• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Al2O3particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing

    2014-03-09 11:57:18SUVARNARAJUKUMARDepartmentofMechanicalEngineeringKITSHuzuradTelanganIndiaDepartmentofMechanicalEngineeringNITWarangalTelanganIndia
    Defence Technology 2014年4期

    L.SUVARNA RAJU*,A.KUMARDepartment of Mechanical Engineering,KITS(S),Huzurad,TelanganIndia Department of Mechanical Engineering,NIT,Warangal,TelanganIndia

    1.Introduction

    Friction stir processing(FSP),a solid state technique based on the principle of friction stir welding,is used for material processing in order to modify the microstructures and mechanical properties of surface composites and to fabricate the surface composites[1,2].Firstly the tool without pin is used and traverses along the grove consisting of reinforcement particles thus forging it.Later the tool with pin is used and moves along the desired line to cover the region underneath the shoulder.Friction between the tool and work piece results in localized heating that softens and plasticizes the work piece.During this process, the material undergoes plastic deformation,thus resulting in grain re finement to improve its mechanical properties.

    Pure copper is used in many industrial applications due to its high thermal and electrical conductivity,plasticity,softness and formability.Although pure copper is mostly used in electrical applications such as high-performance electric switches and sliding contact materials[3].However,excessively high softness besides low hardness and wear resistance of pure copper limit its structural applications.Ceramics,such as alumina(Al2O3)are good choice for the improvement of high hardness and wear resistance of pure copper.Since alumina is insoluble in the copper matrix,its original particle size nor spacing is neither altered even at high temperature.This characteristic of alumina makes the strength and conductivity of the resulting composite stable even at elevated temperature[4].Copper is selected as matrix material owing to its superior properties and it has proved its usefulness ranging from domestic to space and defense applications.In recent years,copper matrix composites have been shown to be promising candidates in several applications such as those in homo-polar machines,spot welding electrodes and seam welding wheels,heat exchangers,rotating source neutron targets and rocket nozzles[5].Furthermore,these composites are superior in nature for elevated temperature applications when reinforced with ceramic particles.These copper surface composites with reinforcement of ceramic particles are used in an environmentwhere wear resistance is of prime consideration.

    Sun and Fujii[6]fabricated Cu-SiC surface composite via FSP in one and two passes,the joints processed after two passes resulted in a particle-rich and free region formed in the stir zone(SZ),the particle rich region consists of re fined grain structure due to the SiC particles(SiCp)stimulated nucleation in the dynamic recrystallization(DRX)of copper during the FSP process.Barmouz et al.[7]fabricated the Cu/SiC surface composites via FSP with 5 μm and 30 nm SiCp and without SiCp by varying the volume fraction.From the result,it is observed that FSP of pure copper without powder increased the percentage of elongation and decreased the tensile strength whereas FSP of copper with SiCp it is observed that the tensile properties of the surface composites were slightly lower than the base metal(BM).Several researchers[2,8]reported that the process parameters like tool pin pro fi le,tool rotation rate,traveling speed and tool penetration depth,exhibited signi ficant effects on the properties of metal matrix composites.Azizieh et al.[9]studied the effect of rotation speed and probe pro fi le on microstructure and hardness of AZ31/Al2O3nano composites.Mahmoud et al.[10]and Kurt et al.[11]investigated the effect of rotation speed and traveling speed on formation and obtained properties of Al/SiC composites.This conventional parametric design of experiment approach is time-consuming and calls for enormous resources.Hence efforts must be placed on developing effective,analytical methods to study FSP process.To study the effect of process parameters by limiting the number of experiments using statistical methods such as the Taguchi approach could be very useful[12].

    From the reported literature,it is observed that in fluence of Al2O3reinforced particles on mechanical properties of Cu-Al2O3surface composites(CASCs)via FSP was not studied.Hence the objective of present investigation is to study the in fluence of reinforcement particles on mechanical properties of CASCs fabricated via FSP and obtain the optimum combinations using Taguchi method.In respect of this,the Taguchi L9method was adopted to analyze the effect of each processing parameters(i.e.volume percentage of reinforcement particles,tool tilt angle and concave angle of shoulder)for optimum tensile strength of CASCs produced by one pass FSP.

    2.Experimental procedure

    In this study a pure copper plate with dimensions of 200 mm×100 mm×3 mm was used to fabricate the surface composites with a vertical milling machine(Make HMT FM-2,10 hp,3000 rpm).In order to produce surface composites 20 μm Al2O3particles(Al2O3p)were contrived in a square groove.The square groove was made in the advancing side which is 1 mm far away from the centre line of the tool rotation on the copper plate[13]and the groove size was varied.The Al2O3p were compressed into the groove and the upper surface of the groove was closed with a FSP tool without pin to prevent Al2O3p to escape from the groove.In the next stage the tool is plunged with the pin into the plate to stir the material along with the reinforcement(stir zone)to produce the surface composites.The schematic sketch of FSP to produce surface composite is shown in Fig.1.The optimum rotational and traverse speeds,resulting in an optimum level of mechanical properties were taken as 900 rpm and 40 mm/min respectively[14].Mechanical properties of the BM are presented in Table 1.H-13 tool steel with shoulder diameter,square pin diameter and length of the pin are considered as 24,8 and 2.5 mm respectively.The specimens were clamped on to backing plate and fi xed by the bolts.Single pass FSP was used to fabricate CASCs.

    After FSP,microstructural observations were carried out at the cross section of SZ of surface composites normal to the FSP direction,mechanically polished and etched with 100 ml distilled water,15 ml HCl and 2.5 g ferric chloride.Microstructure changes were observed by optical microscope(Model:Nikon;Make:Epiphot 200),in the SZ.

    The tensile specimens were prepared as per the ASTM E8 standards by Wire cut Electrical Discharge Machine to the required dimensions which is normal to the FSP direction.The tensile test was conducted with the help of a computer controlled universal testing machine(Model:Autograph;Make:Shimatzu)at a cross head speed of 0.5 mm/min.Similarly the impact specimens were taken in transverse to the processing direction as per ASTM A370 standards.The charpy‘V’notch impact test was carried out using pendulum type impact testing machine at room temperature.The schematic sketch of both tensile and impact specimens were shown in Fig.2.The fractured surfaces of the tensile and impact tested specimens were analyzed using a scanning electron microscopy (SEM-Hitachi,SU 6600)to study thefracture morphology and establish the nature of the fracture.

    Microhardness test was carried out using Vickers digital microhardness tester(Model:Autograph,Make:Shimatzu)with a 15 g load for 15 s duration at the cross section of SZ of surface composites normal to the FSP direction.

    2.1.Experimental design using Taguchi's method

    The working range of selected parameters under the present study and constant process parameters are presented in Tables 2 and 3 respectively.In this study trial experiments were conducted by varying the volume percentage(vol.%age)of the reinforcement particles and keeping the other parameters constant to find the working range of vol.%age of reinforcement particles.Feasible levels of the process parameters were chosen in such a way that the surface composite should be free from defects.

    Fig.1.Schematic diagram of friction stir processing.

    Table 1 Mechanical properties of base metal.

    Taguchi's technique has been used widely in engineering design[15].It is an ef ficient tool which enables the up gradation of the performance of the product,process and design with signi fi cant prediction of cost and time[16].The main trust of Taguchi's technique is the use of parameter design,which is an engineering method for product or process design that focuses on determining the parameter settings producing the best level of a quality characteristic with minimum variation.It is simple,ef ficient and systematic approach to determine optimal process parameters.Taguchi design provides a powerful and ef ficient method for designing processes that operate consistently and optimally over a variety of conditions.This technique reduces drastically the number of experiments that are required to model and optimize the responses.Experimental design methods were developed in the early years of 20th century and have been extensively studied by statisticians since then,but they were not easy to use by practitioners[17].Taguchi's approach to design of experiments is easy to be adopted and applied for users with limited knowledge of statistics;hence it has gained a wide popularity in the engineering and scienti fi c community.There have been plenty of recent applications of Taguchi techniques to materials processing for process optimization.The system performance could be optimized by means of systematic setting of design parameters and reducing the fl uctuations.Taguchi's method employs a special design of orthogonal arrays to study entire process parameters space with small number of experiments[18].Taguchi de fines three categories of quality characteristics in the analysis of Signal/Noise ratio(S/N ratio).They are categorized as(i)the Smaller-thebetter(ii)the Larger-the-better and(iii)Nominal-the-better.The S/N ratio for each combination of the process parameters is computed based on Signal Noise analysis.A larger S/N ratio corresponds to better quality characteristics in all the above mentioned three categories.Therefore,the optimum level of process parameters is the level of highest S/N ratio.S/N ratio for Larger-the-better is characterized using Equation(1)

    where ‘η’denotes S/N ratio of experimental values,‘yi’represents the experimental value of the ith experiment and ‘n’is the number of experiments.

    Fig.2.Schematic diagram of tensile and impact specimens.

    Table 2 Working range of the selected parameters.

    In this study,the analysis was carried out using statistical software MINITAB-16.The two points are considered before selection a particular orthogonal array for conducting experiments;i.e.the number of parameters and interactions of interest and the number of levels for the parameters of interest.The non-linear behavior,if it exists among the process parameters can only be studied if more than two levels of the parameters are used.Therefore,each parameter was analyzed at three levels.Each of three level parameters has two degrees of freedom(DF)[DF equals to the number of levels minus one].The total DF required for three parameters each at three levels is six.As per Taguchi's method the total DF of selected orthogonal array must be greater than or equal to the total DF required for the experiment.Hence L9(34)orthogonal array was selected in the present work.Each condition of experiments was repeated twice in order to reduce the noise error effects.The format of L9orthogonal array was presented in Table 4.

    The quality characteristics such as ultimate tensile strength(UTS),yield strength(YS),percentage of elongation(%EL),microhardness and impact toughness(IT)of surface composite were evaluated for all the trials and then statistical analysis of variance was carried out.Based on analysis of variance,the contribution of each element in fl uencing the quality characteristic is evaluated.The optimum combinations of process parameters were predicted and veri fi ed.

    3.Results and discussion

    3.1.Microstructure

    The optical microstructures of all(FSP 1-9)the CASCs were examined and presented in Fig.3.It is observed that the sample made at the optimum condition(i.e.A3B2C1)resulted in uniform distribution of the reinforced particles in the processed zone.This may be due to the position of the groove exactly tangent to the tool pin.It is also observed that,severe plastic deformation and frictional heating in the SZ during FSP resulted in generation of a recrystallized equiaxed microstructure which is due to the occurrence of DRX.

    Table 3 Constant process parameters.

    Table 4 Experimental layout L9(34)orthogonal array.

    3.2.Mechanical properties

    Mechanical properties such as UTS,YS and IT were evaluated and presented in Table 5.It is observed that the increase in UTS and YS of the surface composites is accompanied by a decrease in ductility with increase in volume fraction of the Al2O3particles[19].The increased UTS of the surface composites over the pure copper matrix is due to the grain re finement of copper in the surface composite which can be related to the interaction between the powder particles and dislocations within the matrix.It is also found that with increase in the addition of Al2O3reinforcement particles recrystallization temperature is increased by pinning grain boundaries of the copper matrix and blocking the movement of dislocations and thus improving strength at elevated temperature[20].The elongation of the friction stir processed specimens with the addition Al2O3particles were reduced as compared to the pure copper[21].This may be due to increase in vol.%age of reinforced particles which increases the effective slip distance of dislocations during the deformation.Higher impact toughness value was observed at higher volume fraction of the reinforced particles with copper matrix.This is attributed to the addition of reinforced particles which causes softening of the matrix due to frictional heat of the tool shoulder and pin.

    The highest hardness value of 137 HV have been observed in the SZ for the sample processed at condition of FSP 8.This may be due to presence of finer grains with hard Al2O3particles in the SZ.The continuous DRX due to the stirring action of the tool pin creates new nucleation sites leading to reduction of the grain size.

    3.2.1.Fractography

    The tensile and impact fracture surface of the BM and friction stir processed samples made at FSP 8,FSP 6 and FSP 4 conditions of experimental layout corresponding to optimum,medium and lower values of quality characteristics were analyzed by SEM to reveal the fracture surface morphology and the results are presented in Figs.4 and 5 respectively.The fractured surface of the BM failed in a ductile manner by the micro void coalescence mechanism which shows the fine dimple structure at the fractured surface of the BM.The tensile and impact fracture surfaces of friction stir processed samples made at optimum condition(i.e.A3B2C1)shows ductile fracture as compared to FSP 4 and FSP 6.This may be due to the presence of many fine voids and dimples formed at fractured surfaces in which the grain size is finer for FSPed specimen made at optimum condition.Fracture surface of the FSPed samples under FSP 4 and FSP 6 conditions shows both ductile and brittle failure.This is due to dispersion of very large number of reinforcement Al2O3particles which severely limits the movement of dislocations and decreases the ductility signi fi cantly.

    Fig.3.Optical microstructures of FSP1 to FSP 9 surface composites.

    Regression analysis is used to evaluate the data on all the properties of CASCs.These developed regression equations were used in predicting the UTS,YS and IT within the factorial space exploited.

    3.2.2.Development of regression models

    The responses Y such as UTS,YS and IT are the function of vol.%age of Al2O3,tool tilt angle and concave angle of shoulder.The response function can be expressed as

    Y=f(vol.%age of Al2O3,tooltilt angle,concave angle of shoulder)Y=f(A,B,C)

    Table 5 Mechanical properties of copper-Al2O3surface composite.

    For the three factors,the selected polynomial(regression)could be expressed as

    Fig.4.Fractographs of tensile(a-d)of FSP samples(a)FSP4(b)FSP6(c)FSP8(d)BM.

    Fig.5.Fractographs of impact(a-d)of FSP samples(a)FSP4(b)FSP6(c)FSP8(d)BM.

    where Y denotes the performance characteristics and A,B,and C are the process parameters,b0is the free term of the regression Eq.(2)the coefficients b1,b3and b5are the quadratic terms,b2,b4and b6are the liner terms and ‘3’is the experimental error.The coefficients of the variables are calculated for different responses[22].After determining the coefficients,the regression equations were developed.These equations were used to predict the UTS,YS and IT within the factorial space exploited[23].The correlation coefficients for the observed properties were summarized in Table 6.High correlation coefficient indicates good relationship between the process parameters and t2he observed property data.The coefficient of correlation(R)is de fined as the ratio of explained variation to the total variation and measure of degree of fi t of the model.When it approaches to unity,the developed model fi ts the actual data wit2h given con fi dence.Here all models have higher values of Ri.e.above 95%which means that the regression model provides an excellent explanation of relationship between parameters and responses.All these models are statistically signi fi cant at 95%con fi dence level.

    3.2.3.Optimization and validation of process parameters performance characteristics

    The optimization of vol.%age of reinforced particles,tool tilt angle and concave angle of shoulder using Taguchi technique permits evaluation of the effects of individual elements independent of other elements on the identi fi ed quality characteristics i.e.UTS,YS and IT.The in fluence of process parameters can be evaluated by determining the S/N ratio for each factor at each level.From the main effect plots analysis,the optimum parametric combinations for better mechanical properties are obtained and the predicted values for various responses at optimum condition are calculated using the predicted S/N ratio(ηopt)in the following equation

    where ‘ηjm’is the mean S/N ratio of optimum level and ‘j’is the number of process parameters that affect the response.For validation of the optimum results,experiments are conducted at optimum condition and the results are presented in Table 7.It is observed that experimental values were closer to the optimum values.

    3.2.4.Analysis of variance(ANOVA)

    The main purpose of the ANOVA is the application of a statistical method to identify the effect of individual factors on the process responses.The Taguchi experiment method could not judge the effect of individual parameters on the entire process.The percentage of contribution using ANOVA is used to compensate for this effect.The percentage of contribution is the portion of the total variation observed in the experiment attributed to each signi fi cant factors and/or interaction which is re fl ected.In order to find the effect of process parameters on various responses,ANOVA is performed and the results are presented in Table 8.The calculated F-values of the ANOVA for various responses determine the relative signi fi cance of different process parameters.Results of ANOVA revealed that the process parameters have signi fi cant effect on all the quality characteristics.The same optimum condition is observed in UTS,YS and IT.

    Table 7 Validation of the optimum results.

    3.2.5.Percentage of contribution

    Based on the results presented in Table 8.Vol.%age of reinforcement particles(Al2O3)is found to be the most in fl uencing process parameter followed by tool tilt angle and concave angle atthe toolshoulder.Thepercentageofcontributionisthe portion of the total variation observed in the experiment attributed to each signi fi cant factor.The percentage of contribution is the functionofthe sum ofthe squares for eachsigni fi cantitemand it indicates the relative power of a factor to reduce the variation.If the factor levels are controlled precisely then the total variation could bereduced by anamountwhich isindicated by percentage of contribution.The percentage of the vol.%age of reinforcementparticlesishigherbecausetheseparticlesplayanimportant role in material strength through dislocation and grain boundary pinning mechanism.The presence of hard reinforcement particles thus enhances the hardness.

    4.Conclusions

    The in fluence of process parameters such as vol.%age of Al2O3p,tool tilt angle and concave angle of the shoulder on mechanical properties of Cu-Al2O3surface composites fabricated via FSP were investigated and the following conclusions were drawn.

    1)The process parameters such as vol.%age of Al2O3particles,tool tilt angle and concave angle of the tool shoulder were found to have an important role in the quality of the obtained surface composites.

    2)The same optimum condition(i.e.A3B2C1)is observed in UTS,YS,IT and microhardness of CASCs.This is due to the presence of hard Al2O3reinforcement particles in the copper matrix.

    3)Tensile properties of CASCs increases with increase in the vol.%age of reinforcement particles.This is due to the addition of the hard Al2O3reinforcement particles which increases the recrystallization temperature by pinning grain boundaries of the copper matrix and blocking the movement of dislocations.

    4)Severe plastic deformation and frictional heating in the SZ during FSP resulted in generation of a recrystallized equiaxed microstructure this may be due to the occurrence of DRX.

    5)The tensile and impact fracture surfaces of friction stir processed samples made at optimum condition shows ductile fracture as compared to other conditions.This is due to the presence of fine equiaxed grains which results in the formation of fine voids and dimples at fractured surfaces.

    Table 8 ANOVA analysis results for various responses.

    The authors would like to thank the authorities of National Institute of Technology (NIT), Warangal, Defence Metallurgical ResearchLaboratory(DMRL),Hyderabad,India and one of the author(L.Suvarna Raju)thankful to the Principal and the management of KITS,Huzurabad for their constant support during this work.

    [1]Chang CI,Du XH,Huang JC.Achieving ultra fine grain size in Mg-Al-Zn alloy by friction stir processing.Scr Mater 2007;57:209-12.

    [2]Mishra RS,Ma ZY,Charit I.Frictin stir processing:a novel technique for fabrication of surface composite.Mater.Lett A 2003;341:307-10.

    [3]Kaczmar JW,Pietrzak K,Wlosinsi W.The production and application of metal matrix composite materials.J Mater Pro Tech 2000;106:58-67.

    [4]Shojiro Ochai.Metallic properties of metallic composites.New York:Marcel Dekker Inc.;1994.

    [5]Groza JR,Gibeling JC.Principles of particle selection for dispersion strengthened copper.Mater Sci Eng A 1993;171:115-25.

    [6]Sun YF,Fijji H.The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints.Mater Sci Eng A 2011;528:5470-575.

    [7]Barmouz M,Asadi P,Besharati Givi MK,Taherishargh M.Investigation of mechanical properties of Cu/SiC composite fabricated by FSP:effect ofSiC particles'sizeand volumefraction.MaterSciEngA 2011;528:1740-9.

    [8]Asadi P,Faraji G,Besharati MK.Producing of AZ91/Sic composite by friction stir processing (FSP). Int J Adv Manuf Technol 2010;51(1-4):247-60.

    [9]Azizieh M,KoKaBi AH,Abachi P.Effect of rotational speed and prove pro fi le on microstructure and hardness of AZ31/Al2O3nanocomposites fabricated by friction stir processing.Mater Des 2011;32(4):2034-41.

    [10]Mahmoud ERI,Ikeuchi K,Takahashi M.Fabrication of SiC particle reinforced composite on aluminum surface by friction stir processing.Sci Technol Weld Join 2008;13(7):313-7.

    [11]Kurt A,Uygur I,Cete E.Surface modi fi cation of aluminium by friction stir processing.J Mater Process Technol 2011;21(3):2034-204.

    [12]Mahmoud ERI,Takahashi M,Shibayanagi T,Ikeuchi K.Effect of friction stir processing tool probe on fabrication of Sic particle reinforced composite on aluminum surface. Sci Technol Weld Join 2009;14(5):713-25.

    [13]Devaraju A,Kumar A,Kotiveerachari B.In fluence of rotational speed and reinforcement on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des 2013;45:576-85.

    [14]Kumar A,Suvarna Raju L.In fluence of tool pin pro fi le on friction stir welding of copper.Mater Manuf Process 2012;27(12):1414-8.

    [15]Ross PJ.Taguchi techniques for quality engineering:loss function,orthogonal experiments,parameter and tolerance design.2nded.New York:NY:McGraw-Hill;1996.

    [16]Lakshminarayanan AK,Balasubramanian V.Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA 7039 aluminium alloy joints.Trans Nonferrous Met Soc China 2009;19:9-18.

    [17]Phadke MS.Quality engineering using robust design.Englewood Cliffs,NJ:Prentice-Hall.;1989.

    [18]Sharma P,Verma A,Sidhu RK,Panday OP.Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design.J Mater Process Technol 2005;168:147-51.

    [19]Kheder ARI,Marahleh GS,Al-Jamea DMK.Strengthening of aluminum by SiC,Al2O3and MgO.Jordan J Mech Ind Eng 2011;5:533-41.

    [20]Lianga S,Fana Z,Xua L,Fangb L.Kinetic analysis on AlO/Cu composite prepared by mechanical activation and internal oxidation.Compos Part A Appl Sci Manuf 2004;35:1441-6.

    [21]Barmouz M,Besharati Givi MK,Sey fiJ.On the role of processing parameters in producing Cu/SiC metal matrix composite via friction stir processing:Investigating microstructure,microhardness,wear and tensile behavior.Mater Charact 2011;62(1):108-17.

    [22]Kumar A,Shailesh P,Sundarrajan S.Optimization of magnetic arc oscillation process parameters on mechanical properties of AA 5456 aluminum alloy weldments.Mater Des 2008;29(10):1904-13.

    [23]Mallaiah G,Kumar A,Ravinder Reddy P,Madhusudhan Reddy G.Influence of grain re fining elements on mechanical properties of AISI 430 ferritic stainless steel weldments-Taguchi approach.Mater Des 2012;36:443-50.

    av片东京热男人的天堂| 看黄色毛片网站| 757午夜福利合集在线观看| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| 欧美黑人巨大hd| 色视频www国产| 国产高清三级在线| 亚洲中文字幕日韩| www.999成人在线观看| 成人午夜高清在线视频| 国产成人欧美在线观看| 超碰成人久久| 巨乳人妻的诱惑在线观看| 最近视频中文字幕2019在线8| a级毛片在线看网站| 国产高清有码在线观看视频| 欧美日韩一级在线毛片| 欧美最黄视频在线播放免费| ponron亚洲| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 欧美另类亚洲清纯唯美| 岛国在线观看网站| 久久久国产欧美日韩av| 日本a在线网址| 欧美午夜高清在线| 九色国产91popny在线| 欧美日韩瑟瑟在线播放| 草草在线视频免费看| 精品免费久久久久久久清纯| 免费看日本二区| 欧美日本视频| 午夜福利欧美成人| 在线观看午夜福利视频| 国产 一区 欧美 日韩| 国产精品99久久99久久久不卡| 美女大奶头视频| www日本黄色视频网| 少妇裸体淫交视频免费看高清| 久99久视频精品免费| 国产探花在线观看一区二区| 日韩欧美国产一区二区入口| 亚洲中文av在线| 可以在线观看的亚洲视频| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女| 久久久久性生活片| 国产欧美日韩精品一区二区| 欧美日本亚洲视频在线播放| 99国产综合亚洲精品| xxxwww97欧美| 国产精品一区二区三区四区免费观看 | 国产高清videossex| 老司机在亚洲福利影院| 美女高潮喷水抽搐中文字幕| 黄色片一级片一级黄色片| 国产av麻豆久久久久久久| ponron亚洲| 久久精品综合一区二区三区| 一进一出抽搐动态| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 亚洲国产中文字幕在线视频| 精品国产亚洲在线| 久久久久久大精品| 免费看日本二区| 久久久久国产精品人妻aⅴ院| 日韩 欧美 亚洲 中文字幕| 国产高清有码在线观看视频| 天堂影院成人在线观看| 午夜视频精品福利| 极品教师在线免费播放| 国产成人啪精品午夜网站| 白带黄色成豆腐渣| 亚洲精品色激情综合| 午夜福利视频1000在线观看| 91老司机精品| av中文乱码字幕在线| 极品教师在线免费播放| 国产久久久一区二区三区| 亚洲专区国产一区二区| 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 亚洲最大成人中文| 一a级毛片在线观看| 天天躁日日操中文字幕| 精品国产乱子伦一区二区三区| 色哟哟哟哟哟哟| 国产av不卡久久| bbb黄色大片| 亚洲av成人一区二区三| 少妇丰满av| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 九九在线视频观看精品| 亚洲中文av在线| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 又黄又爽又免费观看的视频| 久久中文看片网| 欧美乱妇无乱码| 脱女人内裤的视频| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| xxx96com| 午夜影院日韩av| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 可以在线观看的亚洲视频| 在线观看舔阴道视频| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 久久久久久久久免费视频了| 人人妻人人澡欧美一区二区| 性色avwww在线观看| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 国产精品久久久久久人妻精品电影| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 久久精品亚洲精品国产色婷小说| 男女做爰动态图高潮gif福利片| 午夜福利免费观看在线| tocl精华| 欧美日韩国产亚洲二区| 国产免费av片在线观看野外av| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 国产精品久久视频播放| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| 天堂影院成人在线观看| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 国产精品亚洲av一区麻豆| h日本视频在线播放| 五月玫瑰六月丁香| 欧美黄色淫秽网站| 全区人妻精品视频| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| or卡值多少钱| 真实男女啪啪啪动态图| 久久久国产欧美日韩av| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 久久草成人影院| 免费av不卡在线播放| 日韩三级视频一区二区三区| 亚洲avbb在线观看| 午夜福利在线观看免费完整高清在 | 欧美+亚洲+日韩+国产| 嫩草影院入口| 中文字幕最新亚洲高清| 国产男靠女视频免费网站| 麻豆av在线久日| 看免费av毛片| 日本 av在线| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 天堂√8在线中文| xxxwww97欧美| av天堂中文字幕网| 叶爱在线成人免费视频播放| 高潮久久久久久久久久久不卡| 国产野战对白在线观看| 美女cb高潮喷水在线观看 | 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| www.www免费av| 成人一区二区视频在线观看| avwww免费| 高清毛片免费观看视频网站| 中文字幕高清在线视频| 精品国产三级普通话版| 欧美日韩福利视频一区二区| 免费av不卡在线播放| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看| 亚洲专区中文字幕在线| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 精品久久久久久,| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 国产免费av片在线观看野外av| 三级毛片av免费| 色老头精品视频在线观看| 在线免费观看的www视频| 久久久久性生活片| 熟女电影av网| 欧美性猛交黑人性爽| 欧美中文综合在线视频| 男女午夜视频在线观看| 午夜福利在线观看吧| 亚洲 欧美一区二区三区| 美女免费视频网站| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 亚洲自拍偷在线| 日本一二三区视频观看| 亚洲一区二区三区不卡视频| 哪里可以看免费的av片| 成人18禁在线播放| 日韩精品青青久久久久久| 精品久久久久久久末码| 少妇的逼水好多| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 亚洲精华国产精华精| 中文字幕av在线有码专区| 亚洲美女视频黄频| 狂野欧美激情性xxxx| 日韩欧美 国产精品| 欧美激情在线99| 日日摸夜夜添夜夜添小说| 日本 av在线| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费| 日韩高清综合在线| 国产精品一区二区三区四区免费观看 | 99国产综合亚洲精品| 精品久久久久久久久久免费视频| 九九久久精品国产亚洲av麻豆 | 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 亚洲无线观看免费| 成人特级av手机在线观看| 黄色丝袜av网址大全| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 免费大片18禁| 波多野结衣巨乳人妻| 久久久成人免费电影| 久久久久性生活片| 日韩精品青青久久久久久| 桃红色精品国产亚洲av| 成年版毛片免费区| 两个人视频免费观看高清| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| 一本精品99久久精品77| 午夜a级毛片| 久久这里只有精品19| 一个人看视频在线观看www免费 | 99久久精品国产亚洲精品| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 在线国产一区二区在线| 国产高清视频在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩 | 欧美黄色淫秽网站| 亚洲在线自拍视频| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看| 国产午夜精品久久久久久| 中文在线观看免费www的网站| 丁香欧美五月| 久久精品国产99精品国产亚洲性色| 亚洲专区中文字幕在线| 可以在线观看的亚洲视频| 久久精品91蜜桃| 嫩草影院入口| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| 国产精品一及| 九色国产91popny在线| 国产精品av视频在线免费观看| 国产亚洲欧美98| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线 | 久久精品人妻少妇| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 国产亚洲av嫩草精品影院| 色老头精品视频在线观看| 免费观看人在逋| 亚洲av成人一区二区三| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 19禁男女啪啪无遮挡网站| 久久热在线av| 成人精品一区二区免费| 亚洲国产欧美人成| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆 | 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产 | 亚洲欧美激情综合另类| 亚洲精品在线观看二区| 很黄的视频免费| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看| 欧美成狂野欧美在线观看| 午夜两性在线视频| 久久久久九九精品影院| 亚洲中文字幕日韩| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 黄片大片在线免费观看| av福利片在线观看| 久久亚洲真实| 亚洲欧美精品综合一区二区三区| 久久精品91无色码中文字幕| 麻豆成人av在线观看| 午夜福利在线观看吧| 国产乱人伦免费视频| 欧美激情在线99| www日本在线高清视频| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 综合色av麻豆| 91在线观看av| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 又黄又粗又硬又大视频| 99国产精品一区二区蜜桃av| 精品福利观看| 又大又爽又粗| 久久精品91蜜桃| 青草久久国产| 午夜两性在线视频| 欧美色视频一区免费| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| av在线蜜桃| 真人一进一出gif抽搐免费| 亚洲一区二区三区色噜噜| 美女cb高潮喷水在线观看 | 亚洲人成伊人成综合网2020| 此物有八面人人有两片| 亚洲欧美激情综合另类| 亚洲美女黄片视频| 国产成人欧美在线观看| 午夜福利欧美成人| 久久伊人香网站| 久久亚洲精品不卡| 亚洲第一电影网av| 黄片小视频在线播放| 伦理电影免费视频| 亚洲av美国av| 国产激情欧美一区二区| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 国产黄片美女视频| 欧美zozozo另类| 亚洲最大成人中文| 欧美黑人巨大hd| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 国产精品国产高清国产av| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 久久香蕉国产精品| 在线观看舔阴道视频| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 两个人看的免费小视频| 床上黄色一级片| 看片在线看免费视频| 久久久国产精品麻豆| 国产欧美日韩精品一区二区| 舔av片在线| 久久精品亚洲精品国产色婷小说| 男女视频在线观看网站免费| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 日本五十路高清| 亚洲第一欧美日韩一区二区三区| 草草在线视频免费看| 国产高清videossex| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 岛国在线免费视频观看| 在线a可以看的网站| 成年人黄色毛片网站| 国产午夜福利久久久久久| 熟女人妻精品中文字幕| 亚洲国产精品999在线| 蜜桃久久精品国产亚洲av| 久久中文看片网| 亚洲 欧美一区二区三区| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 青草久久国产| 久久久久亚洲av毛片大全| 亚洲成a人片在线一区二区| 亚洲自拍偷在线| 精品久久久久久成人av| 97超视频在线观看视频| 国产成人精品久久二区二区免费| av视频在线观看入口| 女同久久另类99精品国产91| 日韩有码中文字幕| 日韩欧美精品v在线| 日韩欧美在线二视频| 亚洲精品色激情综合| 一区二区三区国产精品乱码| 成人午夜高清在线视频| 午夜福利在线观看免费完整高清在 | 亚洲熟妇中文字幕五十中出| 成人特级黄色片久久久久久久| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 午夜福利在线观看吧| 国产99白浆流出| 精品欧美国产一区二区三| 91字幕亚洲| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 久久天堂一区二区三区四区| 可以在线观看毛片的网站| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| 中国美女看黄片| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 巨乳人妻的诱惑在线观看| 国产综合懂色| 亚洲av日韩精品久久久久久密| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 中文亚洲av片在线观看爽| 国产真实乱freesex| 久久久久亚洲av毛片大全| 91麻豆av在线| 色吧在线观看| 波多野结衣巨乳人妻| 一个人免费在线观看电影 | 欧美日韩福利视频一区二区| 少妇人妻一区二区三区视频| 久久人妻av系列| 亚洲av电影在线进入| 欧美激情久久久久久爽电影| 国产精华一区二区三区| 精品人妻1区二区| 成熟少妇高潮喷水视频| 一二三四社区在线视频社区8| 中文字幕av在线有码专区| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播放欧美日韩| 久久九九热精品免费| 男人舔女人的私密视频| 成熟少妇高潮喷水视频| 日本精品一区二区三区蜜桃| 久久精品亚洲精品国产色婷小说| 一本久久中文字幕| 男女午夜视频在线观看| 中文在线观看免费www的网站| 亚洲无线在线观看| 亚洲色图av天堂| 久久午夜亚洲精品久久| 成人三级黄色视频| 国产成人av激情在线播放| 国内毛片毛片毛片毛片毛片| 日韩中文字幕欧美一区二区| e午夜精品久久久久久久| 99久久精品热视频| 在线国产一区二区在线| 最近最新免费中文字幕在线| 亚洲 欧美 日韩 在线 免费| 国产日本99.免费观看| 他把我摸到了高潮在线观看| 欧美高清成人免费视频www| 亚洲五月天丁香| 久久精品人妻少妇| 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 少妇熟女aⅴ在线视频| 美女cb高潮喷水在线观看 | 国内久久婷婷六月综合欲色啪| 国产一区二区激情短视频| 国产毛片a区久久久久| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 啦啦啦观看免费观看视频高清| 舔av片在线| 757午夜福利合集在线观看| 青草久久国产| 搡老岳熟女国产| 中文字幕久久专区| 欧美在线一区亚洲| 午夜福利高清视频| 可以在线观看的亚洲视频| 一区福利在线观看| 中文字幕高清在线视频| 国产精品久久视频播放| 神马国产精品三级电影在线观看| 级片在线观看| 嫩草影院精品99| 亚洲人成网站在线播放欧美日韩| 色视频www国产| 美女高潮喷水抽搐中文字幕| 免费看光身美女| 麻豆国产av国片精品| 一a级毛片在线观看| 国产激情偷乱视频一区二区| 一个人观看的视频www高清免费观看 | АⅤ资源中文在线天堂| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| 日韩欧美一区二区三区在线观看| 国产亚洲精品av在线| 高清毛片免费观看视频网站| 无遮挡黄片免费观看| 人妻久久中文字幕网| 少妇丰满av| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 成人永久免费在线观看视频| 久久久色成人| 午夜a级毛片| 欧美高清成人免费视频www| 久久久久九九精品影院| 丁香欧美五月| 99久久精品一区二区三区| 欧美xxxx黑人xx丫x性爽| av天堂在线播放| 欧美大码av| 亚洲av第一区精品v没综合| 久久久久久人人人人人| 国产精品永久免费网站| 听说在线观看完整版免费高清| 成年女人看的毛片在线观看| 99久久综合精品五月天人人| 国产精品日韩av在线免费观看| 麻豆成人av在线观看| 首页视频小说图片口味搜索| 亚洲精品美女久久av网站| 国产精品98久久久久久宅男小说| xxxwww97欧美| 国产欧美日韩精品亚洲av| 国语自产精品视频在线第100页| 日韩有码中文字幕| 国产精品一及| 在线十欧美十亚洲十日本专区| 成人av在线播放网站| 成人三级黄色视频| 天堂av国产一区二区熟女人妻| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品sss在线观看| 国产精品野战在线观看| 免费看十八禁软件| 美女大奶头视频| 99国产精品99久久久久| 午夜福利视频1000在线观看| 午夜福利欧美成人| 亚洲午夜理论影院| 亚洲欧美日韩高清专用| 99久久精品热视频| 国产免费男女视频| 久99久视频精品免费| 国产91精品成人一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| av女优亚洲男人天堂 | 真人做人爱边吃奶动态| 最近最新免费中文字幕在线| 久久国产乱子伦精品免费另类| 可以在线观看毛片的网站| 又大又爽又粗| 99re在线观看精品视频| 一级毛片高清免费大全| 亚洲成av人片免费观看|