• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of an energetic material di-1H-1,3,4-triazole derivatives

    2014-02-15 06:02:21HuZHOUZhonglingMAJinlongWANGDongWANG
    Defence Technology 2014年4期

    Hu ZHOU*,Zhong-ling MAJin-long WANGDong WANG

    aNorth University of China,Taiyuan 030051,China

    bShanxi Jiangyang Xing'an Explosive Materials Co.Ltd,Taiyuan 030051,China

    Theoretical study of an energetic material di-1H-1,3,4-triazole derivatives

    Hua ZHOUa,*,Zhong-liang MAa,Jian-long WANGa,Dong WANGb

    aNorth University of China,Taiyuan 030051,China

    bShanxi Jiangyang Xing'an Explosive Materials Co.Ltd,Taiyuan 030051,China

    Computations by density functional theory(DFT)method are performed on a series of di-1H-1,3,4-triazole derivatives with different substituents and linkages.The heat of formation(HOF)is predicted by the designed isodesmic reactions.The predicted results reveal that-N3and -N=N-groups are effective structural units for increasing the HOF values of the di-1H-1,3,4-triazole derivatives.The HOMO-LUMO gap is affected by the substituents and linkage groups.Detonation performance is evaluated using the Kamlet-Jacobs approach based on the calculated density and HOF.The results indicate that-NO2,-NF2,-NH-,-NH-NH-and-N=N-groups are helpful for enhancing the detonation properties of di-1H-1,3,4-triazole derivatives.The bond dissociation energy and bond order of the weakest bonds are analyzed to investigate their stability.It is observed that the-CH2-,-CH2-CH2-and-CH=CH-groups are effective structural units for improving the stabilities of these derivatives.Considering the detonation performance and the stability,fve compounds are screened as the potential candidates for high energy density materials.

    Di-1H-1,3,4-triazole;Density functional theory;Heat of formation;Detonation velocity;Detonation pressure

    1.Introduction

    The synthesis and theoretical study on the nitrogen-rich compounds have received considerable interest in recent years[1-8].Energetic nitrogen-rich compounds are potential candidates for high energy density materials(HEDMs)due to their large number of N-N and N-C bonds in molecular skeleton,which leads to high density,high positive heat of formation,good oxygen balance,and good stability.Triazole-based energetic materials are most prominent among the nitrogen-rich compounds which appear to be a better compromise with high energy,performance and high stability due to nitrogen catenation and aromaticity[9].Among them, 1H-1,3,4-triazole is an effective structural unit.

    It is well known that properties of high energy,performance and high stability are often improved by making structural modifcations.The formation of molecular complexes(e.g., di-,tri,and polymers)is a conceivable way to increase the density and thermostability and improve the material properties of propellants and explosives[10].Therefore,as we know, triazole connected on the N atom of heterocyclic is more prone to substitution reaction.Hence,it is easily to synthesize the high nitrogen compounds with better comprehensive properties.Thermodynamic calculations conducted at Los Alamos National Laboratory identifed 2,5,2′,5′-tetranitro-1,1′-bi-1,3,4-triazole(TNBT)as target molecule was likely to exhibit high performance[11].2,5,2′-triazido-1,1′-azo-1,3,4-triazole was synthesized[12],which shows that tetrazene(N-N= N-N)can improve HOF but reduce the stability.However,the systematic and comprehensive molecular design still lacks for di-1H-1,3,4-triazole-based high energy density materials.

    In this paper,the HOF,electronic structures,energetic properties,and thermal stabilities of a series of di-1,3,4-triazole derivatives with various substituents(-NH2,-NO2, -NF2,-N3)and different linkages(-,-CH2-,-NH-, -CH2-CH2-,-NH-NH-,-CH=CH-,-N=N-)were systematically studied based on the density functional theory (DFT)method.

    2.Computational methods

    The object molecules,the series of 1H-1,3,4-triazole derivatives of which the molecules are numbered as(A1-A5, B1-B5,C1-C5,D1-D5,E1-E5,F1-F5 and G1-G5),are classifed into seven groups,as shown in Fig.1.The hybrid DFT-B3LYP method[13,14]in combination with 6-31G(d,p)basis set is used for structure optimization,which has been proved[15-18]to give quite reliable energies,molecular structures,and other properties.All quantum mechanical calculations were performed with Gaussian 03 program package [19].The optimized structure of each molecule corresponds to only one local energy minimum on the potential energy surface without imaginary frequency.

    The isodesmic reaction method is employed to calculateHOF.Here we design an isodesmic reaction in which the numbers of all kinds of bonds are kept constant to decrease the calculation errors ofHOF.Because of the electronic circumstances of reactants and products are very similar in the isodesmic reactions,the errors of electronic correction energies can be counteracted,therefore,the errors of calculatedHOFcan be greatly reduced[20].In these designed reactions,the basic structural unit of 1,3,4-triazole skeleton is kept constant, and the complex molecules are split into sample molecules. This method had been shown to be reliable[3,15,21-23].

    TheHOFof di-1H-1,3,4-triazole derivatives at 298 K was obtained by isodesmic reactions,which is given as follows

    whereR1=-H,-NH2,-NO2,-NF2,-N3.R=-,-CH2-,

    -NH-,-CH2CH2-,-NH-NH-,-CH=CH-,-N=N-. For the isodesmic reaction,the heat of reaction ΔH298at 298 K can be calculated from the following equation

    where ΔHf,Pand ΔHf,Rare theHOFs of products and reactants at 298 K,respectively.Since the experimentalHOFs of 1H-1,3,4-triazole,CH3NF2,CH3N3,and CH3N=NCH3are unavailable,the additional calculations were carried out.TheHOFof CH3NF2was calculated by the replacement reaction CH3NH2+F2→CH3NF2+H2using G2 theory[17,23].TheHOFvalues of 1H-1,3,4-triazole,CH3N3and CH3N=NCH3were obtained at G2 level from the atomization reaction CaHbOcNd→aC(g)+bH(g)+cO(g)+dN(g).The experimentalHOFsofreferencecompoundsCH4,CH3NH2, CH3NO2,CH3NHCH3,CH3CH3,CH3CH2CH3,CH3CH2CH2CH3,CH3NHNHCH3and CH3CH=CHCH3are available [24-26].

    TheHOFs of 1H-1,3,4-triazole-based derivatives can be estimated when the heat of reaction ΔH298Kis known. Therefore,the primary thing is to calculate ΔH298K.ΔH298Kcan be calculated by using the following expression

    where ΔE0is the change in total energy between the products and the reactants at 0 K;ΔZPEis the difference between the zero-point energies(ZPE)of the products and the reactants; and ΔHTis the thermal correction from 0 to 298 K.Δ(PV) equals ΔnRTfor the reaction of ideal gas.For the isodesmic reaction here,Δn=0,so Δ(PV)=0.

    Since the condensed phases of most energetic compounds are solid,the solid-phase heat of formation(ΔHf,solid)is required in order to calculate the detonation properties.According to Hess's law of constant heat summation[27],the gas-phase heat of formation(ΔHf,gas)and heat of sublimation (ΔHsub)can be used to evaluate the solid-phase heat of formation

    Politzer et al.[28-30]pointed out that the heat of sublimation of energetic compounds correlates well with the molecular surface area and the electrostatic interaction indexThe empirical expression for this approach is shown below

    whereAis the surface area of the 0.001 electrons/bohr3isosurface of the electronic density of the molecule;ν describes the degree of balance between positive and negative potentials on the isosurface;andis a measure of the variability of the electrostatic potential on the molecular surface.The coeffcientsa,b,andcwere determined by Rice et al.:a=2.670×10-4kcal mol-1A-4,b=1.650 kcal mol-1,andc=2.966 kcal mol-1[31].The descriptorsA,ν,andwere calculated using the computational procedures described by Felipe et al.[32].This approach has been demonstrated to be a reliable way to predict the heats of sublimation of many energetic compounds[31-33].

    Fig.1.Molecular frameworks of di-1H-1,3,4-triazole derivatives.

    The empirical Kamlet-Jacobs equations[34,35]were employed to estimate the values ofDandPfor high energy density materials.The equations are as follows

    whereDis the detonation velocity(km/s);Pis the detonation pressure(GPa);Nis the moles of detonation gas per gram of explosive;Mis the average molecular weight of these gases;Qis the heat of detonation(Cal/g);and ρ is the density of explosives(g/cm3).For known explosives,Qand ρ can be measured experimentally;thus,DandPcan be calculated according to Eqs.(6)and(7).However,for some compounds,Qand ρ cannot be estimated from experimental measurements.Therefore,Qand ρ need frst to be calculated to estimateDandP.

    The heat of detonationQwas estimated by the HOF difference between the products and explosives according to the principle of exothermic reactions,i.e.,all the N atoms are combined into N2,F atoms form HF with H atoms,or are combined into F2without H atoms,and oxygen atoms form H2O before CO2.If the content of O is not suffcient to satisfy full oxidation of H and C atoms,the remaining H atoms will convert into H2,and C atoms will exist as solid-state C.In the Kamlet-Jacobs equations,the detonation products are assumed to be CO2(or C),H2O(or H2or HF or F2),and N2,so the energy released in the decomposition reaction is maximized.The correspondingDandPvalues can be estimated using the values of density andQ.The theoretical molecular density used in this work was slightly greater than the practical loaded density.Therefore,according to the Kamlet-Jacobs equations,the values ofDandPcan be regarded as their upper limits.

    For each di-1H-1,3,4-triazole derivative,the theoretical density was obtained from the molecular weight divided by the average molecular volume.The volume is defned as that inside the density contour of 0.001 electrons/bohr3,which was estimated using Monte Carlo integration.We performed 100 single-point calculations for each optimized structure to get the average volume at B3LYP/6-31G(d,p)level.The crystal density can be improved by introducing the interaction index[36]:

    whereMis the molecular mass(g/mol);andV(0.001)is the volume of the 0.001 electrons/bohr3contour of electronicdensity of the molecule(cm3/molecular).The coeffcients α, β,and γ are 0.9183,0.0028,and 0.0443,respectively[36].

    The HOMO-LUMO gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)can be correlated with the sensitivity of the molecules[37].The HOMO-LUMO gap of di-1H-1,3,4-triazole derivatives was predicted using DFT at B3LYP/ 6-31G(d,p)level.

    The bond strength can be estimated by bond dissociation energy,which is fundamental to understand the chemical processes[38].The energy required for bond homolysis at 298 K and 1 atm corresponds to the enthalpy of reaction AB(g)-A(g)+B(g),which is the bond dissociation enthalpy of the molecule A-B by defnition[39].For many organic molecules,the terms“bond dissociation energy”and“bond dissociation enthalpy”often appear interchangeably in the Ref.[40].

    Thus,at 0 K,the homolytic bond dissociation energy can be given in terms of

    BDE0(A-B)=E0(A·)+E0(B·)-E0(A-B) (9)

    The bond dissociation energy(BDE)with zero-point energy(ZPE)correction can be calculated by the following equation

    where ΔZPEis the difference between theZPEs of the products and the reactants without basis set superposition error (BSSE).

    3.Results and discussion

    3.1.Heat of formation

    Here we investigated the effects of different substituents and linkages on the heats of formation of di-1H-1,3,4-triazole derivatives.Table 1 lists the total energy,ZPE,thermal correction and relative error for 13 reference compounds in the isodesmic reactions.The experimentalHOFsofCH4, CH3NH2,CH3NO2,CH3CH3,CH3NHCH3,CH3CH2CH3, CH3(CH2)2CH3,CH3(NH)2CH3,CH3CH=CHCH3and CH3N=NCH3were taken from Refs.[24-26].To validate the reliability of our algorithm,the HOF values of these compounds were calculated at G2 level from the atomization reaction.The results show that the HOF values were in accordance with the experimental values.The largest relative error for these compounds is 4.32%.Therefore theHOFvalues from the G2 level are expected to be reliable in this work.

    Table 2 summarizes the total energy,ZPE,thermal correction,andHOFfor the di-1H-1,3,4-triazole derivatives. All the derivatives exhibited high positiveHOF.It is clear that, when-N3and-NO2were attached to the parent compound, theHOFvalues increased compared with the unsubstituted case,whereas the opposite was true for the substituents-NH2and-NF2.In addition,it is worth noticing that-N3groupextremely enhances theHOFvalue compared with parent di-1H-1,3,4-triazole.These observations indicate that-N3group plays an essential role in increasing theHOFvalues of di-1H-1,3,4-triazole derivatives.

    Table 1Calculated total energies(E0),zero-point energies(ZPE),thermal corrections (HT),relative errors(%)and heats of formation(HOFs)for the reference compounds.

    Fig.2 shows a comparison of theHOFvalues of di-1H-1,3,4-triazole derivatives with different linkages.TheHOFvalues of the structures having-NH-linkage(C series), -NH-NH-linkage(E series)and-N=N-linkage(G series)were higher than those of the directly linked di-1H-1,3,4-triazoles(A series)with the same substituents.But when the linkages were-CH2-(B series),-CH2-CH2-(D series)or -CH=CH-(F series),the situations were opposite.And the order ofHOFvalue of the structures possessing linkage groups can be given as-N=N->-NH-NH->-NH->->-CH=CH->-CH2->-CH2-CH2-.We noticed that the di-1H-1,3,4-triazole with the conjugated linkage-N=N-and-CH=CH-had higherHOFvalues than the corresponding ones with the unconjugated linkage-NH-NH-and -CH2-CH2-.The reason for this situation may be that the two 1H-1,3,4-triazoles and the conjugated linkage forms a big conjugated system.Di-1H-1,3,4-triazoles linked by the azo linkage(-N=N-)had the largestHOFvalues among the derivatives with the same substituents.This indicates that azo (-N=N-)is an effective linkage for increasing theHOFvalues of di-1H-1,3,4-triazole derivatives.TheHOFvalue of G5(di-1H-1,3,4-triazole with linkage group of-N=N-and substituent of-N3)is the largest one among these derivatives, which is in agreement with the analysis result.

    3.2.Electronic structure

    The HOMO-LUMO gap is correlated with the sensitivity of material within the limitations ofDFT[42].In general,the smaller the HOMO-LUMO gap is,the easier the electron transition is,and the larger the sensitivity is.Table 3 lists theNote:E0andZPEare in a.u.;HTandHOFare in kJ/mol.The scaling factor is 0.98 forZPEand 0.96 forHT.[41]. highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)energies and the energy gaps(ΔELUMO-HOMO)for the di-1H-1,3,4-triazole derivatives.It is found that the HOMO-LUMO gaps of all substituted derivatives are smaller than those of the corresponding unsubstituted di-1H-1,3,4-triazoles.It is interesting to note that HOMO-LUMO gaps are in the order of -H>-NH2>-NF2>-N3>-NO2except for G series. While the order is-H>-NF2>-NO2>-N3>-NH2in G series,the substituents have the effect on the HOMO-LUMO gapsofvariousseries.The orderwasfound to be ->-CH2-CH2->-CH2>-NH>-NH-NH->-CH=CH->-N=N-by comparing the derivatives with the same substituents and different bridges.Among these derivatives,A1 had the largest HOMO-LUMO gap,whereas G5 had the smallest one.Since the molecule with smaller HOMO-LUMO gap was expected to have a higher reactivity and a lower stability in the chemical or photochemical processes with electron transfer or leap[43,44],it might be inferred that the-N=N-bridged di-1H-1,3,4-triazole had the highest reactivity among these bridged derivatives.

    Table 2Calculated total energies(E0),zero-point energies(ZPE),thermal corrections(HT),molecular properties,heats of sublimation(ΔHsub),and heats of formation (ΔHf,gas,ΔHf,solid)for di-1H-1,3,4-triazole derivatives.

    Fig.2.Comparison ofHOFs of di-1H-1,3,4-triazoles with different substituents and linkages.

    3.3.Energetic properties

    Detonation velocity(D),detonation pressure(P)and heat of detonation(Q)are important performance parameters for anenergetic material.The Kamlet-Jacobs equations show that the density ρ is a key factor to infuenceDandP[45].Thus ρ is an important physical property for all energetic materials. Table 4 lists the calculated ρ,Q,D,Pand oxygen balance (OB)of the di-1H-1,3,4-triazole derivatives.For a comparison, the experimental detonation properties of 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5-tetrazocane (HMX)are also listed in Table 4.

    Table 3Calculated HOMO and LUMO energies(a.u.)and energy gaps ΔE(LUMO-HOMO)of di-1H-1,3,4-triazole derivatives.

    The density values of all the substituted di-1H-1,3,4-triazole are larger than those of unsubstituted molecules.The -NF2group increases the density of the di-1H-1,3,4-triazole derivatives compared with other substituents.To improve the density,the order can be given as-NF2> -NO2>-N3>-NH2.When the linkages are-CH2-CH2-(D series) and-CH=CH-(F series),the density values of the di-1H-1,3,4-triazole derivatives are smaller than those of the directly linked di-1H-1,3,4-triazoles with the same substituents.When the linkages are-CH2-(B series),-NH-(C series), -NH-NH-(E series)and-N=N-(G series),the density of di-1H-1,3,4-triazole with-N3or without substituent is higher than that of the corresponding directly linked di-1H-1,3,4-triazole.This indicates that the effects of the linkages -CH2-,-NH-,-NH-NH-and-N=N-on the density values were coupled to those of the substituents.Specially,the -NH-linkage with-NF2substituent(C4)has the largest ρ values among all of the derivatives.

    The calculated heat of detonation in Table 4 shows that the substituents-NO2,-NF2,and-N3increase the heat of detonation compared with that of the corresponding unsubstitued di-1H-1,3,4-triazoles,whereas the opposite is true for -NH2.The different linkage groups also have different effects on the detonation heats of the di-1H-1,3,4-triazole derivatives. On the whole,-N=N-is an effective group for enhancing the detonation heats of di-1H-1,3,4-triazole derivatives.

    When the substituent is-NH2,the density values of derivatives increase but the heat of formation decrease,soDandPvalues of A2,F2 and G2 are larger than those of their unsubstituted homolog in-NH2derivatives.When-NO2, -NF2and-N3are attached to di-1H-1,3,4-triazole,they can increase both density and heat of formation,leading to largerDandPvalues of all the substituted derivatives compared with their unsubstituted homolog.

    It is also found thatDandPvalues of-NH-, -NH-NH-,and-N=N-derivatives are higher than those of the directly linked di-1H-1,3,4-triazoles with the same substituents.But-CH2-,-CH2-CH2-and-CH=CH-linkage groups are unhelpful in increasing the detonation properties of the di-1H-1,3,4-triazole derivatives.Based on the above analyses,it can be concluded that-NO2,-NF2, -NH-,-NH-NH-and-N=N-groups are the effective structural units to enhance the detonation properties of di-1H-1,3,4-triazole derivatives.

    Fig.3 shows the calculatedDandPvalues of the di-1H-1,3,4-triazole derivatives together with commonly used explosives RDX and HMX.It is found A3,A4,B4,C3,C4,D4, E3,E4,F4,G3 and G4 exhibit better detonation performances (DandP)compared with HMX,which is one of the most widely used energetic ingredients of various high-performance explosives and propellant formulations.Although it was reported that A3(TNBT)and G5 have been successfully synthesized[46,47],some of their detonation properties have still undetermined yet.In addition,the syntheses of other energetic compounds have not yet been reported.If A4,B4,C3,C4,D4, E3,E4,F4,G3 and G4 could be synthesized,they would have higher detonation performance.Thus,we should make further investigations on this kind of compounds in the future.

    3.4.Stability

    The bond dissociation energy(BDE)provides useful information for understanding the stability of a molecule. Generally speaking,the lower the bond dissociation energy is, the weaker the bond would be,which will be the trigger bond. The sensitivity and stability of the energetic materials aredirectly relevant to the bond strength,which is commonly measured by bond dissociation energy(BDE).Therefore, based on the Mulliken bond order values,we selected relatively weak bond in the same molecule to calculate BDE,and then screened out the trigger bond based on BDE values.Table 5 lists the bond dissociation energy(BDE)and the Mulliken bond order(BO)of relatively weaker bonds of di-1H-1,3,4-triazole derivatives.It is found that some bonds have higher BDE but lower bond order in a same molecular,for example, B3,B4,C3 and C4.Thus,the stability of the di-1H-1,3,4-triazole derivatives should not be judged only by the bond order criterion,but also based onBDE.

    From Table 5 it can be known that the BDE value of the linkage bond is smaller than those of other bonds in the same molecule except for B3,D3,D4,F3 and F4.It may be inferredthat the linkage bond may be the weakest one and the breakage of linkage is possible in thermal decomposition,and theBDEvalues are affected by both substituent and linkage group.It is found by comparing the derivatives with the same substituents and different linkages that-CH2-,-CH2-CH2- and -CH=CH-linkage groups can increase theBDEvalues substantially.For the same linkage group but different sunstituent,all the substituent groups are attached to the parent compounds,theirBDEvalues decrease,and the order can be given as-H>-NO2-NF2>-N3>-NH2.

    Table 4Predicted densities(ρ,g/cm3),heats of detonation(Q,Cal/g),detonation velocities(D,km/s),detonation pressures(P,GPa),and oxygen balance(OB)for di-1H-1,3,4-triazole derivatives.a

    Fig.3.Detonation velocity and pressure of di-1H-1,3,4-triazole derivatives.

    Fig.4 showsBDEof the weakest bonds of the di-1H-1,3,4-triazole derivatives along with RDX and HMX.It is easily noticedthattheBDEvalueoftheweakestbondinthederivatives ishigherthanthatofHMXwhenthelinkagegroupsare-CH2-, -CH2-CH2-and-CH=CH-.As it is well known,a good nitrogen-rich HEDM candidate not only has excellent detonation properties but also exist stably.A3,B4,D4,E3 and F4 possessbetterdetonationperformances(DandP)andstabilities (BDE)compared with HMX.Therefore,these fve compounds could be considered as potential candidates for HEDM with enhanced performance and reduced sensitivity.

    4.Conclusions

    In this paper,the DFT-B3LYP method was used to study the heat of formation(HOF),electronic structure,energetic properties,and stability of a series of di-1H-1,3,4-triazole derivatives with different linkages and substituents.The results show that-N3and-N=N-groups play a very important role in increasing the HOFs of di-1H-1,3,4-triazole derivatives.A1 has the largest HOMO-LUMO gap,whereas G5 has the smallest one.The effects of substituents on the HOMO-LUMO gap combine with those linkage groups.

    The calculated detonation velocities and detonation pressures of the di-1H-1,3,4-triazole derivatives indicate that -NO2,-NF2,-NH-,-NH-NH-and-N=N-groups are the effective structural units for enhancing the detonation properties.An analysis of the bond dissociation energy(BDE)for several relatively weak bonds suggests that-CH2, -CH2-CH2-,and-CH=CH-groups are the effective structural units for improving the stability of di-1H-1,3,4-triazole derivatives.A3,B4,D4,E3 and F4 were screened as potential candidates for HEDM with enhanced performance and reduced sensitivity.

    Table 5Bond dissociation energies(BDE,kJ/mol)and Mulliken bond orders of the relatively weak bonds in di-1H-1,3,4-triazole derivatives.

    Fig.4.Bond dissociation energies of the weakest bonds for di-1H-1,3,4-triazole derivatives.

    [1]Xu XJ,Xiao HM,Ju XH,Gong XD,Zhu WH.Computational studies on polynitrohexaazaadmantanes as potential high energy density materials.J Phys Chem A 2006;110(17):5929-33.

    [2]Gutowski KE,Rogers RD,Dixon DA.Accurate thermochemical properties for energetic materials applications.I.Heats of formation of nitrogen-containing heterocycles and energetic precursor molecules from electronic structure theory.J Phys Chem A 2006;110(42):11890-7.

    [3]Wei T,Zhu WH,Zhang XW,Li YF,Xiao HM.Molecular design of 1,2,4,5-tetrazine-based high-energy density materials.J Phys Chem A 2009;113(33):9404-12.

    [4]Wei T,Zhu WH,Zhang J,Xiao HM.DFT study on energetic tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives.J Hazard Mater 2010;179(1-3):581-90.

    [5]Zhang CC,Zhu WH,Xiao HM.Density functional theory studies of energetic nitrogen-rich derivatives carbon-bridged diiminotetrazoles. J Theor Comput Chem 2011;967(2-3):257-64.

    [6]Joo YH,Shreeve JM.Energetic mono-or bis(oxy)-5-nitroiminotetrazoles. Angew Chem Int Ed 2010;49(40):7320-3.

    [7]Pan Y,Zhu WH,Xiao HM.Design and selection of nitrogen-rich bridged di-1,3,5-triazine derivatives with high energy and reduced sensitivity. J Mol Model 2012;18(7):3125-38.

    [8]Qui L,Xiao HM,Gong XD,Ju XH,Zhu WH.Theoretical studies on the structures,thermodynamic properties,detonation properties,and pyrolysis mechanisms of spiro nitramines. J Phys Chem A 2006;110(10):3797-807.

    [9]Ghule Vikas D.Computational studies on the triazole-based high energy materials.J Comput Theor Chem 2012;992(4):92-6.

    [10]Korkin AA,Bartlett RJ.Theoretical prediction of 2,4,6-trinitro-1,3,5-triazine(TNTA).A new,powerful,high energy density material.J Am Chem Soc 1996;118(48):12244-5.

    [11]Coburn MD,Harris BW,Hayden HH,Lee K-Y,Stinecipher MM, Hayden HH.Explosives synthesis at Los Alamos.Ind Eng Chem Prod Res Dev 1986;25(1):68-72.

    [12]Li SH,Shi HG,Sun CH,Li XT,Pang SP,Yu YZ,Zhao XQ.Synthesis and crystal structyre of nitrogen-rich compound:2,5,2′-triazido-1,1′-azo-1,3,4-triazole.J Chem Crystallogr 2009;39(2):13-6.

    [13]Lee C,Yang W,Parr RG.Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density.Phys Rev B 1988;37(2):785-9.

    [14]Becke AD.Density-functional thermochemistry.III.The role of exact exchange.J Chem Phys 1993;98(7):5648-52.

    [15]Chen ZX,Xiao JM,Xiao HM,Chiu YN.Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method.J Phys Chem A 1999;103(40):8062-6.

    [16]Selmi M,Tomasi J.Ab-initio calculations and semiempirical corrections to obtain enthalpies of formation of hydrocarbons through isodesmic reactions.J Phys Chem 1995;99(16):5894-8.

    [17]Ju XH,Li YM,Xiao HM.Theoretical studies on the heats of formation and the interactions among the difuoroamino groups in polydifuoroaminocubanes.J Phys Chem A 2005;109(5):934-8.

    [18]Jursic BS.Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods. J Mol Struct 2000;499(1):137-40.

    [19]Frisch MJ,Trucks GW,Schlegel HB,et al.Gaussian 03,revision B.03. Pittsburgh,PA:Gaussian Inc.;2003.

    [20]Hahre WJ,Radom L,Schleyer PVR,Pole JA.Ab initio molecular orbital theory.New York:Wiley;1986.p.386-90.

    [21]Zhang XW,Zhu WH,Xiao HM.Comparative theoretical-studies of energetic substituted carbon and nitrogen-bridged difurazans.J Phys Chem A 2010;114(1):603-12.

    [22]Chen PC,Chieh YC,Tzeng SC.Density functional calculation of the heats of formation for various aromatic nitro compounds.J Mol Struct 2003;634(1):215-24.

    [23]Ju XH,Wang X,Bei FL.Substituent effects on heats of formation,group interactions,and detonation properties of polyazidocubanes.J Comput Chem 2005;26(12):1263-9.

    [24]Dean JA.Lange's handbook of chemistry.15th ed.New York:McGraw-Hill;1999.p.82-8.chapter 6.

    [25]David RL.Handbook of chemistry and physics.84th ed.Boca Raton: CRC Press;2003-2004.

    [26]Afeefy HY,Liebman JF,Stein SE.Neutral thermochemical data.In: Linstrom PJ,Mallard WG,editors.NIST Chemistry WeBook:NIST standard reference database number 69;2000.National Institute of Standards and Technology,Gaithersburg.Respectively.

    [27]Atkins PW.Physical chemistry.Oxford:Oxford University Press;1982.

    [28]Politzer P,Lane P,Murray JS.Computational characterization of a potential energetic compound:1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cent Eur J Energ Mater 2011;8(1):39-52.

    [29]Politzer P,Murray JS.Some perspectives on estimating detonation propertiesofC,H,N,O compounds.CentEurJEnerg Mat 2011;8(3):209-20.

    [30]Politzer P,Murray JS,Grice ME,Desalvo M,Miller E.Calculation of heats of sublimation and solid phase heats of formation.Mol Phys 1997;91(5):923-8.

    [31]Byrd EFC,Rice BM.Improved prediction of heats of formation of energetic materials using quantum chemical calculations.J Phys Chem A 2006;110(1):1005-13.

    [32]Bulat FA,Toro-Labbe A,Brinck T,Murray JS,Politzer P.Quantitative analysis of molecular surfaces:areas,volumes,electrostatic potentials and average local ionization energies. J Mol Model 2010;16(11):1679-91.

    [33]Jaidann M,Roy S,About-Rachid H,Lussier LS.A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives.J Hazard Mater 2010;176(1-3):165-73.

    [34]Kamlet MJ,Jacobs SJ.Chemistry of detonations.I.Simple method for calculating detonation properties of carbon-hydrogen-nitrogen-oxygen explosives.J Chem Phys 1968;48(3):23-35.

    [35]Kamlet MJ,Ablard JE.Chemistry of detonations.II.Buffered equilibrium.J Chem Phys 1968;48(2):36-40.

    [36]Politzer P,Martinez J,Murray JS,Concha MC,Toro-Labbe A.An electrostatic interaction correction for improves crystal density prediction.Mol Phys 2009;107(19):2095-101.

    [37]Badders NR,Wei C,Aldeeb AA,Rogers WJ,Mannan MS.Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptor.J Energ Mater 2006;24(1):17-33.

    [38]Benson SW.Thermochemical kinetics.2nd ed.New York:Wiley Interscience;1976.

    [39]Mills I,Cvitas T,Homann K,Kallay N,Kuchitsu K.Quantities,units,and symbols in physical chemistry.1st ed.Oxford:Blackwell Science;1988.

    [40]Blanksby SJ,Ellison GB.Bond dissociation energies of organic molecules.Acc Chem Res 2003;36(4):255-63.

    [41]Scott AP,Radom L.Harmonic vibrational frequencies:an evaluation of Hartree-Fock,M?ller-Plesset,quadratic confguration interaction, density functional theory,and semiempirical scale factors.J Phys Chem 1996;100(41):16502-13.

    [42]XU XJ,Zhu WH,Xiao HM.DFT studies on the four polymorphs of crystalline CL-20 and the infuences of hydrostatic pressure on epsilon-CL-20 crystal.J Phys Chem B 2007;111(8):2090-7.

    [43]Dong HS,Zhou FF.High energy explosives and correlative physical properties.Beijing:Science Press;1989.

    [44]Hoffmanx R.Symmetry requirements for stabilization of one class of diradicals.J Chem Soc D 1969;112(5):240-1.

    [45]Talawar MB,Sivabalan R,Mukundan T,Muthurajan H,SIkder AK, Gandhe BR,Rao AS.Environmentally compatible next generation green energetic materials(GEMs).J Hazard Mater 2009;161(2-3):589-607.

    [46]Coburn MD,Harris BW,Hayden HH,Lee K-Y,Stinecipher MM.Explosives synthesis at Los Alamos.Ind Eng Chem Prod Res Dev 1986;25(1):68-72.

    [47]Li SH,Pang SP,Li XT,Yu YZ,Zhao XQ.Synthesis and crystal structure of novel highly nitrogen-containing compound of polyazidotriazole.Chin J Org Chem 2008;28(4):727-31.

    Received 25 April 2014;revised 14 August 2014;accepted 15 August 2014 Available online 5 October 2014

    *Corresponding author.

    E-mail address:zhouhua654312@163.com(H.ZHOU).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.08.002

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    九色成人免费人妻av| 永久网站在线| 高清毛片免费看| 欧美3d第一页| 三级国产精品片| 亚洲国产色片| 99热6这里只有精品| 国内精品宾馆在线| 一级毛片我不卡| 亚洲aⅴ乱码一区二区在线播放| 综合色丁香网| 青春草亚洲视频在线观看| 各种免费的搞黄视频| 我的女老师完整版在线观看| av免费在线看不卡| 日日撸夜夜添| 午夜激情久久久久久久| 777米奇影视久久| 色哟哟·www| 国产高清国产精品国产三级 | 三级国产精品欧美在线观看| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久久久按摩| 2021天堂中文幕一二区在线观| 午夜福利在线在线| 神马国产精品三级电影在线观看| 亚洲精品,欧美精品| 男女啪啪激烈高潮av片| 久久热精品热| 精品人妻偷拍中文字幕| 2022亚洲国产成人精品| 亚洲av国产av综合av卡| 日韩一本色道免费dvd| 午夜福利高清视频| 午夜日本视频在线| 欧美亚洲 丝袜 人妻 在线| 久久国产乱子免费精品| 精品人妻偷拍中文字幕| freevideosex欧美| 免费看a级黄色片| 免费观看a级毛片全部| 精品国产三级普通话版| 免费av毛片视频| 国产精品人妻久久久影院| 国产精品人妻久久久影院| 亚洲内射少妇av| 只有这里有精品99| 亚洲欧美日韩无卡精品| 五月伊人婷婷丁香| 亚洲国产av新网站| 亚洲一级一片aⅴ在线观看| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 18禁在线播放成人免费| 少妇猛男粗大的猛烈进出视频 | 91狼人影院| 亚洲经典国产精华液单| 国产精品一区二区性色av| 日日啪夜夜撸| 久久精品久久久久久噜噜老黄| 爱豆传媒免费全集在线观看| 日韩强制内射视频| 六月丁香七月| 亚洲精品日本国产第一区| 秋霞在线观看毛片| 蜜桃久久精品国产亚洲av| 久久久久久久亚洲中文字幕| 日韩成人伦理影院| 国产黄片美女视频| 高清午夜精品一区二区三区| 日韩av不卡免费在线播放| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 午夜激情久久久久久久| 男女边吃奶边做爰视频| 日韩强制内射视频| 五月玫瑰六月丁香| 国产黄频视频在线观看| 日韩中字成人| 大码成人一级视频| 国产高清国产精品国产三级 | 久久久精品欧美日韩精品| 啦啦啦中文免费视频观看日本| 亚洲va在线va天堂va国产| 水蜜桃什么品种好| 青春草国产在线视频| 亚洲av免费高清在线观看| 一边亲一边摸免费视频| 免费看a级黄色片| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 国产av不卡久久| 日韩av免费高清视频| 中文字幕av成人在线电影| 寂寞人妻少妇视频99o| 成人毛片60女人毛片免费| 中文字幕av成人在线电影| 亚洲真实伦在线观看| 男人舔奶头视频| 亚洲精品自拍成人| 亚洲av国产av综合av卡| 插逼视频在线观看| 日本免费在线观看一区| 亚洲第一区二区三区不卡| 久久久久久九九精品二区国产| 午夜福利在线在线| 久久99蜜桃精品久久| 2021天堂中文幕一二区在线观| 一级毛片 在线播放| 激情五月婷婷亚洲| 超碰av人人做人人爽久久| 亚洲精品国产色婷婷电影| 一级二级三级毛片免费看| 丰满人妻一区二区三区视频av| 777米奇影视久久| av在线天堂中文字幕| 黄色怎么调成土黄色| 各种免费的搞黄视频| av一本久久久久| 日本爱情动作片www.在线观看| 亚洲av一区综合| 国产亚洲91精品色在线| 91久久精品国产一区二区三区| 国产高清有码在线观看视频| 精品一区二区三区视频在线| 又爽又黄无遮挡网站| 中文字幕免费在线视频6| 天堂网av新在线| av在线亚洲专区| 大陆偷拍与自拍| 2022亚洲国产成人精品| 亚洲成人中文字幕在线播放| 免费不卡的大黄色大毛片视频在线观看| 大片电影免费在线观看免费| 丰满乱子伦码专区| 国产免费视频播放在线视频| 最近的中文字幕免费完整| 日本欧美国产在线视频| 久久国内精品自在自线图片| videossex国产| 精品久久久久久久末码| 综合色丁香网| av在线播放精品| 国产成人91sexporn| 精品一区二区免费观看| 亚洲国产精品专区欧美| 成人国产av品久久久| 人妻 亚洲 视频| 一级毛片aaaaaa免费看小| 国产黄片美女视频| 亚洲精品视频女| av免费在线看不卡| 亚洲,一卡二卡三卡| av女优亚洲男人天堂| 超碰97精品在线观看| 亚洲av在线观看美女高潮| 一级av片app| 熟妇人妻不卡中文字幕| 中文字幕制服av| 嘟嘟电影网在线观看| 久久久久久久大尺度免费视频| 男人狂女人下面高潮的视频| 久热久热在线精品观看| 国产精品伦人一区二区| 啦啦啦啦在线视频资源| 99热这里只有是精品在线观看| 久久精品夜色国产| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品电影小说 | 女的被弄到高潮叫床怎么办| 国产精品伦人一区二区| 亚洲美女搞黄在线观看| 内地一区二区视频在线| 内地一区二区视频在线| 久久精品国产鲁丝片午夜精品| 蜜桃久久精品国产亚洲av| 最近最新中文字幕大全电影3| 别揉我奶头 嗯啊视频| 成人欧美大片| videos熟女内射| 国产在线一区二区三区精| 亚洲人成网站高清观看| 久久久欧美国产精品| 看十八女毛片水多多多| 欧美精品一区二区大全| 国产黄色免费在线视频| 蜜臀久久99精品久久宅男| 免费看a级黄色片| 亚洲经典国产精华液单| 亚洲精品乱码久久久v下载方式| 三级国产精品片| 国产精品久久久久久精品古装| 国产日韩欧美在线精品| 伦理电影大哥的女人| 男人舔奶头视频| 精华霜和精华液先用哪个| 一本色道久久久久久精品综合| 亚洲av成人精品一二三区| 啦啦啦在线观看免费高清www| 女人十人毛片免费观看3o分钟| 国产精品熟女久久久久浪| 欧美xxxx性猛交bbbb| 午夜激情福利司机影院| 成年人午夜在线观看视频| 欧美xxxx性猛交bbbb| 国产亚洲一区二区精品| 成人综合一区亚洲| 国产精品一区二区三区四区免费观看| 午夜福利网站1000一区二区三区| 男女啪啪激烈高潮av片| av免费观看日本| 搡女人真爽免费视频火全软件| 黑人高潮一二区| 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| 亚洲四区av| 蜜桃亚洲精品一区二区三区| 久热这里只有精品99| 久久久a久久爽久久v久久| 国产精品久久久久久久久免| 观看免费一级毛片| 波多野结衣巨乳人妻| 国产毛片在线视频| 亚洲成人av在线免费| 自拍偷自拍亚洲精品老妇| 国产成年人精品一区二区| 91精品伊人久久大香线蕉| 久久韩国三级中文字幕| 亚洲va在线va天堂va国产| 女人十人毛片免费观看3o分钟| 91久久精品国产一区二区成人| 少妇 在线观看| 老师上课跳d突然被开到最大视频| 亚洲精品一区蜜桃| 男女无遮挡免费网站观看| 免费av观看视频| 亚洲欧美日韩东京热| 肉色欧美久久久久久久蜜桃 | 国产精品成人在线| 国产老妇女一区| 亚洲国产精品国产精品| 婷婷色综合www| 久久午夜福利片| av在线播放精品| 各种免费的搞黄视频| 亚洲欧美一区二区三区黑人 | 亚洲精品视频女| 国产精品一区二区在线观看99| 国内精品美女久久久久久| 自拍偷自拍亚洲精品老妇| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 嫩草影院入口| 亚洲成人久久爱视频| 国产一级毛片在线| 久久久久久久亚洲中文字幕| 高清视频免费观看一区二区| 久久久亚洲精品成人影院| 我的女老师完整版在线观看| 亚洲精品国产色婷婷电影| 午夜免费鲁丝| 亚洲国产最新在线播放| 国产 精品1| 国产高清三级在线| 白带黄色成豆腐渣| 亚洲欧美成人综合另类久久久| 亚洲伊人久久精品综合| 国产男人的电影天堂91| 免费观看性生交大片5| 国产 精品1| 日韩一区二区视频免费看| 免费看光身美女| 特级一级黄色大片| 亚洲在久久综合| 精品国产一区二区三区久久久樱花 | 日本爱情动作片www.在线观看| 亚洲国产色片| 99久国产av精品国产电影| 女的被弄到高潮叫床怎么办| 免费看不卡的av| 亚洲,欧美,日韩| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 亚洲综合精品二区| 99热这里只有精品一区| 尾随美女入室| 在线a可以看的网站| 99久久精品热视频| 在线观看美女被高潮喷水网站| 男男h啪啪无遮挡| 久久国内精品自在自线图片| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 国内精品宾馆在线| 蜜桃久久精品国产亚洲av| 亚洲av中文字字幕乱码综合| 色综合色国产| 2022亚洲国产成人精品| 国产亚洲最大av| 午夜激情福利司机影院| 夜夜爽夜夜爽视频| 久久亚洲国产成人精品v| 欧美xxⅹ黑人| 久久久久精品久久久久真实原创| 久久影院123| 久久久久国产精品人妻一区二区| 亚洲人成网站高清观看| 夫妻性生交免费视频一级片| eeuss影院久久| 国产一区二区亚洲精品在线观看| 久久午夜福利片| 中文在线观看免费www的网站| 久久亚洲国产成人精品v| 制服丝袜香蕉在线| 国产精品av视频在线免费观看| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 高清在线视频一区二区三区| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 久久ye,这里只有精品| 一区二区三区四区激情视频| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡 | 日本免费在线观看一区| 26uuu在线亚洲综合色| 啦啦啦中文免费视频观看日本| 午夜精品国产一区二区电影 | 99热国产这里只有精品6| 亚洲欧美日韩卡通动漫| 又爽又黄无遮挡网站| 免费av观看视频| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 国产黄片视频在线免费观看| 午夜精品国产一区二区电影 | 在线观看一区二区三区| 一二三四中文在线观看免费高清| 亚洲欧美中文字幕日韩二区| 免费黄频网站在线观看国产| 大陆偷拍与自拍| 免费av毛片视频| videossex国产| 成人美女网站在线观看视频| 亚洲精品日韩在线中文字幕| 综合色丁香网| 国产久久久一区二区三区| 夜夜看夜夜爽夜夜摸| 亚州av有码| 禁无遮挡网站| 一级爰片在线观看| 亚洲欧美一区二区三区黑人 | 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 成人国产av品久久久| 免费电影在线观看免费观看| 国产成人a∨麻豆精品| 亚洲图色成人| 99精国产麻豆久久婷婷| 久久99热这里只有精品18| 日本一二三区视频观看| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 亚洲av在线观看美女高潮| 国产男女超爽视频在线观看| 99久久精品热视频| videossex国产| 国产大屁股一区二区在线视频| 欧美日韩综合久久久久久| 少妇人妻久久综合中文| 欧美xxxx黑人xx丫x性爽| 别揉我奶头 嗯啊视频| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美成人综合另类久久久| 欧美成人a在线观看| 新久久久久国产一级毛片| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 99久国产av精品国产电影| 黄色欧美视频在线观看| 1000部很黄的大片| 亚洲国产欧美人成| 国产精品一二三区在线看| www.av在线官网国产| 国内揄拍国产精品人妻在线| 一级毛片我不卡| 天堂网av新在线| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件| 51国产日韩欧美| 国产伦在线观看视频一区| 日本午夜av视频| 最后的刺客免费高清国语| 免费人成在线观看视频色| 婷婷色综合大香蕉| 大香蕉97超碰在线| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 欧美激情在线99| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 2018国产大陆天天弄谢| 成年免费大片在线观看| 亚洲色图av天堂| 亚洲av福利一区| 日本黄色片子视频| 国产伦在线观看视频一区| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 午夜精品一区二区三区免费看| 免费看a级黄色片| 毛片一级片免费看久久久久| 欧美一级a爱片免费观看看| 免费高清在线观看视频在线观看| 久久午夜福利片| 97超碰精品成人国产| 草草在线视频免费看| 一二三四中文在线观看免费高清| 免费黄频网站在线观看国产| 中文字幕av成人在线电影| 免费观看性生交大片5| 观看免费一级毛片| 免费高清在线观看视频在线观看| 日日摸夜夜添夜夜爱| av在线老鸭窝| 国产精品无大码| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 午夜激情久久久久久久| 人妻系列 视频| 国产男女超爽视频在线观看| 色哟哟·www| 国产久久久一区二区三区| 国产永久视频网站| 六月丁香七月| 亚洲在久久综合| av免费在线看不卡| 国产欧美日韩一区二区三区在线 | eeuss影院久久| 美女高潮的动态| 91久久精品电影网| 插阴视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 日韩一区二区视频免费看| 亚州av有码| 老师上课跳d突然被开到最大视频| 久久精品久久久久久噜噜老黄| 一级av片app| 免费观看a级毛片全部| 18禁动态无遮挡网站| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影 | 一二三四中文在线观看免费高清| 91狼人影院| 激情 狠狠 欧美| 久久久欧美国产精品| 国产精品三级大全| 欧美97在线视频| 啦啦啦在线观看免费高清www| 国产 一区 欧美 日韩| 七月丁香在线播放| av黄色大香蕉| 免费av毛片视频| av黄色大香蕉| 亚洲伊人久久精品综合| av线在线观看网站| 亚洲在线观看片| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 日本色播在线视频| 国产v大片淫在线免费观看| 中文欧美无线码| 国产视频内射| 只有这里有精品99| 99热全是精品| 久久久午夜欧美精品| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 欧美精品人与动牲交sv欧美| 麻豆成人午夜福利视频| 亚洲欧美一区二区三区黑人 | 男人添女人高潮全过程视频| 久久久国产一区二区| 中文字幕久久专区| 大片电影免费在线观看免费| 日韩电影二区| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 欧美极品一区二区三区四区| 视频区图区小说| 伊人久久国产一区二区| 少妇人妻久久综合中文| 国产乱人偷精品视频| 亚洲av.av天堂| 最近最新中文字幕大全电影3| 黑人高潮一二区| 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频| 成人亚洲精品av一区二区| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 精品人妻视频免费看| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久小说| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 中文在线观看免费www的网站| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 六月丁香七月| 最近中文字幕2019免费版| 毛片女人毛片| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 日本午夜av视频| 成年av动漫网址| 各种免费的搞黄视频| 成人一区二区视频在线观看| 亚洲欧洲日产国产| 人人妻人人看人人澡| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 男男h啪啪无遮挡| 在线天堂最新版资源| 久久久久网色| 久久热精品热| 性色av一级| 久久精品国产自在天天线| 亚洲天堂国产精品一区在线| 亚洲av福利一区| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂 | 看十八女毛片水多多多| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 久久久久精品性色| 亚洲精品久久久久久婷婷小说| 少妇熟女欧美另类| 免费观看a级毛片全部| 91精品国产九色| 99久久精品热视频| tube8黄色片| 日韩av免费高清视频| 免费看不卡的av| 日本爱情动作片www.在线观看| 欧美+日韩+精品| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | 只有这里有精品99| 国产亚洲精品久久久com| 人妻夜夜爽99麻豆av| 亚洲精品第二区| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 男人添女人高潮全过程视频| av一本久久久久| 十八禁网站网址无遮挡 | 久久99蜜桃精品久久| 91精品一卡2卡3卡4卡| 久久精品综合一区二区三区| 高清视频免费观看一区二区| 午夜福利视频精品| 国产熟女欧美一区二区| 狂野欧美激情性bbbbbb| 91aial.com中文字幕在线观看| 亚洲人成网站在线播| 爱豆传媒免费全集在线观看| 精品久久久久久久人妻蜜臀av| 色视频在线一区二区三区| 少妇高潮的动态图| 久久国内精品自在自线图片| 男女边摸边吃奶| 婷婷色av中文字幕| 久久久久久伊人网av| 成人一区二区视频在线观看| 我要看日韩黄色一级片| 国产探花极品一区二区| videossex国产| 亚洲av欧美aⅴ国产| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 国产综合懂色| a级毛片免费高清观看在线播放| 特级一级黄色大片| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 最新中文字幕久久久久| 一级爰片在线观看| 亚洲av免费在线观看| 老女人水多毛片| 一级a做视频免费观看| 国产一区二区三区综合在线观看 | 日韩av免费高清视频| 内射极品少妇av片p| 亚洲精品国产av成人精品| 亚洲精品亚洲一区二区|