• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scale-up synthesis and characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide

    2014-02-15 06:02:12HaibinWANGYanhongWANGYongxiangLIYucunLIUYingxinTAN
    Defence Technology 2014年4期

    Hai-bin WANG,Yan-hong WANG,Yong-xiang LI,Yu-cun LIU*,Ying-xin TAN

    School of Chemical and Environmental Engineering,North University of China,Taiyuan 030051,China

    Scale-up synthesis and characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide

    Hai-bin WANG,Yan-hong WANG,Yong-xiang LI,Yu-cun LIU*,Ying-xin TAN

    School of Chemical and Environmental Engineering,North University of China,Taiyuan 030051,China

    2,6-diamino-3,5-dinitropyrazine-1-oxide(ANPZO),as an insensitive high explosive,with a high yield and excellent purity has been prepared at pilot plant scale by an improved method.The synthesized ANPZO is characterized by IR,laser granularity measurement,SEM and HPLC. The particle analysis revealed that the improved method could offer desired product with average particle size of 40 μm and high purity (>98.45%).The experimental parameters exhibited that the detonation velocity of the formulation based on ANPZO was higher than that of the corresponding TATB formulation.The DSC curve showed that the exothermic decomposition of the product occurred at the temperature between 300.5°C and 360.4°C.Furthermore,the sensitivity test suggests its safe nature towards mechanical stimulus.

    ANPZO;Synthesis;Characterization;Detonation velocity;Sensitivity

    1.Introduction

    The quest for new high energetic materials(HEMs)with highest possible performance and low vulnerability led to the development of insensitive high explosive(IHE)[1].ANPZO has attracted substantial attention from researchers in energetic material feld.ANPZO is an energetic heterocycle compound with a density of 1.913 g/cm3.Its structure with monoclinic space group is shown in Fig.1[2].ANPZO has about 20%and 81%more energy than TATB and HMX, respectively.Besides,ANPZO is thermally stable and insensitive to shock,spark as well as friction.It has impact sensitivity level approaching that of TATB.Moreover,ANPZO can be used in military and civil applications,such as insensitive booster,main charge explosive and deep oil well explorations, based on its excellent properties[3-6].Hence,ANPZO is emerging as a realistic high performance IHE material for several applications that require moderate performance and insensitivity.

    In view of the above,it is worth working on the synthesis of ANPZONPZO was frst reported by Talawar et al.[7],since then different synthetic methods of ANPZO have been developed.Pagoria et al.[8]prepared ANPZO in low yield (about 36%).In fact,this method is limited by collection methoxylation intermediate and drastic nitration reaction condition.Tran et al.[9]obtained ANPZO in laboratory scale by an alternative approach.This method modifed the nitration reaction condition.However,this method has some limitations in terms of cost and product purity.Li[10]also synthesized ANPZO based on the alternative approach.It seems that those reported methods can not be used to prepare desirable ANPZO with convenient methods.Moreover,the preparation of ANPZO by the reported methods suffers from three of the main drawbacks:(a)diffculty of collecting alkoxylation intermediate due to its sublime at room temperature;(b)low yield of product;and(c)expensive cost of synthesis.Therefore,these disadvantages limit its engineering production and further application.

    Fig.1.Structure of ANPZO.

    In order to solve these problems mentioned above,an intensive study on the synthesis of ANPZO hasbeen taken.However, no detailed information about actual process parameters for the synthesis of ANPZO is readily available in open literature.

    The paper discusses the characterization of ANPZO.In short,the highlights of this study are as follows:(a)detailing the synthetic parameters;(b)improving the overall yield of product;(c)reducing the cost of production;and(d)recovering and recycling expensive trifuoroacetic acid(TFA).

    2.Experiment

    2.1.Materials

    TATB was supplied by Liaoning Huafeng Chemical Industry Co.,Ltd.The other chemicals and reagents without further purifcation used in the present study were purchased from the market.

    2.2.Synthesis

    2.2.1.Synthesis of ANPZO

    In this work,desired ANPZO was synthesized in a yield of 45%in large-scale production by the improved method with a four-step reaction process(see Fig.2).The frst step of this process is to use alkoxylation of 2,6-dichloropyrazine to obtain 2,6-dimethoxypyrazine(DMP).Then,the next two steps are to nitrify DMP to generate 2,6-dimethoxy-3,5-dinitropyrazine(DMDP),which undergoes a subsequent amination to offer 2,6-diamino-3,5-dinitropyrazine (ANPZ).The fnal step is to oxidize ANPZ to yield product ANPZO.

    2.2.1.1.Synthesis of DMP.17.1 kg 2,6-dichloropyrazine was added to 125 L methanol.Then the mixture was stirred,and about 24.7 kg of sodium methoxide was added into the reaction solution within 40 min.The mixture was heated up to 60°C under refux condition for 5 h,then cooled and poured into 125 L water.The product was extracted with 50 L ether.The extracts were dried with magnesium sulfate and concentrated up to dryness at low temperature to give 14.7 kg white solid of DMP,with a yield of about 92%.

    2.2.1.2.Synthesis of DMDP.14.7 kg DMP was added to 60 L of 98%sulfuric acid in 30 min.Then the suspension was stirred,and 22 kg sodium nitrate wasadded slowly. Throughoutthe addition,the temperature waskeptat 10-15°C by use of water-ethylene glycol cooling.After completion of addition,the sodium nitrate and the mixture was allowed to warm to 25°C and kept at 25°C for 4 h.The reaction mixture was gradually added into ice-cold water.The precipitate was fltered off,and the precipitated solid was washed with water and dried in air to offer 13.1 kg DMDP with a yield of about 54%.

    Fig.2.Reaction sequence of ANPZO.

    2.2.1.3.Synthesis of ANPZ.13.1 kg DMDP was added to 74 L methanol.Then 66 L of 25%aqueous ammonia solution was added rapidly to the stirred suspension of DMDP.The mixturewas refuxed at 60°C for 6 h.After cooling the reaction mixture,the precipitate was fltered off,the precipitated solid was washed with water and dried in air to give 10.8 kg yellow ANPZ powder with yield of 95%.

    2.2.1.4.Synthesis of ANPZO.10.8 kg ANPZ was added to 220 L TFA.22 L of 50%hydrogen peroxide was added to the stirred suspension of ANPZ through a constant fow pump within 35 min.The reaction mixture was heated to 30°C and stirred for 24 h.After 12 h,8 L of 50%hydrogen peroxide was added,and after 24 h,the reaction mixture was warmed to 50°C for a further 1 h.The reaction mixture was cooled to room temperature.The precipitate was fltered,the precipitated solid was washed with water and dried in air to yield 11.0 kg ANPZO as brilliant yellow powder with a yield of 95%and an overall yield of 45%.

    The waste fltrate of TFA was neutralized by sodium hydroxide to obtain sodium trifuoroacetate followed by its acidifcation with concentrated sulfuric acid.The acidizing mixture was distilled at a temperature between 70°C and 75°C under atmospheric pressure.The results show that the recovery rate and purity of TFA are above 80%and 96%(see Fig.3),respectively.Moreover,the recovered TFA can be used in the synthesis of ANPZO.

    2.3.Preparation of ANPZO and TATB formulations

    95 g synthesized ANPZO was added to 500 mL water.The suspension of ANPZO was stirred and heated to 60°C.50 g of 10%Viton A binder solution was added dropwise to the ANPZO-water slurry through constant fow pump over a period of 20 min.After addition of Viton A binder solution, agitation was continued for 5 min at 60°C.The precipitate was fltered off,the precipitated solid was washed with water and dried in air to obtain coated ANPZO particles with 5% Viton A binder in a good free fowing form.

    TATB was coated with 5%Viton A binder by the same method.

    Fig.3.HPLC of ANPZO.

    2.4.General methods

    The crystal morphologies were examined by LE0438VP scanning electron microscope(SEM)(Britain)at 12 kV and 10 μA.A laser particle sizer(LS230,USA)was used for the study of particle size distribution.The structural feature of ANPZO was confrmed by using 8400S infra-red spectrophotometer(Japan),using KBr pellets.The purity of the synthesized ANPZO and recovered TFA was determined by HPLC system[11].The detonation velocity of formulations was tested by probes according to GJB-772A-97 standard method 702.1.The cylinder of coated ANPZO particles was molded at 120°C under 180 MPa pressure with a dwell time of 15-20 s,having a density of 1.80 g/cm3(94%TMD). Likewise,the coated TATB particles were pressed as a reference.The differential scanning calorimeter(DSC)analysis results were recorded on a Netzsch DSC 204 differential scanning calorimeter(Germany)by heating 1.155 mg of ANPZO sample in nitrogen(50 ml/min)atmosphere at a rate of 5°C/min.CGY-1 impact instrument was used to test the impact sensitivity of ANPZO,and each sample(50 mg)was tested 35 times to obtain a H50(height)for 50%probability of explosion with 2.5 kg of drop weight[12].

    3.Results and discussion

    3.1.Synthesis

    ANPZO was synthesized on a multi-kilogram scale by the improved method including methoxylation,nitration,amination and N-oxidation which are all typical reactions in the preparation of explosives except for methoxylation.

    2,6-Dichloropyrazine is methoxylated to yield DMP by replacing of both chlorine atoms in 2,6-dichloropyrazine by methoxy groups.As a result,the intermediate DMP is easier to collect and save in comparison to the convenient synthesis. Moreover,the next nitration can proceed more readily, because the presence of the methoxy groups on the pyrazine ring activates the system towards electrophilic attack.

    The synthesis of DMDP involves the reaction of DMP with 98%sulfuric acid and sodium nitrate at 25°C.This nitration method not only improves the yield of DMDP and safety but also favors the scale-up synthesis of ANPZO.It can be explained that nitration may proceed completely and smoothly by the addition of electron donating substituents to the pyrazines[13].

    During the amination,ANPZ is obtained by treating DMDP with aqueous ammonia in methanol instead of acetonitrile. Further experiments show that there is no obvious difference in the yields of ANPZ for different kinds of solvents such as methanol,acetonitrile and acetone.Hence,methanol is a better choice in terms of cost of synthesis of ANPZ.

    The reported methods were used to prepare ANPZO containing 5-10%ANPZ without oxidation in the solid-liquid reaction[14].But the improved method is to use the reoxidation technology to prepare desired product by adding extra hydrogen peroxide into mother liquid at certain reaction time.

    In a word,the advantages of the method proposed in this study,compared with the reported methods,are easy collection and preservation of intermediate DMP,milder nitration condition and higher safety in favor of scale-up synthesis, higher yield and purity of ANPZO,and remarkable reduction in the cost of synthesis of product due to the recovery and recycle of expensive TFA.

    3.2.Infrared spectrum f ANPZO

    As seen from Fig.4,the IR spectrum of ANPZO reveals the absorption bands and characteristics frequencies of orther groups.ANPZO exhibits the characteristic IR stretching frequencies at 3432,3404,3283 and 3229 cm-1due to NH2groups[15,16].Further,the other vibrations observed in IR spectrum at 924,815 and 533 cm-1may be attributed to the frequencies of pyrazine ring.The spectral pattern obtained from ANPZO is in good agreement with the structure,and therefore the structural features of ANPZO are confrmed by IR spectroscopy.

    3.3.SEM and laser granularity measurement of ANPZO

    The SEM image of ANPZO is shown in Fig.5.The surface of ANPZO synthesized by the improved method has cubic crystal morphology with smooth particle surfaces.The average particle size of ANPZO is 40 μm,which is measured using a laser particle sizer(see Fig.6).This average particle size is slightly bigger than the reported data[14].It was found that the particle size of ANPZO becomes bigger as reaction temperature increases.This is because the crystal growth rate increases with the reaction temperature.Further,the experiments show that the morphology of ANPZO crystals changes from cubic shape to cubic rod shape with the increase in stirring speed.For instance,ANPZO with cubic rod-shaped crystal morphology was obtained under a higher stirring speed(500 rpm/min).It may be attributed to the fact that a higher stirring speed can decrease the thickness of retention layer,which contributes to the rapid growth of ANPZO crystal along its radial direction[17,18].

    Fig.4.IR spectrum of ANPZO.

    Fig.5.SEM image of ANPZO.

    3.4.Properties of formulations

    The coated ANPZO and TATB samples were pressed into 25.10 mm diameter and 25.20 mm long cylindrical samples in the detonation velocity test.The properties of the formulation are summarized in Table 1.The detonation velocity of ANPZO formulation is obviously higher than that of TATB formulation.It indicated that ANPZO has greater power than TATB due to its favorable oxygen balance and unique pyrazine ring structure.In addition,the new ANPZO formulation consisting of a mixture of coarse ANPZO(70 mass%)and fne ANPZO (25 mass%)with 5%Viton A binder has a detonation velocity of 8250 m/s with a pressing density of 1.86 g/cm3.It can be explained that the mixing of coarse and fne ANPZOs can increase the pressing density of formulation,so the new ANPZO formulation gets a higher detonation velocity.

    3.5.DSC curve

    The DSC curve of ANPZO is shown in Fig.7.The DSC results obtained from the DSC plot,with a heating rate of 5°C/min,indicates that a clear exothermic decomposition occurs between 300.5°C and 360.4°C with peak maximum (Tmax)at 345.3°C.Further,the energy output during the decomposition reaction is 598.2 J/g.The DSC data show that ANPZO has higher thermal stability than the most known high explosive.

    3.6.Sensitivity test

    Fig.6.Laser granularity measurement of ANPZO.

    ANPZO and TATB were subjected to impact sensitivity test.The test data of impact sensitivity are listed in Table 2. The results of drop hammer test show that both ANPZO and TATB are insensitive to mechanical impact.This is because of the presence of amino groups adjacent to nitro groups in both molecules[19].Therefore,they display an excellent insensitivity.However,it was found that ANPZO is sensitive to particle morphologies.For example,the impact sensitivities of ANPZO particle with needle-shape and ANPZO particle with cubic morphology are 85 cm and 115 cm,respectively.Needle-shaped particle has very coarse surface and exterior defects,which can lead to the increase in hot spots[20], consequently the former is more sensitive to impact than the latter.

    Table 1Properties of ANPZO and TATB formulations.

    Fig.7.DSC curve of ANPZO.

    Table 2Impact sensitivity data of ANPZO and TATB.

    4.Conclusions

    The improved method for the preparation of ANPZO with higher yield and excellent purity on industrial scale was established.The experimental results show that the improved method is effcient and economic for the preparation of ANPZO.It not only improves the yield and purity of ANPZO but also reduces the cost of production.The HPLC and SEM analysis indicated that ANPZO with higher purity(>98.45%)has an average particle size of 40 μm.The detonation velocity test revealed that ANPZO formulation has higher energy than TATB.The DSC plot and impact sensitivity test exhibited that ANPZO is thermally stable and insensitive to mechanical stimuli.Moreover, based on the excellent properties and scale-up synthesis of ANPZO,it is a very promising candidate for replacement of TATB as an insensitive high performance explosive.

    Acknowledgments

    We would like to express our gratitude to Wei-yan LI and Ping-li YU for their enthusiastic help for this work.

    [1]Anniyappan M,Talawar MB,Gore GM,Venugopalan S,Gandhe BR. Synthesis,characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene(FOX-7)and its salts.J Hazard Mater 2006;B137:812-9.

    [2]Ma HX,Song JR,Zhao FQ,Gao HX,Hu RZ.Crystal structure,safety performance and density-functional theoretical investigation of 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105). Chin J Chem 2008;26:1997-2002.

    [3]P.F.Pagoria,G.S.Lee,A.R.Mitchell,R.D.Schmidt,The synthesis of amino-and Nitro-Substituted heterocycles as insensitive energetic materials,in Proceedings of 2001 Insensitive Munitions&Energetic Materials Technology Symposium,Bordeaux,France,https://e-reports-ext. llnl.gov/pdf/244204.pdf2001.

    [4]Millar RW,Hamid J,Endsor R.Selection and synthesis of energetic heterocyclic compounds suitable for use in insensitive explosive and propellant compositions.Propell Explos Pyrot 2008;33:66-72.

    [5]Badgujar DM,Talawar MB,Asthana SN,Mahulikar PP.Advances in science and technology of modern energetic materials:an overview.J Hazard Mater 2008;151:289-305.

    [6]P.F.Pagoria,A.R.Mitchell,R.D.Schmidt,R.L.Simpson,F.Garcia,J.W. Forbes,Synthesis,Scale-up and Characterization of 2,6-Diamino-3,5-dinitropyrazine-1-oxide(LLM-105),JOWOG 9,Aldermaston,England, June 22-26,http://www.osti.gov/bridge/servlets/purl/672328-tIIGju/ webviewable/672328.pdf,1998.

    [7]Talawar MB,Sivabalan R,Anniyappan M,Gore GM,Asthana SN, Gandhe BR.Emerging trends in advanced high energy materials. Combust Explo Shock 2007;43:62-72.

    [8]Pagoria PF,Lee GS,Mitchell AR,Schmidt RD.A review of energetic materials synthesis.Thermochim Acta 2002;384:187-204.

    [9]T.D.Tran,P.F.Pagoria,D.M.Hoffman,J.L.Cutting,R.S.Lee,R.L. Simpson,Characterization of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (LLM-105)as an insensitive high explosive material,in Proceedings of 33rd International Annual Conference on ICT on energetic materialssynthesis,production and applications,Karlsruhe,Germany,June 25-28,https://e-reports-ext.llnl.gov/pdf/244397.pdf,2002.

    [10]Li HB,Cheng BB,Li HZ,Nie FD,Li JS,Huang Z,Liu SJ.Synthesis of 2,6-Diamino-3,5-Dinitropyrazine-1-oxide, Chinese. J Org Chem 2007;27:112-5[Chinese].

    [11]Sikder N,Bulakh NR,Sikder AK,Sarwade DB.Synthesis,characterization and thermal studies of 2-oxo-1,3,5-trinitro-1,3,5-triazacyclohexane (Keto-RDX or K-6). J Hazard Mater 2003;A96:109-19.

    [12]Wang JY,Huang H,Xu WZ,Zhang YR,Lu B,Xie RZ,Wang PY,Yun N. Preflming twin-fuid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization.J Hazard Mater 2009;162:842-7.

    [13]Agrawal JP,Hodgson RD.Organic chemistry of explosive.1st ed.Chichester:John wiley&Sons Ltd;2007.

    [14]D.M.Hoffman,K.T.Lorenz,B.Cunningham,F.Gagliardi,Formulation and Mechanical Properties Of LLM-105 PBXs,39th International Annual Conference of ICT,Karlsruhe,Germany,June 24-27,https://ereports-ext.llnl.gov/pdf/359699.pdf,2008.

    [15]Bellamy AJ.A study of the synthesis and amination of 2,6-Dialkoxy-3,5-dinitropyrazines.Cent Eur J Energ Mater 2008;5:3-9.

    [16]Jadhav HS,Talawar MB,Sivabalan R,Dhavale DD,Asthana SN, Krishnamurthy VN.Synthesis,characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles:potential insensitive high energy material.J Hazard Mater 2007;143:192-7.

    [17]Jiang RG,Liu ZT.Initiating explosive,1.Beijing:Ordnance Industry Press of China;2006[Chinese].

    [18]Li WJ,Shi EW,Zhong WZ,Yin ZW.Growth mechanism and growth habit of oxide crystals.J Cryst Growth 1999;203:186-96.

    [19]Zhou L.Base of explosion chemistry,1.Beijing:Beijing Institute of Technology Press;2005[Chinese].

    [20]Armstrong RW,Ammon HL,Elban WL,Tsai DH.Investigation of hot spot characteristics in energetic crystals. Thermochim Acta 2002;384:303-13.

    Received 1 April 2014;revised 25 June 2014;accepted 14 July 2014 Available online 23 August 2014

    *Corresponding author.Tel.:+86 351 3922116;fax:+86 351 3922118. E-mail address:whaibin@nuc.edu.cn(Y.C.LIU).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.07.008

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    最近中文字幕高清免费大全6 | 最近视频中文字幕2019在线8| 国产精品一区二区性色av| 看黄色毛片网站| 成熟少妇高潮喷水视频| 亚洲不卡免费看| 日韩亚洲欧美综合| 国产黄色小视频在线观看| 免费高清视频大片| 久久人人精品亚洲av| 麻豆久久精品国产亚洲av| 少妇熟女aⅴ在线视频| 波多野结衣巨乳人妻| 欧美潮喷喷水| 成人美女网站在线观看视频| 久久久久国内视频| 婷婷六月久久综合丁香| 国产极品精品免费视频能看的| 欧美一级a爱片免费观看看| 能在线免费观看的黄片| 1024手机看黄色片| 毛片一级片免费看久久久久 | 一区二区三区激情视频| 91狼人影院| 窝窝影院91人妻| 在线观看舔阴道视频| 乱码一卡2卡4卡精品| 欧美在线一区亚洲| 一级a爱片免费观看的视频| 国产精品不卡视频一区二区 | 一本综合久久免费| 欧美乱妇无乱码| 国产蜜桃级精品一区二区三区| 小说图片视频综合网站| 久久伊人香网站| 亚洲国产精品成人综合色| 美女免费视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲人成伊人成综合网2020| 女生性感内裤真人,穿戴方法视频| av在线蜜桃| 白带黄色成豆腐渣| 白带黄色成豆腐渣| 国产精品乱码一区二三区的特点| 少妇高潮的动态图| 亚洲专区国产一区二区| 国语自产精品视频在线第100页| 国产精品不卡视频一区二区 | 午夜福利免费观看在线| a级毛片免费高清观看在线播放| 久久久久久久午夜电影| 俄罗斯特黄特色一大片| 美女xxoo啪啪120秒动态图 | 免费一级毛片在线播放高清视频| 精品国内亚洲2022精品成人| 久久国产精品人妻蜜桃| 国产在线精品亚洲第一网站| 国产精品野战在线观看| 成人永久免费在线观看视频| 国产熟女xx| 一本综合久久免费| 一本综合久久免费| av天堂中文字幕网| 亚洲电影在线观看av| 在线a可以看的网站| 亚洲专区国产一区二区| 九九在线视频观看精品| 麻豆久久精品国产亚洲av| 亚洲成人久久性| 又粗又爽又猛毛片免费看| 身体一侧抽搐| 成人特级黄色片久久久久久久| 中文亚洲av片在线观看爽| 动漫黄色视频在线观看| 精品人妻偷拍中文字幕| 麻豆久久精品国产亚洲av| 日韩人妻高清精品专区| 国产高潮美女av| 人人妻,人人澡人人爽秒播| 成人国产综合亚洲| 国产色婷婷99| 成人性生交大片免费视频hd| 国产一区二区亚洲精品在线观看| 日本五十路高清| 国内精品一区二区在线观看| 久久久久性生活片| 91久久精品国产一区二区成人| 无遮挡黄片免费观看| 天天一区二区日本电影三级| 亚洲精品456在线播放app | 18+在线观看网站| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 欧美中文日本在线观看视频| 日韩亚洲欧美综合| 午夜老司机福利剧场| 嫩草影院新地址| 一个人观看的视频www高清免费观看| 久久久久性生活片| 窝窝影院91人妻| 欧美日韩黄片免| 国产伦精品一区二区三区视频9| 欧美性感艳星| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 国产伦一二天堂av在线观看| 亚洲av五月六月丁香网| 黄色配什么色好看| 国产视频一区二区在线看| 精品人妻偷拍中文字幕| 国产午夜精品久久久久久一区二区三区 | 校园春色视频在线观看| 国产v大片淫在线免费观看| 精品久久久久久成人av| 欧美日韩亚洲国产一区二区在线观看| 国产又黄又爽又无遮挡在线| 天堂网av新在线| 国产激情偷乱视频一区二区| 国产免费男女视频| 在线a可以看的网站| 成人毛片a级毛片在线播放| 成人国产一区最新在线观看| 日本与韩国留学比较| 久久精品国产亚洲av香蕉五月| 我的女老师完整版在线观看| 深夜精品福利| 舔av片在线| 69人妻影院| 亚洲五月天丁香| 禁无遮挡网站| 国产精品亚洲av一区麻豆| 亚洲久久久久久中文字幕| 国产在线精品亚洲第一网站| 91在线观看av| 成年女人看的毛片在线观看| 日本免费一区二区三区高清不卡| 国产av在哪里看| 欧美在线黄色| 亚洲,欧美精品.| 十八禁网站免费在线| 深爱激情五月婷婷| 久久九九热精品免费| 91麻豆av在线| 中文字幕久久专区| 久久久久久久久久成人| 麻豆成人av在线观看| 嫩草影视91久久| www日本黄色视频网| 一进一出好大好爽视频| 女生性感内裤真人,穿戴方法视频| 国产黄a三级三级三级人| 亚洲av熟女| 中亚洲国语对白在线视频| 精品人妻熟女av久视频| 国产视频内射| av黄色大香蕉| 欧美+日韩+精品| 国产黄片美女视频| 我的老师免费观看完整版| 亚洲专区中文字幕在线| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av香蕉五月| 两个人的视频大全免费| 国产精品人妻久久久久久| 在线播放国产精品三级| 97超级碰碰碰精品色视频在线观看| 久久久久久久精品吃奶| 亚洲精品粉嫩美女一区| 搡老岳熟女国产| 一区二区三区激情视频| 好看av亚洲va欧美ⅴa在| 国产大屁股一区二区在线视频| 午夜激情福利司机影院| 97热精品久久久久久| 最近视频中文字幕2019在线8| 国产高清有码在线观看视频| 亚洲精品久久国产高清桃花| bbb黄色大片| 高清在线国产一区| 国产精品人妻久久久久久| 在线观看66精品国产| 亚洲精品在线观看二区| 一区福利在线观看| АⅤ资源中文在线天堂| 欧美在线一区亚洲| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 99久久99久久久精品蜜桃| 国产精品98久久久久久宅男小说| 欧美又色又爽又黄视频| 免费电影在线观看免费观看| 欧美在线一区亚洲| 无人区码免费观看不卡| 国产色爽女视频免费观看| 亚洲,欧美,日韩| 三级国产精品欧美在线观看| 国产综合懂色| 免费一级毛片在线播放高清视频| 99久久九九国产精品国产免费| 日韩精品青青久久久久久| 亚洲激情在线av| av视频在线观看入口| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3| 91在线观看av| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 好男人在线观看高清免费视频| 欧美成人免费av一区二区三区| 免费在线观看日本一区| 韩国av一区二区三区四区| 亚洲成人免费电影在线观看| 精品久久久久久,| 欧美精品国产亚洲| 久久6这里有精品| 国产成人aa在线观看| 中出人妻视频一区二区| 免费人成在线观看视频色| 九九在线视频观看精品| 婷婷色综合大香蕉| a级毛片a级免费在线| 性色av乱码一区二区三区2| 久久久国产成人免费| 一级黄片播放器| 九色国产91popny在线| 人妻制服诱惑在线中文字幕| 自拍偷自拍亚洲精品老妇| 十八禁网站免费在线| 日韩高清综合在线| 一级av片app| 18+在线观看网站| 91久久精品电影网| 深夜精品福利| 午夜老司机福利剧场| 久久精品国产亚洲av天美| 国产毛片a区久久久久| 午夜福利18| 国产精品日韩av在线免费观看| 在线观看午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 好看av亚洲va欧美ⅴa在| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色惰| 啪啪无遮挡十八禁网站| 一级av片app| 日日摸夜夜添夜夜添av毛片 | ponron亚洲| 精品午夜福利在线看| 老鸭窝网址在线观看| 如何舔出高潮| 色5月婷婷丁香| 久久热精品热| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| 婷婷亚洲欧美| 精品久久久久久,| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 可以在线观看毛片的网站| 亚洲精品在线美女| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 国产精华一区二区三区| 婷婷丁香在线五月| 亚洲欧美日韩东京热| 亚洲精品一区av在线观看| 久久久久久国产a免费观看| 在线看三级毛片| 伊人久久精品亚洲午夜| 国产不卡一卡二| 嫩草影院精品99| 3wmmmm亚洲av在线观看| 桃红色精品国产亚洲av| 小蜜桃在线观看免费完整版高清| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| 亚洲国产色片| 亚洲无线观看免费| 国产伦精品一区二区三区视频9| 久9热在线精品视频| 成人欧美大片| 成人国产一区最新在线观看| 最近最新免费中文字幕在线| 脱女人内裤的视频| 亚洲精品一区av在线观看| 97热精品久久久久久| 脱女人内裤的视频| 精华霜和精华液先用哪个| 一区二区三区四区激情视频 | 亚洲经典国产精华液单 | 性欧美人与动物交配| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 91av网一区二区| 少妇高潮的动态图| 国产成人啪精品午夜网站| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 天天躁日日操中文字幕| 97热精品久久久久久| 欧美3d第一页| 免费av不卡在线播放| 香蕉av资源在线| 久久久久九九精品影院| 脱女人内裤的视频| 91午夜精品亚洲一区二区三区 | 偷拍熟女少妇极品色| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 国产高清激情床上av| 欧美成狂野欧美在线观看| 少妇的逼水好多| 亚洲国产日韩欧美精品在线观看| 久久热精品热| 偷拍熟女少妇极品色| 亚洲久久久久久中文字幕| 久久香蕉精品热| 国产高清视频在线观看网站| 久99久视频精品免费| 看片在线看免费视频| 国产高潮美女av| 欧美日韩中文字幕国产精品一区二区三区| 99在线视频只有这里精品首页| 国产精品电影一区二区三区| 91字幕亚洲| 18禁在线播放成人免费| 又爽又黄a免费视频| 三级男女做爰猛烈吃奶摸视频| 丁香欧美五月| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 黄片小视频在线播放| 欧美成人性av电影在线观看| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 男人舔女人下体高潮全视频| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 一区二区三区激情视频| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 黄片小视频在线播放| 国产淫片久久久久久久久 | 91午夜精品亚洲一区二区三区 | 91久久精品国产一区二区成人| 国产久久久一区二区三区| av天堂中文字幕网| 床上黄色一级片| 又爽又黄无遮挡网站| 激情在线观看视频在线高清| 搡女人真爽免费视频火全软件 | 看黄色毛片网站| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区 | 有码 亚洲区| 老司机午夜福利在线观看视频| 免费av不卡在线播放| 草草在线视频免费看| 日韩有码中文字幕| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 久久久国产成人免费| 一个人看视频在线观看www免费| 他把我摸到了高潮在线观看| 国产成人av教育| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 99久久精品国产亚洲精品| 亚洲av二区三区四区| 久久人人爽人人爽人人片va | 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 色综合站精品国产| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 一个人免费在线观看的高清视频| 校园春色视频在线观看| 我的老师免费观看完整版| 日韩欧美免费精品| 国产成人a区在线观看| av在线观看视频网站免费| 制服丝袜大香蕉在线| 在线播放国产精品三级| 精品人妻偷拍中文字幕| 亚洲黑人精品在线| 丁香六月欧美| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看 | 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 亚洲国产欧美人成| 人妻久久中文字幕网| 午夜两性在线视频| 偷拍熟女少妇极品色| 成人美女网站在线观看视频| 午夜福利18| 嫁个100分男人电影在线观看| 国产亚洲精品综合一区在线观看| 日韩欧美一区二区三区在线观看| 一进一出抽搐动态| 久久精品国产亚洲av涩爱 | 欧美在线一区亚洲| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 国产美女午夜福利| 婷婷精品国产亚洲av| 成人特级av手机在线观看| 亚洲人成网站在线播| 一级黄色大片毛片| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app | 好男人电影高清在线观看| 国产精品精品国产色婷婷| 国产高清三级在线| 亚洲精品日韩av片在线观看| 久久性视频一级片| 日本熟妇午夜| 久久精品综合一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女黄片视频| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 午夜福利成人在线免费观看| 久久久久久九九精品二区国产| 嫩草影院入口| 91狼人影院| 欧美黄色片欧美黄色片| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 免费av观看视频| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 波多野结衣高清无吗| 午夜免费激情av| 亚洲av中文字字幕乱码综合| www.色视频.com| 国产精品亚洲av一区麻豆| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 精品一区二区免费观看| aaaaa片日本免费| 精品一区二区三区视频在线观看免费| 亚洲av第一区精品v没综合| 久久精品影院6| 黄色女人牲交| 成熟少妇高潮喷水视频| 久久久久久九九精品二区国产| 午夜福利在线观看吧| 小蜜桃在线观看免费完整版高清| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 特级一级黄色大片| 亚洲精品粉嫩美女一区| 国产大屁股一区二区在线视频| 日韩中字成人| 国产亚洲精品久久久com| .国产精品久久| 我要看日韩黄色一级片| 成人欧美大片| 国产精品一及| 精品日产1卡2卡| 亚洲国产精品999在线| 亚洲成人久久爱视频| 精品国产亚洲在线| 久久久久国内视频| 伊人久久精品亚洲午夜| 国产一区二区三区在线臀色熟女| 成人美女网站在线观看视频| 99久久精品热视频| 蜜桃亚洲精品一区二区三区| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 动漫黄色视频在线观看| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 综合色av麻豆| 免费观看精品视频网站| 97超视频在线观看视频| 高清在线国产一区| 国产免费av片在线观看野外av| 国产精品伦人一区二区| 日本五十路高清| 日韩有码中文字幕| 三级国产精品欧美在线观看| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 亚洲七黄色美女视频| 小蜜桃在线观看免费完整版高清| 哪里可以看免费的av片| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 久久久久九九精品影院| 一个人看的www免费观看视频| 一夜夜www| 国产伦在线观看视频一区| 色综合站精品国产| 国产av麻豆久久久久久久| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 少妇丰满av| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 日韩欧美 国产精品| 成年人黄色毛片网站| 国产精品久久久久久久电影| 欧美成人一区二区免费高清观看| 精品福利观看| 免费搜索国产男女视频| 婷婷亚洲欧美| 久久6这里有精品| 老司机深夜福利视频在线观看| 听说在线观看完整版免费高清| 真人做人爱边吃奶动态| 国产一区二区亚洲精品在线观看| 国产色婷婷99| АⅤ资源中文在线天堂| 欧美潮喷喷水| 欧美黑人欧美精品刺激| 级片在线观看| 亚洲,欧美精品.| 午夜久久久久精精品| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 精品无人区乱码1区二区| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区色噜噜| 久久久久九九精品影院| 国产视频一区二区在线看| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 免费av不卡在线播放| 中国美女看黄片| 在线a可以看的网站| 99久久无色码亚洲精品果冻| 老熟妇乱子伦视频在线观看| 欧美激情在线99| 日韩精品中文字幕看吧| 69av精品久久久久久| 亚洲经典国产精华液单 | 国产午夜精品论理片| 亚洲狠狠婷婷综合久久图片| 中文资源天堂在线| 在线观看美女被高潮喷水网站 | 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 日韩欧美精品v在线| 成人鲁丝片一二三区免费| 欧美在线黄色| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区视频9| 精品人妻一区二区三区麻豆 | 欧美色欧美亚洲另类二区| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 国产大屁股一区二区在线视频| 久久中文看片网| 高潮久久久久久久久久久不卡| 久久人人爽人人爽人人片va | 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 久久国产乱子免费精品| 色av中文字幕| 免费av毛片视频| 国产色婷婷99| a级毛片a级免费在线| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 欧美乱色亚洲激情| 天美传媒精品一区二区| 婷婷亚洲欧美| 久久久久国内视频| 亚洲第一区二区三区不卡| 在现免费观看毛片| 日韩精品青青久久久久久| 国产成人欧美在线观看| 九九久久精品国产亚洲av麻豆| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 欧美日本视频| 免费电影在线观看免费观看| 精品国内亚洲2022精品成人| a级毛片免费高清观看在线播放| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩卡通动漫| 麻豆成人av在线观看| 青草久久国产| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 男女下面进入的视频免费午夜| 久久久久精品国产欧美久久久| 亚洲国产欧洲综合997久久,| 看片在线看免费视频| 观看美女的网站| 小说图片视频综合网站|