热| tube8黄色片| 成人国语在线视频| 男女无遮挡免费网站观看| 欧美另类亚洲清纯唯美| 久久久欧美国产精品| 欧美精品av麻豆av| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频 | 王馨瑶露胸无遮挡在线观看| 黑丝袜美女国产一区| 大片免费播放器 马上看| 一个人免费在线观看的高清视频| 亚洲av成人一区二区三| 丝袜美腿诱惑在线| a级毛片黄视频| 母亲3免费完整高清在线观看| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 亚洲专区国产一区二区| 日本av免费视频播放| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 亚洲少妇的诱惑av| 老司机福利观看| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 欧美国产精品一级二级三级| 91麻豆精品激情在线观看国产 | 日韩中文字幕视频在线看片| 欧美黑人精品巨大| 久久ye,这里只有精品| 亚洲第一青青草原| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 久久精品亚洲精品国产色婷小说| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看| 中文字幕最新亚洲高清| 99国产精品免费福利视频| 国产精品电影一区二区三区 | 99久久国产精品久久久| 午夜福利视频在线观看免费| 一级片'在线观看视频| 久热这里只有精品99| 91大片在线观看| 亚洲男人天堂网一区| 亚洲色图综合在线观看| 女人久久www免费人成看片| 成人精品一区二区免费| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 久久久久久久精品吃奶| 亚洲欧美日韩另类电影网站| 美女主播在线视频| 在线观看人妻少妇| 成人18禁在线播放| 日本黄色日本黄色录像| 色播在线永久视频| 天堂中文最新版在线下载| 成年版毛片免费区| 久久午夜亚洲精品久久| 精品亚洲乱码少妇综合久久| 亚洲avbb在线观看| 久久中文看片网| 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| 免费久久久久久久精品成人欧美视频| 美女午夜性视频免费| 伦理电影免费视频| 99在线人妻在线中文字幕 | 天天躁夜夜躁狠狠躁躁| 日韩中文字幕视频在线看片| 蜜桃在线观看..| 怎么达到女性高潮| 亚洲九九香蕉| 老司机在亚洲福利影院| 欧美日韩视频精品一区| 亚洲伊人色综图| 狂野欧美激情性xxxx| 欧美变态另类bdsm刘玥| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 日韩大码丰满熟妇| 久久婷婷成人综合色麻豆| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 天堂动漫精品| 一本综合久久免费| 久久精品成人免费网站| 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区 | 亚洲免费av在线视频| 日韩精品免费视频一区二区三区| 国产人伦9x9x在线观看| 亚洲av日韩精品久久久久久密| 午夜91福利影院| 精品免费久久久久久久清纯 | 日韩欧美一区二区三区在线观看 | 天天躁日日躁夜夜躁夜夜| 亚洲国产精品一区二区三区在线| 久久国产精品影院| 成人黄色视频免费在线看| 日本五十路高清| 亚洲国产中文字幕在线视频| 国产不卡av网站在线观看| 丁香六月欧美| 亚洲性夜色夜夜综合| 精品福利观看| 亚洲人成电影免费在线| 日韩视频在线欧美| 亚洲欧洲精品一区二区精品久久久| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 香蕉丝袜av| 国产视频一区二区在线看| 99精品久久久久人妻精品| 国产精品麻豆人妻色哟哟久久| av网站在线播放免费| 久久av网站| 亚洲av成人一区二区三| 日韩人妻精品一区2区三区| 999久久久精品免费观看国产| 99久久国产精品久久久| 午夜福利乱码中文字幕| 黄色毛片三级朝国网站| cao死你这个sao货| 老熟妇仑乱视频hdxx| 精品午夜福利视频在线观看一区 | 中文字幕色久视频| 亚洲男人天堂网一区| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| h视频一区二区三区| 亚洲精品久久午夜乱码| 亚洲七黄色美女视频| 超碰97精品在线观看| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 看免费av毛片| 亚洲一码二码三码区别大吗| 国产高清视频在线播放一区| 高清av免费在线| 国产欧美亚洲国产| 激情在线观看视频在线高清 | 欧美久久黑人一区二区| 国产精品九九99| 美女国产高潮福利片在线看| 亚洲熟女精品中文字幕| 天天影视国产精品| 久久99热这里只频精品6学生| 俄罗斯特黄特色一大片| 一区二区三区激情视频| 国产成人免费观看mmmm| 一进一出好大好爽视频| 欧美乱码精品一区二区三区| 黄片大片在线免费观看| 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡| 亚洲精品国产精品久久久不卡| 亚洲国产欧美网| 69av精品久久久久久 | 国产97色在线日韩免费| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产亚洲av香蕉五月 | 18禁观看日本| 欧美另类亚洲清纯唯美| 一级毛片精品| av超薄肉色丝袜交足视频| 嫩草影视91久久| av一本久久久久| av有码第一页| 侵犯人妻中文字幕一二三四区| 久久久国产成人免费| 在线观看一区二区三区激情| 我的亚洲天堂| 天堂中文最新版在线下载| 欧美亚洲日本最大视频资源| 人妻久久中文字幕网| av有码第一页| 日韩免费高清中文字幕av| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 又大又爽又粗| 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 新久久久久国产一级毛片| 少妇的丰满在线观看| 精品一区二区三卡| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 久久av网站| 日日摸夜夜添夜夜添小说| 国产精品自产拍在线观看55亚洲 | 亚洲一区中文字幕在线| 99riav亚洲国产免费| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 99久久人妻综合| 成人三级做爰电影| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 午夜福利影视在线免费观看| 国产成人精品久久二区二区91| 97人妻天天添夜夜摸| 欧美日韩视频精品一区| 成年动漫av网址| 成人精品一区二区免费| 免费人妻精品一区二区三区视频| 丁香六月天网| 国产精品电影一区二区三区 | 午夜久久久在线观看| 亚洲中文av在线| 黑人巨大精品欧美一区二区mp4| 极品人妻少妇av视频| 男女床上黄色一级片免费看| 国产精品久久久久久精品电影小说| av福利片在线| 18禁国产床啪视频网站| 欧美精品啪啪一区二区三区| 一区二区av电影网| 91麻豆精品激情在线观看国产 | 久久国产亚洲av麻豆专区| 久久精品成人免费网站| 国产日韩欧美在线精品| 99精品在免费线老司机午夜| 一边摸一边抽搐一进一小说 | 欧美日韩亚洲综合一区二区三区_| 黄色成人免费大全| 一本—道久久a久久精品蜜桃钙片| 高清视频免费观看一区二区| 成年版毛片免费区| 日韩大片免费观看网站|