• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole

    2014-03-07 03:49:00CHENLinWEIMeilin
    化學(xué)研究 2014年5期
    關(guān)鍵詞:苯并咪唑鉬酸化工學(xué)院

    CHEN Lin,WEI Meilin

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole

    CHEN Lin,WEI Meilin*

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    A proton-conductive organic-inorganic complex,[H3L2(PMo12O40)·7H2O·4CH3OH]n(1),was constructed with phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole(L)as the starting materials.Single-crystal X-ray diffraction analysis reveals that complex 1 exhibits a two-dimensional hydrogen-bonding network structure based-on phosphomolybdic acid,L molecules and solvent methanol molecules.Besides,complex 1 shows proton conductivity of about 10-4S·cm-1at 100℃under 98%relative humidity.

    phosphomolybdic acid;benzimidazole;organic-inorganic complex;crystal structure;proton conductivity

    Solid-state materials with proton conductivities have interested us from the point of view of transport dynamics and their applications in fuel cells[1-6].Supramolecular assemblies built by means of hydrogenbonding interactions have provided numerous solid-state materials with very attractive properties.For a long time,we have focused on organic/inorganic complexes based-on Keggin-type heteropolyacids dispersing in self-ordered hydrogen-bonded networks from the ligands containing 2-substituted benzimidazoles such as 2-(3-pyridyl)benzimidazole molecules[4],which have attracted considerable interest for their versatile coordination modes and potential to form supramolecular aggregates throughπ-πstacking and hydrogen bonding interactions[4,7].In the present research,by a self-assembly of phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules(L),we have constructed a proton-conductive organic/inorganic hybrid complex,[H3L2(PMo12O40)·7H2O·4CH3OH]n(1).X-ray diffraction analyses at 293Krevealed that complex 1 presented a two-dimensional(2D)supramolecular framework constructed by L molecules,phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions.The results of the impedance measurement show that complex 1is a good proton conductor.Interestingly,complex 1 shows proton conductivities across a wide range of temperatures and relative humidity(RH)and achieve proton conductivity over~10-4S·cm-1at 100℃under 98%RH.Here we report the synthesis and structural characterization of complex 1 as well as its proton conductivity evaluation in relation to temperature and RH.

    1 Experimental

    1.1 Materials and instruments

    All organic solvents and materials used for synthesis were of reagent grade and used without further purification.α-H3PMo12O40·6H2O was also prepared according to a literature method[1-4]and characterized by IR spectrum and TG analysis.L was prepared according to a literature method[8].Elemental analyses(C,H,and N)were carried out on a Perkin-Elmer 240Canalyzer.X-ray powder diffraction(XRD)was performed on a Bruker D8Advance Instrument using Cu-Kαradiation and a fixed power source(40 kV,40mA).IR spectrum was recorded on a VECTOR 22Bruker spectrophotometer with KBr pellets in the 400-4 000cm-1region at room temperature.Thermogravimetric analysis and differential scanning calorimetry were performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10℃· min-1.For an electrical conductivity study,the powdered crystalline samples were compressed to 1.0-1.2 mm in thickness and 12.0mm in diameter under a pressure of 12-14MPa.Alternating current(Ac)impedance spectroscopy measurement was performed on a chi660d(Shanghai Chenhua)electrochemical impedance analyzer with copper electrodes[1-6](the purity of Cu is more than 99.8%;the pellet was contacted with two copper plates)over the frequency range from 105Hz to 10Hz.The conductivity was calculated asσ=(1/R)×(h/S),whereRis the resistance,his the thickness,andSis the area of the tablet.

    1.2 Synthesis of the title compound

    Complex 1 was prepared by layering method.A buffer layer of a solution(10mL)of methanol-water(1∶1,V/V)was carefully layered over 5mL of an aqueous solution ofα-H3PMo12O40·6H2O(120mg,0.06mmol).Then a methanol(5mL)of L(25.2mg,0.12mmol)was carefully layered over the buffer layer.Two weeks later,red crystals appeared and were collected and dried in air after quickly being washed with water.Yield:91mg,76%based onα-H3PMo12O40·6H2O.Anal.Calcd(%)for C30H53Mo12N4O53P:calcd(%):C,14.41;H,2.14;N,2.24;Found(%):C,14.33;H,2.07;N,2.16.IR(KBr,cm-1):four characteristic vibrations resulting from heteropolyanions with the Keggin structure:809ν(Mo-Oc),881ν(Mo-Ob),955ν(Mo=Ot),1 068ν(P-Oa);some vibrations resulting from L molecules:3 270ν(O-H),1 625ν(C=N),1 245ν(C-O),1 062ν(C-C).

    1.3 Structure determination

    Intensity data of complex 1 were collected on a Siemens SMART CCD diffractometer with graphitemonochromated Cu-Kαradiation(λ=0.071 073nm)using SMART and SAINT.The structure was solved by direct methods and refined onF2by using full-matrix least-squares method with SHELXTL version 5.1[9].All non-h(huán)ydrogen atoms except for solvent molecules were refined anisotropically.Hydrogen atoms of organic molecules were localized in their calculated positions and refined using a riding model.Hydrogen atoms of solvent water molecules were not treated.The crystal parameters,data collection and refinement results for complex1 are summarized in Table 1,and the selected hydrogen bond parameters in Table 2with the lables of atoms shown in Fig.1.CCDC contains the supplementary crystallographic data for this paper.These data can be obtained free of charge from the Cambridge Crystallographic Data Centreviahttp://www.ccdc.cam.ac.uk/data_request/cif.

    Table 1 Crystallographic data and refinement parameters for the title complex

    Fig.1 Molecular structure unit of complex 1showing the labeling atoms at 30% probability thermal ellipsoids and hydrogen-bonding interactions(solvent water molecules and hydrogen atoms have been omitted for clarity)

    Table 2 Hydrogen bond lengths(nm)and bond angles(°)

    2 Results and discussion

    2.1 Structure description

    Complex 1,[H3(PMo12O40)L2·7H2O·4CH3OH]n,was synthesized by the reaction of phosphomolybdic acid and L molecules at room temperature.It was characterized by single-crystal X-ray diffraction,infrared spectroscopy,TG and elemental analyses.X-ray diffraction analyses at 293Krevealed that complex 1 crystallized in the triclinic space groupPīand presented a 2Dsupramolecular framework constructed by L molecules,phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions.The molecular structure of 1is shown in Fig.1.The molecular unit contains two L molecules,one phosphomolybdic acid molecule,four methanol molecules and seven water molecules.In the L molecule,the dihedral angle between the benzimidazole ring and the benzene ring of 2-h(huán)ydroxybenzene is 6.26°.Bond valence sum(BVS)calculations[10]indicate that the N2atom of the imidazole ring is the possible binding site of a proton from phosphomolybdic acid.Based on hydrogen-bonding interactions,two L molecules,one phosphomolybdic acid molecule and four methanol molecules form a cluster,[(H3PMo12O40)L2(CH3OH)4].Moreover,the clusters are connected with each other based-on the hydrogen-bonded interactions between the O7atoms of[PMo12O40]3-anions and the O24atoms of methanol molecules to form a 2Dlayer structure with voids(Fig.2).Solvent water molecules were just embedded in the voids.In addition,the presence of positively species,H+,from phosphomolybdic acid being embedded in the voids of the 2Danionic framework,could not only attract the polyanions to stabilize the 2Dsupramolecular framework,but also provide potential proton carriers.

    In the[PMo12O40]3-anion,the bond lengths of P-O and Mo-O are 1.480(8)-1.603(9)and 0.163 7(6)-0.248 1(9)nm,respectively.The bond lengths of P-O and Mo-O are respectively comparable to those in the polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests.In addition,the O-P-O angles are in the range of 66.7(5)°-112.2(4)°.All these results indicate that the[PMo12O40]3-units have a normal Keggin structure[1-4].

    Therefore,in complex1,based on electrostatic and hydrogen-bonding interactions,[PMo12O40]3-anions were stabilized in the supramolecular framework and not easily dissociated from the hybrid network.In addition,the protons from Keggin-type heteropolyacids,the protons belong to L molecules and hydrogen bonding networks indicate that complex 1 can potentially be a good proton-conducting material.

    Fig.2 The 2Dhydrogen-bonded network in complex 1down the baxis

    Fig.3 The curve of the Perkin-Elmer thermal analysis of complex 1in the atmosphere of N2

    2.2 TG analysis

    Fig.3shows the TG result for complex1.Thermal analysis of the powder of the crystalline sample of complex 1in an atmosphere of N2reveals that the robustness of the porous network could retain up to 300℃with a weight loss of about 4.91%in the temperature range 20-110℃(the weight loss corresponds to the loss of all solvent water molecules).The robustness of the porous network begins to decompose above 300℃due to the loss of methanol molecules and L molecules,indicating that methanol molecules and L molecules in the unit structure are involved in hydrogen-bonding interactions with the supramolecular framework,which is consistent with the result of structural analysis,and could be hold in the supramolecular framework at 300℃.

    2.3 Proton conductivity

    The proton conductivity of complex 1 was measured at 25℃in the RH range 35%-98%by a complex-plane impedance method using a compacted pellet of the powdered crystalline sample,which has the same structure as the single-crystal.At 25℃,complex1 showed poor proton conductivities of~10S· cm-1under 35%RH conditions,and its proton conductivities reached~6.5×10-8S·cm-1with RH up to 98%.The proton conductivities of 1 were also measured at 100℃in the RH range 35%-98%by a complex-plane impedance method.Fig.4shows the lg[σ/(S·cm-1)]versus RH plots of complex1 at 25and 100℃under 35%-98%RH.The conductivities of complex 1 increase with increasing RH at both temperatures.Again,we measured its ionic conductivities up to 100℃under 98%RH conditions.As the temperature increases,the proton conductivities of complex 1increase on a logarithmic scale even with almost saturated humidities.Fig.5shows the Arrhenius plots of the proton conductivities of complex 1 in the temperature range of 25-100℃under 98%RH conditions.The ln(σT)increases almost linearly with temperature range from 25to 100℃,and the corresponding activation energy(Ea)of conductivity was estimated to be 1.25eV.TheEavalue is high in the temperature range of 25-100℃.This is probably due to the fact that protons originating from phosphomolybdic acid and those originating from L molecules need a endothermal process for dissociation as hydrated forms such as H+,H3O+or other proton species[1-4].Therefore,the fact that complex1 exhibits good proton conductivities(5.21×10-5-2.21×10-4S·cm-1)in the temperature range of 85-100℃is indicative of a high carrier concentration based on the dissociating processes of proton from L molecules and phosphomolybdic acid.The powder X-ray diffraction data suggest that the powder sample after the proton-conductive measurement has the same supramolecular framework as that of complex 1.

    Fig.4 Relative humidity dependence of the proton conductivity of complex 1

    Fig.5 Arrhenius plots of the proton conductivity of complex 1

    3 Conclusion

    In summary,aproton-conductive organic-inorganic complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules has been constructed.The organic-inorganic hybrid matrix changed the environment around phosphomolybdic acid and influenced the formation of self-ordered hydrogen-bonding network within the resultant structure.Thus,complex 1 provides a route in increasing the stability and proton conductivity of organic-inorganic hybrid materials based on Keggin-type heteropolyacids and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules up to 100℃.

    [1]WEI Meilin,ZHUANG Pengfei,LI Huihua,et al.Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-Keggin-anion chains[J].Eur J Inorg Chem,2011(9):1473-1478.

    [2]WEI Meilin,ZHUANG Pengfei,MIAO Qiuxiang,et al.Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains[J].Solid State Chem,2011,184:1472-1477.

    [3]WEI Meilin,WANG Xiaoxiang,DUAN Xianying.Crystal structures and proton conductivities of a MOF and two POMMOF composites based on CuIIions and 2,2′-bipyridyl-3,3′-dicarboxylic acid[J].Chem Eur J,2013,19(5):1607-1616.

    基于磷鉬酸和2-(2-羥基苯)苯并咪唑復(fù)合物的晶體結(jié)構(gòu)和質(zhì)子導(dǎo)電性

    陳 林,魏梅林*
    (河南師范大學(xué)化學(xué)化工學(xué)院,河南新鄉(xiāng) 453007)

    以磷鉬酸和2-(2-羥基苯)苯并咪唑(L)為原料制備了具有質(zhì)子導(dǎo)電性的有機(jī)-無(wú)機(jī)化合物[H3L2(PMo12O40)·7H2O·4CH3OH]n(1).單晶X射線衍射分析結(jié)果表明化合物1具有基于磷鉬酸、2-(2-羥基苯)苯并咪唑及溶劑甲醇分子的二維氫鍵網(wǎng)絡(luò)結(jié)構(gòu);質(zhì)子導(dǎo)電性能測(cè)試結(jié)果表明該化合物在100℃、相對(duì)濕度為98%時(shí)的電導(dǎo)率達(dá)到10-4S·cm-1.

    磷鉬酸;苯并咪唑;有機(jī)-無(wú)機(jī)化合物;晶體結(jié)構(gòu);質(zhì)子導(dǎo)電性

    O 611

    A

    1008-1011(2014)05-0461-05

    10.14002/j.hxya.2014.05.006

    date:2014-03-11.

    National Natural Science Foundation of China(21171050).

    Biography:CHEN Lin(1989-),male,postgraduate,majoring in functional coordination compounds.*

    ,E-mail:weimeilinhd@163.com.

    猜你喜歡
    苯并咪唑鉬酸化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    專利名稱:一種硫摻雜鉬酸鉍納米片狀可見(jiàn)光催化劑的制備方法
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    一種鉬酸鋰的制備方法
    芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
    《化工學(xué)報(bào)》贊助單位
    1,1-二(苯并咪唑-2-基)-2-(喹喔啉-2-基)乙烯的合成及其性能
    高性能鉬酸鋅/堿式鉬酸鋅微粉合成研究*
    不卡一级毛片| 国产爱豆传媒在线观看| 日韩欧美在线乱码| 国产精品电影一区二区三区| 亚洲av电影不卡..在线观看| 欧美成人免费av一区二区三区| 高清毛片免费看| 欧美3d第一页| 色尼玛亚洲综合影院| av在线老鸭窝| av专区在线播放| 免费看光身美女| 久久欧美精品欧美久久欧美| 九九热线精品视视频播放| 毛片女人毛片| 中文字幕人妻熟人妻熟丝袜美| 国产久久久一区二区三区| 国产aⅴ精品一区二区三区波| 国产在视频线在精品| 一级av片app| 国产精品久久久久久久久免| 熟女人妻精品中文字幕| 国产成人影院久久av| 插阴视频在线观看视频| 美女内射精品一级片tv| 一个人观看的视频www高清免费观看| 岛国在线免费视频观看| 男女视频在线观看网站免费| 欧美成人一区二区免费高清观看| 黄色视频,在线免费观看| 精品乱码久久久久久99久播| 午夜a级毛片| 亚洲av美国av| 美女xxoo啪啪120秒动态图| 成人无遮挡网站| 午夜福利成人在线免费观看| 黄色日韩在线| 男女做爰动态图高潮gif福利片| 久久综合国产亚洲精品| 麻豆精品久久久久久蜜桃| 久久久精品大字幕| 精品熟女少妇av免费看| 亚洲av免费在线观看| 18禁在线无遮挡免费观看视频 | 久久久久久久久久成人| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 男人狂女人下面高潮的视频| 97超碰精品成人国产| 我的老师免费观看完整版| 日韩三级伦理在线观看| 免费观看的影片在线观看| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 精品一区二区免费观看| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 欧美区成人在线视频| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 一区二区三区四区激情视频 | 国产精品不卡视频一区二区| 亚洲真实伦在线观看| 天堂√8在线中文| 卡戴珊不雅视频在线播放| 一区二区三区免费毛片| 国产久久久一区二区三区| 少妇高潮的动态图| 少妇人妻一区二区三区视频| 国产黄片美女视频| 美女大奶头视频| 亚洲国产欧洲综合997久久,| 99九九线精品视频在线观看视频| 欧美3d第一页| 婷婷精品国产亚洲av| 无遮挡黄片免费观看| 哪里可以看免费的av片| 亚洲av第一区精品v没综合| 在线观看午夜福利视频| 最近的中文字幕免费完整| 中出人妻视频一区二区| h日本视频在线播放| 久久这里只有精品中国| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 欧美+日韩+精品| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 女的被弄到高潮叫床怎么办| 婷婷亚洲欧美| 99热只有精品国产| 一进一出抽搐动态| 久久久久国产网址| 男女做爰动态图高潮gif福利片| 久久午夜福利片| 一卡2卡三卡四卡精品乱码亚洲| 日韩,欧美,国产一区二区三区 | 插逼视频在线观看| 蜜臀久久99精品久久宅男| 日本 av在线| АⅤ资源中文在线天堂| 亚洲18禁久久av| 欧美日韩乱码在线| 麻豆国产av国片精品| 青春草视频在线免费观看| 国产一级毛片七仙女欲春2| АⅤ资源中文在线天堂| 99热6这里只有精品| 国产在线精品亚洲第一网站| 国产精品乱码一区二三区的特点| 欧美日韩精品成人综合77777| 免费观看人在逋| 国产v大片淫在线免费观看| 伦理电影大哥的女人| 在线观看一区二区三区| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| 色综合亚洲欧美另类图片| 日韩高清综合在线| 亚洲中文日韩欧美视频| 亚洲成人中文字幕在线播放| 俺也久久电影网| 免费观看精品视频网站| 美女免费视频网站| 欧美性感艳星| 久久午夜福利片| 韩国av在线不卡| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 亚洲无线在线观看| 亚洲av不卡在线观看| 国内精品一区二区在线观看| 97超视频在线观看视频| 国产精品一二三区在线看| 久久久久久久久久成人| 精品一区二区免费观看| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 亚洲国产精品久久男人天堂| 国内少妇人妻偷人精品xxx网站| 男女边吃奶边做爰视频| 欧美中文日本在线观看视频| 熟女电影av网| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 高清午夜精品一区二区三区 | av女优亚洲男人天堂| 国产激情偷乱视频一区二区| 成人三级黄色视频| 给我免费播放毛片高清在线观看| a级一级毛片免费在线观看| 日韩av不卡免费在线播放| 国产一区二区三区在线臀色熟女| 日本三级黄在线观看| 日本黄大片高清| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 三级国产精品欧美在线观看| 偷拍熟女少妇极品色| 内地一区二区视频在线| 两个人的视频大全免费| 日本免费a在线| 久久久久久久久久久丰满| 成人亚洲欧美一区二区av| 色吧在线观看| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 亚洲综合色惰| 成人性生交大片免费视频hd| 十八禁国产超污无遮挡网站| 九九在线视频观看精品| 国产精品精品国产色婷婷| 亚洲久久久久久中文字幕| 成人亚洲欧美一区二区av| 国产男人的电影天堂91| 一级黄片播放器| 两性午夜刺激爽爽歪歪视频在线观看| 国产av不卡久久| 最近的中文字幕免费完整| 国产精品电影一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 少妇丰满av| a级毛片a级免费在线| 麻豆精品久久久久久蜜桃| 日本熟妇午夜| 久久久久久国产a免费观看| 亚洲欧美精品综合久久99| 全区人妻精品视频| 偷拍熟女少妇极品色| 午夜久久久久精精品| 在线观看av片永久免费下载| 69av精品久久久久久| 淫妇啪啪啪对白视频| 亚洲美女黄片视频| 亚洲精品国产av成人精品 | 日韩av在线大香蕉| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 国模一区二区三区四区视频| 欧美潮喷喷水| 日本黄大片高清| 中国国产av一级| 深爱激情五月婷婷| 在线免费十八禁| 天堂网av新在线| 午夜福利18| 国产亚洲精品久久久com| 国产午夜精品论理片| 免费电影在线观看免费观看| 欧美3d第一页| 日本免费一区二区三区高清不卡| 亚洲精品久久国产高清桃花| 搞女人的毛片| 久久精品影院6| 成熟少妇高潮喷水视频| 三级经典国产精品| 五月伊人婷婷丁香| 搡老妇女老女人老熟妇| 麻豆成人午夜福利视频| 国产 一区 欧美 日韩| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产| www.色视频.com| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 亚洲在线观看片| 久久人人精品亚洲av| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| av在线亚洲专区| 日韩一区二区视频免费看| av卡一久久| 综合色丁香网| а√天堂www在线а√下载| 男插女下体视频免费在线播放| 国产精品一二三区在线看| 精品久久久久久成人av| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 高清毛片免费看| 国产午夜福利久久久久久| 日韩强制内射视频| 国产精品久久电影中文字幕| 日韩一本色道免费dvd| 午夜亚洲福利在线播放| 日本一本二区三区精品| 久久精品国产自在天天线| 亚洲五月天丁香| 丝袜喷水一区| 久久精品人妻少妇| 插阴视频在线观看视频| 日韩成人伦理影院| 热99在线观看视频| 亚洲国产精品成人久久小说 | 小蜜桃在线观看免费完整版高清| 亚洲av.av天堂| 99久国产av精品国产电影| 一本精品99久久精品77| 网址你懂的国产日韩在线| 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 看黄色毛片网站| 亚洲欧美成人综合另类久久久 | 欧美日韩在线观看h| 毛片一级片免费看久久久久| 真人做人爱边吃奶动态| 久久久久久久久大av| 成人av在线播放网站| 大香蕉久久网| 变态另类丝袜制服| 校园春色视频在线观看| 自拍偷自拍亚洲精品老妇| 欧美zozozo另类| 亚洲三级黄色毛片| 2021天堂中文幕一二区在线观| 国模一区二区三区四区视频| 尾随美女入室| 国产精品一区二区三区四区久久| 色av中文字幕| 人人妻人人澡欧美一区二区| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 色综合亚洲欧美另类图片| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 欧美人与善性xxx| 日韩欧美三级三区| 欧美3d第一页| 一进一出抽搐gif免费好疼| 少妇猛男粗大的猛烈进出视频 | 色尼玛亚洲综合影院| 精品人妻视频免费看| 成人性生交大片免费视频hd| 国产女主播在线喷水免费视频网站 | av专区在线播放| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 国产亚洲91精品色在线| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 亚洲经典国产精华液单| 黑人高潮一二区| 三级毛片av免费| 日韩成人伦理影院| 久久精品久久久久久噜噜老黄 | 日韩中字成人| 韩国av在线不卡| 国内精品美女久久久久久| 国产精品久久视频播放| 在线a可以看的网站| 69人妻影院| 国产在线男女| 床上黄色一级片| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 国产精品久久久久久久久免| 亚洲乱码一区二区免费版| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 成人高潮视频无遮挡免费网站| 久久综合国产亚洲精品| 欧美日本视频| 俄罗斯特黄特色一大片| 91狼人影院| 天堂√8在线中文| 淫妇啪啪啪对白视频| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩东京热| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 亚洲内射少妇av| 欧美一级a爱片免费观看看| 免费av毛片视频| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄 | 51国产日韩欧美| 永久网站在线| 插阴视频在线观看视频| 欧美人与善性xxx| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验 | 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 日本一二三区视频观看| 国产精品一区二区性色av| 久久久久九九精品影院| 日本黄色视频三级网站网址| 午夜精品在线福利| 日韩欧美 国产精品| 给我免费播放毛片高清在线观看| 国产女主播在线喷水免费视频网站 | 免费看光身美女| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 免费搜索国产男女视频| 在线a可以看的网站| 一级毛片我不卡| 国产白丝娇喘喷水9色精品| 日韩成人av中文字幕在线观看 | 一区二区三区免费毛片| av天堂中文字幕网| 插阴视频在线观看视频| 成人特级黄色片久久久久久久| 日本一二三区视频观看| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 国产av在哪里看| 日本黄色片子视频| 日韩中字成人| 欧美成人免费av一区二区三区| 精品久久久久久久久亚洲| 久久精品国产99精品国产亚洲性色| 亚洲精品日韩av片在线观看| 欧美中文日本在线观看视频| 午夜a级毛片| 色尼玛亚洲综合影院| 香蕉av资源在线| 日本一本二区三区精品| 色哟哟·www| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 可以在线观看毛片的网站| 久久久久久久午夜电影| 国产成人一区二区在线| 搡老妇女老女人老熟妇| 免费av不卡在线播放| 午夜福利在线观看吧| 日本成人三级电影网站| 毛片女人毛片| 男女啪啪激烈高潮av片| 精品无人区乱码1区二区| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 一级黄片播放器| 亚洲精品日韩在线中文字幕 | 欧美日韩国产亚洲二区| 少妇猛男粗大的猛烈进出视频 | 我的女老师完整版在线观看| 观看免费一级毛片| 精品久久国产蜜桃| 免费av观看视频| 国产精品爽爽va在线观看网站| 亚洲欧美成人精品一区二区| 俄罗斯特黄特色一大片| 成年版毛片免费区| 毛片女人毛片| 波多野结衣高清无吗| 国产精品一二三区在线看| 2021天堂中文幕一二区在线观| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 久久精品国产亚洲av天美| 男女做爰动态图高潮gif福利片| 一本精品99久久精品77| 女生性感内裤真人,穿戴方法视频| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 男人舔奶头视频| 免费看日本二区| 九九久久精品国产亚洲av麻豆| 久久久久精品国产欧美久久久| 97超视频在线观看视频| 18+在线观看网站| av在线天堂中文字幕| 国产毛片a区久久久久| 性色avwww在线观看| 国产极品精品免费视频能看的| 别揉我奶头~嗯~啊~动态视频| 国产av在哪里看| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 麻豆一二三区av精品| 一个人免费在线观看电影| 成人高潮视频无遮挡免费网站| 97热精品久久久久久| 成人特级黄色片久久久久久久| 一区二区三区四区激情视频 | 色综合亚洲欧美另类图片| 成人美女网站在线观看视频| 国国产精品蜜臀av免费| 久久久久免费精品人妻一区二区| 日韩av在线大香蕉| 麻豆久久精品国产亚洲av| 午夜激情欧美在线| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 女生性感内裤真人,穿戴方法视频| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 一个人看的www免费观看视频| 春色校园在线视频观看| 久久热精品热| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| 天美传媒精品一区二区| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器| 亚洲乱码一区二区免费版| 别揉我奶头 嗯啊视频| av免费在线看不卡| 国产av麻豆久久久久久久| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 好男人在线观看高清免费视频| 最好的美女福利视频网| 日本三级黄在线观看| 哪里可以看免费的av片| 久久鲁丝午夜福利片| 天天躁日日操中文字幕| 22中文网久久字幕| 最新在线观看一区二区三区| 国产精品久久久久久精品电影| 久久久精品大字幕| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 少妇人妻精品综合一区二区 | 少妇的逼水好多| 欧美性猛交黑人性爽| 亚洲人成网站在线观看播放| 99在线人妻在线中文字幕| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱 | 男女那种视频在线观看| 偷拍熟女少妇极品色| 插逼视频在线观看| 热99re8久久精品国产| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 国国产精品蜜臀av免费| 天天一区二区日本电影三级| 日韩亚洲欧美综合| av中文乱码字幕在线| 精品人妻一区二区三区麻豆 | 精品久久久久久久久久免费视频| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 丰满的人妻完整版| 少妇的逼水好多| 国产精品久久久久久av不卡| 1000部很黄的大片| 久久草成人影院| 国产精品一区二区三区四区久久| 亚洲中文日韩欧美视频| 中国美女看黄片| 日韩精品青青久久久久久| 亚洲图色成人| 国产av不卡久久| 久久久久国产精品人妻aⅴ院| 国产淫片久久久久久久久| 午夜福利18| 99热这里只有是精品50| 亚洲av一区综合| 国产高清不卡午夜福利| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 黄色欧美视频在线观看| 一级毛片久久久久久久久女| 国产精品亚洲一级av第二区| 简卡轻食公司| 欧美日韩精品成人综合77777| 久久久久久久亚洲中文字幕| 国产精品爽爽va在线观看网站| 网址你懂的国产日韩在线| 国产人妻一区二区三区在| 18禁黄网站禁片免费观看直播| 亚洲av成人精品一区久久| 免费大片18禁| 人妻夜夜爽99麻豆av| 中文字幕免费在线视频6| 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验 | 亚洲国产精品久久男人天堂| 九色成人免费人妻av| 欧美+日韩+精品| 亚洲精品久久国产高清桃花| 国产精品福利在线免费观看| 国产乱人偷精品视频| 色哟哟·www| 欧美不卡视频在线免费观看| 午夜激情福利司机影院| 色吧在线观看| 免费看光身美女| 能在线免费观看的黄片| 男人舔女人下体高潮全视频| 亚洲中文日韩欧美视频| 亚洲欧美清纯卡通| av在线观看视频网站免费| 国产在视频线在精品| or卡值多少钱| 精品一区二区三区视频在线观看免费| 性欧美人与动物交配| 免费高清视频大片| 国产毛片a区久久久久| 美女 人体艺术 gogo| 在线免费观看的www视频| 欧美绝顶高潮抽搐喷水| 熟女人妻精品中文字幕| 久久精品国产清高在天天线| 精品少妇黑人巨大在线播放 | 一区二区三区免费毛片| 久久欧美精品欧美久久欧美| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 国产乱人视频| 国产综合懂色| 亚洲欧美日韩卡通动漫| 日日啪夜夜撸| 国产综合懂色| 成人午夜高清在线视频| 日韩av不卡免费在线播放| 亚洲图色成人| 久久久精品欧美日韩精品| 亚洲一区二区三区色噜噜| 亚洲精品乱码久久久v下载方式| 国产一区二区亚洲精品在线观看| 国产黄片美女视频| 啦啦啦啦在线视频资源| 五月玫瑰六月丁香| 亚洲av二区三区四区| 午夜激情欧美在线| 精品午夜福利在线看| 伊人久久精品亚洲午夜| av女优亚洲男人天堂|