郭強(qiáng),楊艷芹
(1.中國(guó)石油大學(xué),北京102249;2.中國(guó)航天第四研究院8607廠,湖北孝感432100)
不銹鋼在聚甲醛裝置模擬介質(zhì)中的腐蝕行為
郭強(qiáng)1,楊艷芹2
(1.中國(guó)石油大學(xué),北京102249;2.中國(guó)航天第四研究院8607廠,湖北孝感432100)
目的篩選更為先進(jìn)的聚甲醛裝置升級(jí)改造用鋼,研究316L,904L和2507不銹鋼在聚甲醛裝置模擬介質(zhì)中的腐蝕行為。方法在模擬介質(zhì)中對(duì)這三種不銹鋼進(jìn)行全浸試驗(yàn),利用動(dòng)電位極化技術(shù)測(cè)定它們的點(diǎn)蝕電位,并觀察、分析腐蝕形貌和腐蝕產(chǎn)物。結(jié)果模擬介質(zhì)中,316L不銹鋼發(fā)生點(diǎn)腐蝕和成分選擇性腐蝕,腐蝕產(chǎn)物主要為Fe-Cr鐵素體相和Fe2O3赤鐵礦相。結(jié)論904L不銹鋼的腐蝕速率和點(diǎn)蝕敏感性均明顯優(yōu)于316L不銹鋼,選用904L不銹鋼將有助于提升聚甲醛裝置的耐腐蝕性能。
聚甲醛裝置;不銹鋼;腐蝕
316L不銹鋼屬低碳奧氏體不銹鋼[1—4],晶間腐蝕敏感性低,且焊接后無(wú)刀口腐蝕傾向,是我國(guó)聚甲醛裝置用主要結(jié)構(gòu)材料。經(jīng)歷十余年生產(chǎn)運(yùn)行后發(fā)現(xiàn),由316L不銹鋼制造的換熱器、冷凝器、三聚提濃塔等設(shè)備在高溫、高壓,及甲酸、三聚甲醛等介質(zhì)的作用下,多處發(fā)生腐蝕,部分管板出現(xiàn)腐蝕穿孔,不僅影響了生產(chǎn)效益,而且給聚甲醛裝置的運(yùn)行安全帶來(lái)了極大的風(fēng)險(xiǎn)隱患。因此,篩選更為先進(jìn)的耐蝕鋼,替代316L不銹鋼,已經(jīng)成為提升我國(guó)聚甲醛裝置運(yùn)行安全和效益的重要舉措。
從腐蝕防護(hù)設(shè)計(jì)選材上看,904L和2507不銹鋼有望成為聚甲醛裝置的升級(jí)改造用鋼。904L不銹鋼是一種具有完全奧氏體組織的低碳高合金奧氏體不銹鋼[5—8],專(zhuān)為苛刻的腐蝕環(huán)境設(shè)計(jì),在非氧化性酸中具有優(yōu)異的耐蝕性,且對(duì)點(diǎn)蝕、晶間腐蝕、縫隙腐蝕和應(yīng)力腐蝕均有著較高的抗性。2507不銹鋼是一種鐵素體-奧氏體雙相不銹鋼[9—11],不僅綜合了鐵素體鋼和奧氏體鋼的優(yōu)點(diǎn),而且較高的鉻、鉬含量使其對(duì)甲酸等有機(jī)酸具有較強(qiáng)的整體抗力。為此,文中在模擬的聚甲醛裝置服役工況下對(duì)316L, 904L和2507等3種不銹鋼進(jìn)行全浸試驗(yàn),對(duì)全浸試樣進(jìn)行腐蝕形貌觀察和腐蝕產(chǎn)物分析,測(cè)定腐蝕速率,并利用動(dòng)電位極化技術(shù)測(cè)定三種不銹鋼在聚甲醛裝置模擬液中的點(diǎn)蝕電位。從腐蝕速率和點(diǎn)蝕敏感性方面討論了904L和2507不銹鋼替代316L不銹鋼用于聚甲醛裝置的可行性。
試驗(yàn)材料選用聚甲醛裝置廠家提供的316L, 904L和2507不銹鋼。全浸試驗(yàn)參照GB 10124—88使用FCZ磁力驅(qū)動(dòng)高壓釜進(jìn)行。試驗(yàn)溶液為0.5% (以質(zhì)量分?jǐn)?shù)計(jì))甲酸+0.5%甲縮醛+0.5%三聚甲醛水溶液,以模擬聚甲醛裝置介質(zhì),溫度為135℃,壓力為0.25 MPa,試驗(yàn)時(shí)間為720 h。全浸試驗(yàn)后,取部分試樣,去除表面殘留溶液,保留完整銹層,使用ZEISS Supra 55vp型掃描電子顯微鏡觀察試樣的微觀腐蝕形貌,并使用Philips APD 10型X射線衍射儀進(jìn)行腐蝕產(chǎn)物分析。其他試樣先經(jīng)流水中軟毛刷輕微清洗,再用溫度為60℃、體積分?jǐn)?shù)為10%的硝酸(ρ=1.42 g/mL)去離子水溶液化學(xué)清洗20 min,去除腐蝕產(chǎn)物[12],然后經(jīng)清洗、干燥、分析天平稱(chēng)量后,按公式(1)計(jì)算全浸腐蝕速率。
式中:R為腐蝕速率,mm/a;M為全浸前的試樣質(zhì)量,g;M1為全浸后的試樣質(zhì)量,g;M2為同種材料、同樣尺寸的空白試樣在化學(xué)清洗液中的質(zhì)量損失,g;S為試樣總面積,cm2;t為試驗(yàn)時(shí)間,h;D為試樣的密度,kg/m3。
點(diǎn)蝕電位的測(cè)定在與全浸試驗(yàn)相同的試驗(yàn)溶液中進(jìn)行,試驗(yàn)溫度為 92℃。首先,按照 GB/T 17899—1999制備三種不銹鋼試樣,并進(jìn)行打磨、去油等前處理,然后,使用CHI660B型電化學(xué)工作站,以試樣待測(cè)表面為研究電極、鉑電極為輔助電極、飽和甘汞電極為參比電極,并配以鹽橋,測(cè)試三種不銹鋼試樣的腐蝕電位和陽(yáng)極極化曲線。測(cè)試前向試驗(yàn)溶液通入純氮(純度≥99.99%)預(yù)除氧0.5 h,并于測(cè)試中持續(xù)通入氮?dú)?。試樣全浸于試?yàn)溶液50 min后,利用開(kāi)路電位法在10 min內(nèi)測(cè)定其腐蝕電位,從腐蝕電位開(kāi)始以20 mV/min的電位掃描速率進(jìn)行陽(yáng)極極化,直到陽(yáng)極電流密度達(dá)到1000 μA/cm2為止。最后,取陽(yáng)極極化曲線上對(duì)應(yīng)電流密度100 μA/cm2的電位中最正的電位值為點(diǎn)蝕電位[13]。
2.1 全浸試驗(yàn)
用0.5%甲酸+0.5%甲縮醛+0.5%三聚甲醛水溶液720 h全浸試驗(yàn)后,316L,904L和2507不銹鋼的腐蝕速率分別為0.018,0.001,0.002 mm/a,三種不銹鋼試樣的部分表面均出現(xiàn)棕紅色腐蝕產(chǎn)物。
316L,904L和2507不銹鋼全浸試驗(yàn)后的表面掃描電鏡(SEM)照片如圖1所示,圖1a中,316L不銹鋼試樣表面發(fā)生明顯的點(diǎn)腐蝕,蝕孔較深,部分敏感區(qū)域大量點(diǎn)腐蝕已經(jīng)連接成片,并為腐蝕產(chǎn)物所覆蓋。圖1b中,904L不銹鋼試樣表面未呈現(xiàn)嚴(yán)重的腐蝕形貌,試樣在制備過(guò)程中留下的劃痕仍依稀可見(jiàn),僅出現(xiàn)了稀疏的斑狀腐蝕坑,蝕坑半徑較大,蝕坑及其周?chē)鸁o(wú)明顯的腐蝕產(chǎn)物附著。圖1c中, 2507不銹鋼試樣表面雜亂分布著若干斑狀腐蝕坑,蝕坑半徑較大,深度較淺,未連接成片,蝕坑及其周?chē)鸁o(wú)明顯的腐蝕產(chǎn)物附著。
圖1 三種不銹鋼全浸試驗(yàn)后表面掃描電鏡照片F(xiàn)ig.1 SEM images of three stainless steels after immersion tests
為分析全浸試驗(yàn)后腐蝕產(chǎn)物的物相組成,在全浸試驗(yàn)前后分別對(duì)316L,904L和2507不銹鋼試樣進(jìn)行了X射線衍射(XRD)分析,XRD譜圖如圖2所示。圖2a中,全浸試驗(yàn)前,316L不銹鋼的組織為Fe-Ni奧氏體相(fcc);全浸試驗(yàn)后,316L不銹鋼的XRD譜除Fe-Ni奧氏體相的衍射峰外,還出現(xiàn)了Fe-Cr鐵素體相(bcc)和Fe2O3赤鐵礦相的衍射峰,說(shuō)明全浸試驗(yàn)后316L不銹鋼的腐蝕產(chǎn)物主要為Fe-Cr鐵素體相和Fe2O3赤鐵礦相。圖2b中,全浸試驗(yàn)前,904L不銹鋼的組織同樣為 Fe-Ni奧氏體相(fcc);全浸試驗(yàn)后,904L不銹鋼的XRD譜與全浸試驗(yàn)前的較為相似,除Fe-Ni奧氏體相外,僅出現(xiàn)了微弱的Fe2O3赤鐵礦相的衍射峰,說(shuō)明全浸試驗(yàn)后904L不銹鋼的腐蝕產(chǎn)物主要為Fe2O3赤鐵礦相,而且量非常少。圖2c中,全浸試驗(yàn)前,2507不銹鋼的組織為 Fe-Ni奧氏體相(fcc)和 Fe-Cr鐵素體相(bcc);全浸試驗(yàn)后,2507不銹鋼的XRD譜除Fe-Ni奧氏體相和 Fe-Cr鐵素體的衍射峰外,還出現(xiàn)了Fe2O3赤鐵礦相的衍射峰,說(shuō)明全浸試驗(yàn)后2507不銹鋼的腐蝕產(chǎn)物主要為Fe2O3赤鐵礦相。全浸試驗(yàn)前后316L,904L和2507不銹鋼各物相的體積分?jǐn)?shù)見(jiàn)表1。
圖2 三種不銹鋼全浸試驗(yàn)前后X射線衍射譜Fig.2 XRD patterns of three stainless steels before and after immersion tests
表1 三種不銹鋼全浸試驗(yàn)前后物相的體積分?jǐn)?shù)Table 1 Volume fractions of the phases for three stainless steels before and after immersion tests %
2.2 點(diǎn)蝕電位
在試驗(yàn)溶液中,316L,904L和2507不銹鋼的陽(yáng)極極化曲線如圖3所示。可見(jiàn),三種不銹鋼的陽(yáng)極極化曲線均開(kāi)始于鈍化區(qū),隨著極化的進(jìn)行,曲線都開(kāi)始偏離原本基本水平的鈍化區(qū)部分,表現(xiàn)為陽(yáng)極電流密度的急劇增大,即點(diǎn)蝕成核并開(kāi)始生長(zhǎng)[14—15]。取陽(yáng)極極化曲線上對(duì)應(yīng)電流密度 100 μA/cm2的最正電位值為點(diǎn)蝕電位,316L,904L和2507不銹鋼的點(diǎn)蝕電位分別為0.538,0.788,0.807 V(相對(duì)于飽和甘汞電極,下同)。
圖3 三種不銹鋼的陽(yáng)極極化曲線Fig.3 Anodic polarization curves of three stainless steels
2.3 討論
由腐蝕形貌和腐蝕產(chǎn)物分析結(jié)果可見(jiàn),全浸試驗(yàn)后,316L不銹鋼出現(xiàn)點(diǎn)腐蝕,腐蝕產(chǎn)物主要為Fe-Cr鐵素體相和Fe2O3赤鐵礦相。全浸試驗(yàn)前316L不銹鋼完全為Fe-Ni奧氏體相,而全浸試驗(yàn)后部分Fe-Ni奧氏體相轉(zhuǎn)變生成體積分?jǐn)?shù)為26.4%的Fe-Cr鐵素體相,這說(shuō)明腐蝕還與316L不銹鋼中Ni在試驗(yàn)溶液中的優(yōu)先溶解有關(guān)。由此判斷,除點(diǎn)腐蝕外,316L不銹鋼在試驗(yàn)溶液中還發(fā)生了成分選擇性腐蝕。全浸試驗(yàn)后,904L和2507不銹鋼亦出現(xiàn)了點(diǎn)腐蝕,但腐蝕程度不及316L不銹鋼顯著,腐蝕產(chǎn)物主要為Fe2O3赤鐵礦相,XRD分析中未發(fā)現(xiàn)Ni優(yōu)先溶解,部分Fe-Ni奧氏體相轉(zhuǎn)變生成Fe-Cr鐵素體相的試驗(yàn)證據(jù)。
在試驗(yàn)溶液中,316L不銹鋼的腐蝕速率最高,分別為904L和2507不銹鋼腐蝕速率的18倍和9倍。腐蝕速率的差異,除與316L不銹鋼中Ni的優(yōu)先溶解有關(guān)外,還與三種不銹鋼在試驗(yàn)溶液中的點(diǎn)蝕敏感性有關(guān)。點(diǎn)蝕電位,即鈍化膜開(kāi)始發(fā)生局部擊穿(破裂)的電位,是表征不銹鋼點(diǎn)蝕敏感性的重要特征之一,低于此電位不會(huì)發(fā)生點(diǎn)蝕,高于此電位則發(fā)生點(diǎn)蝕[14—15]。316L不銹鋼的點(diǎn)蝕電位明顯低于904L和2507不銹鋼,說(shuō)明316L不銹鋼在此試驗(yàn)溶液中最易發(fā)生點(diǎn)腐蝕。
1)在試驗(yàn)溶液中,316L不銹鋼的腐蝕主要表現(xiàn)為點(diǎn)腐蝕和成分選擇性腐蝕,Ni發(fā)生優(yōu)先溶解,部分Fe-Ni奧氏體相轉(zhuǎn)變生成Fe-Cr鐵素體相,腐蝕產(chǎn)物主要為Fe-Cr鐵素體相和Fe2O3赤鐵礦相。
2)在試驗(yàn)溶液中,904L和2507不銹鋼也出現(xiàn)了輕微的點(diǎn)腐蝕,腐蝕產(chǎn)物主要為Fe2O3赤鐵礦相。
3)在聚甲醛裝置模擬介質(zhì)中,904L不銹鋼的腐蝕速率和點(diǎn)蝕敏感性均明顯優(yōu)于316L不銹鋼,選用904L不銹鋼將有助于提升聚甲醛裝置的耐腐蝕性能。
[1] LI Shu-xin,HE Yan-ni,YU Shu-rong,et al.Evaluation of the Effect of Grain Size on Chromium Carbide Precipitation and Intergranular Corrosion of 316L Stainless Steel [J].Corrosion Science,2013,66:211—216.
[2] HINDS G,WICKSTR?M L,MINGARD K,et al.Impact of Surface Condition on Sulphide Stress Corrosion Cracking of 316L Stainless Steel[J].Corrosion Science,2013,71: 43—52.
[3] 丁國(guó)清,楊海洋,楊萬(wàn)國(guó),等.兩種不銹鋼在冷卻塔冷凝酸液中的耐蝕性能[J].裝備環(huán)境工程,2014,11 (1):13—17. DING Guo-qing,YANG Hai-yang,YANG Wan-guo,et al. Corrosion Resistance Analysis of Two Stainless Steels Exposed in Cooling Tower Condensed Acid[J].Equipment Environmental Engineering,2014,11(1):13—17.
[4] 吳恒,侯曉薇,李超,等.316L不銹鋼在淡化海水中的耐腐蝕性能研究[J].裝備環(huán)境工程,2013,10(6): 14—18. WU Heng,HOU Xiao-wei,LI Chao,et al.Corrosion Behavior of 316 Stainless Steel in Desalinate Seawater[J]. Equipment Environmental Engineering,2013,10(6): 14—18.
[5] NAGE D D,RAJA V S.Effect of Nitrogen Addition on the Stress Corrosion Cracking Behavior of 904L Stainless Steel Welds in 288℃ Deaerated Water[J].Corrosion Science, 2006,48:2317—2331.
[6] MOAYED M H,NEWMAN R C.Deterioration in Critical Pitting Temperature of 904L Stainless Steel by Addition of Sulfate Ions[J].Corrosion Science,2006,48:3513—3530.
[7] 曾洪濤,向嵩,劉松林,等.904L不銹鋼在氫氟酸和濃硫酸混合液中的腐蝕行為[J].中國(guó)腐蝕與防護(hù)學(xué)報(bào), 2013,33(3):182—187. ZENG Hong-tao,XIANG Song,LIU Song-lin,et al.Corrosion Behaviors of 904L Austenite Stainless Steel in Concentrated Sulfuric Acid Containing Hydrofluoric Acid[J]. Journal of Chinese Society for Corrosion and Protection, 2013,33(3):182—187.
[8] BELLAOUCHOU A,KABKAB B,GUENBOUR A,et al. Corrosion Inhibition under Heat Transfer of 904L Stainless Steel in Phosphoric Acid by Benzotriazole[J].Progress in Organic Coatings,2001,41:121—127.
[9] GUO L Q,BAI Y,XU B Z,et al.Effect of Hydrogen on Pitting Susceptibility of 2507 Duplex Stainless Steel[J]. Corrosion Science,2013,70:140—144.
[10]SATHIRACHINDA N,PETTERSSON R,WESSMAN S,et al.Scanning Kelvin Probe Force Microscopy Study of Chromium Nitridesin 2507 SuperDuplexStainless Steel—Implications and Limitations[J].Electrochimica Acta,2011,56:1792—1798.
[11]王文英,周勇,熊金平.不銹鋼在己內(nèi)酰胺溶液中腐蝕行為的研究[J].電鍍與精飾,2013,35(12):39—43. WANG Wen-ying,ZHOU Yong,XIONG Jin-ping.Corrosion Behaviors of Stainless Steels in Caprolactam Solution by Electrochemical Methods[J].Plating and Finishing, 2013,35(12):39—43.
[12]GB/T 16545—1996,金屬和合金的腐蝕腐蝕試樣上腐蝕產(chǎn)物的清除[S]. GB/T 16545—1996,Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens[S].
[13]GB/T 17899—1999,不銹鋼點(diǎn)蝕電位測(cè)量方法[S]. GB/T 17899—1999,Method of Pitting Potential Measurement for Stainless Steel[S].
[14]WINSTON R R.Uhlig's Corrosion Handbook[M].Third Edition.Hoboken:John Wiley&Sons,Inc,2011.
[15]RICHARDSON T J A.Shreir's Corrosion[M].Fourth Edition.Amsterdam:Elsevier Science, 2010.
Corrosion Behaviors of Stainless Steels in Simulated Poly Formaldehyde Unit Solution
GUO Qiang1,YANG Yan-qin2
(1.China University of Petroleum,Beijing 102249,China; 2.The 8607st Factory of the Fourth Academy of CASC,Xiaogan 432100,China)
ObjectiveCorrosion behaviors of 316L,904L and 2507 stainless steels were studied in the simulated poly formaldehyde unit solution,in order to select a more advanced steel for the upgrade of poly formaldehyde unit.MethodsImmersion tests were performed for the three types of steel in the simulated solution,pitting potential was measured using the potentiodynamic polarization technique,and the morphology and the phase of the corrosion layer were observed and analyzed.ResultsPitting corrosion and selective phase corrosion of 316L stainless steel occurred in the simulated solution, and the corrosion products were mainly Fe-Cr ferritic phase and Fe2O3hematite phase.ConclusionThe results showed that owing to the lower corrosion rate and sensitization on pitting corrosion than 316L stainless steel,904L stainless steel is expected to improve the corrosion resistance of the poly formaldehyde unit.
poly formaldehyde unit;stainless steel;corrosion
10.7643/issn.1672-9242.2014.04.019
TG172.9
:A
1672-9242(2014)04-0098-04
2014-05-04;
2014-05-26
Received:2014-05-04;Revised:2014-05-26
郭強(qiáng)(1972—),男,山東人,在讀博士,教授級(jí)高級(jí)工程師,主要研究方向?yàn)榻饘俨牧系母g與防護(hù)。
Biography:GUO Qiang(1972—),Male,from Shandong,Ph.D.candidate,Professor-level senior engineer,Research focus:corrosion and protection of metal materials.