• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole

    2014-03-07 03:49:00CHENLinWEIMeilin
    化學(xué)研究 2014年5期
    關(guān)鍵詞:苯并咪唑鉬酸化工學(xué)院

    CHEN Lin,WEI Meilin

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole

    CHEN Lin,WEI Meilin*

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    A proton-conductive organic-inorganic complex,[H3L2(PMo12O40)·7H2O·4CH3OH]n(1),was constructed with phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole(L)as the starting materials.Single-crystal X-ray diffraction analysis reveals that complex 1 exhibits a two-dimensional hydrogen-bonding network structure based-on phosphomolybdic acid,L molecules and solvent methanol molecules.Besides,complex 1 shows proton conductivity of about 10-4S·cm-1at 100℃under 98%relative humidity.

    phosphomolybdic acid;benzimidazole;organic-inorganic complex;crystal structure;proton conductivity

    Solid-state materials with proton conductivities have interested us from the point of view of transport dynamics and their applications in fuel cells[1-6].Supramolecular assemblies built by means of hydrogenbonding interactions have provided numerous solid-state materials with very attractive properties.For a long time,we have focused on organic/inorganic complexes based-on Keggin-type heteropolyacids dispersing in self-ordered hydrogen-bonded networks from the ligands containing 2-substituted benzimidazoles such as 2-(3-pyridyl)benzimidazole molecules[4],which have attracted considerable interest for their versatile coordination modes and potential to form supramolecular aggregates throughπ-πstacking and hydrogen bonding interactions[4,7].In the present research,by a self-assembly of phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules(L),we have constructed a proton-conductive organic/inorganic hybrid complex,[H3L2(PMo12O40)·7H2O·4CH3OH]n(1).X-ray diffraction analyses at 293Krevealed that complex 1 presented a two-dimensional(2D)supramolecular framework constructed by L molecules,phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions.The results of the impedance measurement show that complex 1is a good proton conductor.Interestingly,complex 1 shows proton conductivities across a wide range of temperatures and relative humidity(RH)and achieve proton conductivity over~10-4S·cm-1at 100℃under 98%RH.Here we report the synthesis and structural characterization of complex 1 as well as its proton conductivity evaluation in relation to temperature and RH.

    1 Experimental

    1.1 Materials and instruments

    All organic solvents and materials used for synthesis were of reagent grade and used without further purification.α-H3PMo12O40·6H2O was also prepared according to a literature method[1-4]and characterized by IR spectrum and TG analysis.L was prepared according to a literature method[8].Elemental analyses(C,H,and N)were carried out on a Perkin-Elmer 240Canalyzer.X-ray powder diffraction(XRD)was performed on a Bruker D8Advance Instrument using Cu-Kαradiation and a fixed power source(40 kV,40mA).IR spectrum was recorded on a VECTOR 22Bruker spectrophotometer with KBr pellets in the 400-4 000cm-1region at room temperature.Thermogravimetric analysis and differential scanning calorimetry were performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10℃· min-1.For an electrical conductivity study,the powdered crystalline samples were compressed to 1.0-1.2 mm in thickness and 12.0mm in diameter under a pressure of 12-14MPa.Alternating current(Ac)impedance spectroscopy measurement was performed on a chi660d(Shanghai Chenhua)electrochemical impedance analyzer with copper electrodes[1-6](the purity of Cu is more than 99.8%;the pellet was contacted with two copper plates)over the frequency range from 105Hz to 10Hz.The conductivity was calculated asσ=(1/R)×(h/S),whereRis the resistance,his the thickness,andSis the area of the tablet.

    1.2 Synthesis of the title compound

    Complex 1 was prepared by layering method.A buffer layer of a solution(10mL)of methanol-water(1∶1,V/V)was carefully layered over 5mL of an aqueous solution ofα-H3PMo12O40·6H2O(120mg,0.06mmol).Then a methanol(5mL)of L(25.2mg,0.12mmol)was carefully layered over the buffer layer.Two weeks later,red crystals appeared and were collected and dried in air after quickly being washed with water.Yield:91mg,76%based onα-H3PMo12O40·6H2O.Anal.Calcd(%)for C30H53Mo12N4O53P:calcd(%):C,14.41;H,2.14;N,2.24;Found(%):C,14.33;H,2.07;N,2.16.IR(KBr,cm-1):four characteristic vibrations resulting from heteropolyanions with the Keggin structure:809ν(Mo-Oc),881ν(Mo-Ob),955ν(Mo=Ot),1 068ν(P-Oa);some vibrations resulting from L molecules:3 270ν(O-H),1 625ν(C=N),1 245ν(C-O),1 062ν(C-C).

    1.3 Structure determination

    Intensity data of complex 1 were collected on a Siemens SMART CCD diffractometer with graphitemonochromated Cu-Kαradiation(λ=0.071 073nm)using SMART and SAINT.The structure was solved by direct methods and refined onF2by using full-matrix least-squares method with SHELXTL version 5.1[9].All non-h(huán)ydrogen atoms except for solvent molecules were refined anisotropically.Hydrogen atoms of organic molecules were localized in their calculated positions and refined using a riding model.Hydrogen atoms of solvent water molecules were not treated.The crystal parameters,data collection and refinement results for complex1 are summarized in Table 1,and the selected hydrogen bond parameters in Table 2with the lables of atoms shown in Fig.1.CCDC contains the supplementary crystallographic data for this paper.These data can be obtained free of charge from the Cambridge Crystallographic Data Centreviahttp://www.ccdc.cam.ac.uk/data_request/cif.

    Table 1 Crystallographic data and refinement parameters for the title complex

    Fig.1 Molecular structure unit of complex 1showing the labeling atoms at 30% probability thermal ellipsoids and hydrogen-bonding interactions(solvent water molecules and hydrogen atoms have been omitted for clarity)

    Table 2 Hydrogen bond lengths(nm)and bond angles(°)

    2 Results and discussion

    2.1 Structure description

    Complex 1,[H3(PMo12O40)L2·7H2O·4CH3OH]n,was synthesized by the reaction of phosphomolybdic acid and L molecules at room temperature.It was characterized by single-crystal X-ray diffraction,infrared spectroscopy,TG and elemental analyses.X-ray diffraction analyses at 293Krevealed that complex 1 crystallized in the triclinic space groupPīand presented a 2Dsupramolecular framework constructed by L molecules,phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions.The molecular structure of 1is shown in Fig.1.The molecular unit contains two L molecules,one phosphomolybdic acid molecule,four methanol molecules and seven water molecules.In the L molecule,the dihedral angle between the benzimidazole ring and the benzene ring of 2-h(huán)ydroxybenzene is 6.26°.Bond valence sum(BVS)calculations[10]indicate that the N2atom of the imidazole ring is the possible binding site of a proton from phosphomolybdic acid.Based on hydrogen-bonding interactions,two L molecules,one phosphomolybdic acid molecule and four methanol molecules form a cluster,[(H3PMo12O40)L2(CH3OH)4].Moreover,the clusters are connected with each other based-on the hydrogen-bonded interactions between the O7atoms of[PMo12O40]3-anions and the O24atoms of methanol molecules to form a 2Dlayer structure with voids(Fig.2).Solvent water molecules were just embedded in the voids.In addition,the presence of positively species,H+,from phosphomolybdic acid being embedded in the voids of the 2Danionic framework,could not only attract the polyanions to stabilize the 2Dsupramolecular framework,but also provide potential proton carriers.

    In the[PMo12O40]3-anion,the bond lengths of P-O and Mo-O are 1.480(8)-1.603(9)and 0.163 7(6)-0.248 1(9)nm,respectively.The bond lengths of P-O and Mo-O are respectively comparable to those in the polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests.In addition,the O-P-O angles are in the range of 66.7(5)°-112.2(4)°.All these results indicate that the[PMo12O40]3-units have a normal Keggin structure[1-4].

    Therefore,in complex1,based on electrostatic and hydrogen-bonding interactions,[PMo12O40]3-anions were stabilized in the supramolecular framework and not easily dissociated from the hybrid network.In addition,the protons from Keggin-type heteropolyacids,the protons belong to L molecules and hydrogen bonding networks indicate that complex 1 can potentially be a good proton-conducting material.

    Fig.2 The 2Dhydrogen-bonded network in complex 1down the baxis

    Fig.3 The curve of the Perkin-Elmer thermal analysis of complex 1in the atmosphere of N2

    2.2 TG analysis

    Fig.3shows the TG result for complex1.Thermal analysis of the powder of the crystalline sample of complex 1in an atmosphere of N2reveals that the robustness of the porous network could retain up to 300℃with a weight loss of about 4.91%in the temperature range 20-110℃(the weight loss corresponds to the loss of all solvent water molecules).The robustness of the porous network begins to decompose above 300℃due to the loss of methanol molecules and L molecules,indicating that methanol molecules and L molecules in the unit structure are involved in hydrogen-bonding interactions with the supramolecular framework,which is consistent with the result of structural analysis,and could be hold in the supramolecular framework at 300℃.

    2.3 Proton conductivity

    The proton conductivity of complex 1 was measured at 25℃in the RH range 35%-98%by a complex-plane impedance method using a compacted pellet of the powdered crystalline sample,which has the same structure as the single-crystal.At 25℃,complex1 showed poor proton conductivities of~10S· cm-1under 35%RH conditions,and its proton conductivities reached~6.5×10-8S·cm-1with RH up to 98%.The proton conductivities of 1 were also measured at 100℃in the RH range 35%-98%by a complex-plane impedance method.Fig.4shows the lg[σ/(S·cm-1)]versus RH plots of complex1 at 25and 100℃under 35%-98%RH.The conductivities of complex 1 increase with increasing RH at both temperatures.Again,we measured its ionic conductivities up to 100℃under 98%RH conditions.As the temperature increases,the proton conductivities of complex 1increase on a logarithmic scale even with almost saturated humidities.Fig.5shows the Arrhenius plots of the proton conductivities of complex 1 in the temperature range of 25-100℃under 98%RH conditions.The ln(σT)increases almost linearly with temperature range from 25to 100℃,and the corresponding activation energy(Ea)of conductivity was estimated to be 1.25eV.TheEavalue is high in the temperature range of 25-100℃.This is probably due to the fact that protons originating from phosphomolybdic acid and those originating from L molecules need a endothermal process for dissociation as hydrated forms such as H+,H3O+or other proton species[1-4].Therefore,the fact that complex1 exhibits good proton conductivities(5.21×10-5-2.21×10-4S·cm-1)in the temperature range of 85-100℃is indicative of a high carrier concentration based on the dissociating processes of proton from L molecules and phosphomolybdic acid.The powder X-ray diffraction data suggest that the powder sample after the proton-conductive measurement has the same supramolecular framework as that of complex 1.

    Fig.4 Relative humidity dependence of the proton conductivity of complex 1

    Fig.5 Arrhenius plots of the proton conductivity of complex 1

    3 Conclusion

    In summary,aproton-conductive organic-inorganic complex based on phosphomolybdic acid and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules has been constructed.The organic-inorganic hybrid matrix changed the environment around phosphomolybdic acid and influenced the formation of self-ordered hydrogen-bonding network within the resultant structure.Thus,complex 1 provides a route in increasing the stability and proton conductivity of organic-inorganic hybrid materials based on Keggin-type heteropolyacids and 2-(2-h(huán)ydroxybenzene)benzimidazole molecules up to 100℃.

    [1]WEI Meilin,ZHUANG Pengfei,LI Huihua,et al.Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-Keggin-anion chains[J].Eur J Inorg Chem,2011(9):1473-1478.

    [2]WEI Meilin,ZHUANG Pengfei,MIAO Qiuxiang,et al.Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains[J].Solid State Chem,2011,184:1472-1477.

    [3]WEI Meilin,WANG Xiaoxiang,DUAN Xianying.Crystal structures and proton conductivities of a MOF and two POMMOF composites based on CuIIions and 2,2′-bipyridyl-3,3′-dicarboxylic acid[J].Chem Eur J,2013,19(5):1607-1616.

    基于磷鉬酸和2-(2-羥基苯)苯并咪唑復(fù)合物的晶體結(jié)構(gòu)和質(zhì)子導(dǎo)電性

    陳 林,魏梅林*
    (河南師范大學(xué)化學(xué)化工學(xué)院,河南新鄉(xiāng) 453007)

    以磷鉬酸和2-(2-羥基苯)苯并咪唑(L)為原料制備了具有質(zhì)子導(dǎo)電性的有機(jī)-無(wú)機(jī)化合物[H3L2(PMo12O40)·7H2O·4CH3OH]n(1).單晶X射線衍射分析結(jié)果表明化合物1具有基于磷鉬酸、2-(2-羥基苯)苯并咪唑及溶劑甲醇分子的二維氫鍵網(wǎng)絡(luò)結(jié)構(gòu);質(zhì)子導(dǎo)電性能測(cè)試結(jié)果表明該化合物在100℃、相對(duì)濕度為98%時(shí)的電導(dǎo)率達(dá)到10-4S·cm-1.

    磷鉬酸;苯并咪唑;有機(jī)-無(wú)機(jī)化合物;晶體結(jié)構(gòu);質(zhì)子導(dǎo)電性

    O 611

    A

    1008-1011(2014)05-0461-05

    10.14002/j.hxya.2014.05.006

    date:2014-03-11.

    National Natural Science Foundation of China(21171050).

    Biography:CHEN Lin(1989-),male,postgraduate,majoring in functional coordination compounds.*

    ,E-mail:weimeilinhd@163.com.

    猜你喜歡
    苯并咪唑鉬酸化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    專利名稱:一種硫摻雜鉬酸鉍納米片狀可見(jiàn)光催化劑的制備方法
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    一種鉬酸鋰的制備方法
    芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
    《化工學(xué)報(bào)》贊助單位
    1,1-二(苯并咪唑-2-基)-2-(喹喔啉-2-基)乙烯的合成及其性能
    高性能鉬酸鋅/堿式鉬酸鋅微粉合成研究*
    青春草亚洲视频在线观看| 午夜福利乱码中文字幕| 国产高清不卡午夜福利| 制服诱惑二区| 欧美国产精品一级二级三级| 春色校园在线视频观看| 乱人伦中国视频| 日本黄色日本黄色录像| 中文欧美无线码| 免费久久久久久久精品成人欧美视频| 国产精品熟女久久久久浪| 中文字幕亚洲精品专区| 国产av国产精品国产| 亚洲欧美成人精品一区二区| 超碰97精品在线观看| 久久精品国产亚洲av天美| 高清视频免费观看一区二区| 成人手机av| 亚洲欧洲日产国产| 夜夜骑夜夜射夜夜干| 成年av动漫网址| 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 美女福利国产在线| 国产野战对白在线观看| 永久网站在线| 2018国产大陆天天弄谢| 久久精品夜色国产| 亚洲男人天堂网一区| 大话2 男鬼变身卡| 国产精品三级大全| 在线观看www视频免费| 亚洲视频免费观看视频| 日本av免费视频播放| 在线观看国产h片| 一二三四在线观看免费中文在| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲av.av天堂| 午夜老司机福利剧场| 黑人巨大精品欧美一区二区蜜桃| 国产av码专区亚洲av| 日韩一卡2卡3卡4卡2021年| 久久韩国三级中文字幕| tube8黄色片| 熟女电影av网| 国产97色在线日韩免费| av女优亚洲男人天堂| 国产野战对白在线观看| 免费观看av网站的网址| 午夜久久久在线观看| 丝袜脚勾引网站| 欧美97在线视频| 纵有疾风起免费观看全集完整版| av一本久久久久| 国产精品免费视频内射| 中文字幕人妻丝袜一区二区 | 日韩av不卡免费在线播放| 亚洲精品一二三| 亚洲国产精品一区二区三区在线| 免费久久久久久久精品成人欧美视频| 性色av一级| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 精品第一国产精品| 国产亚洲一区二区精品| 黄色配什么色好看| 日本wwww免费看| 精品少妇内射三级| 国产成人精品一,二区| 久久人妻熟女aⅴ| 大码成人一级视频| 亚洲欧美一区二区三区国产| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 欧美日韩视频高清一区二区三区二| 天堂俺去俺来也www色官网| 国产成人一区二区在线| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 久久久久久久大尺度免费视频| 亚洲精华国产精华液的使用体验| 在线观看一区二区三区激情| 中文字幕色久视频| 午夜日本视频在线| 亚洲av国产av综合av卡| 在线观看三级黄色| www.熟女人妻精品国产| 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| 日韩一区二区三区影片| 亚洲第一av免费看| 色94色欧美一区二区| 你懂的网址亚洲精品在线观看| 亚洲一码二码三码区别大吗| 国产精品av久久久久免费| 90打野战视频偷拍视频| 中文天堂在线官网| 日韩制服骚丝袜av| 黄片播放在线免费| 热99国产精品久久久久久7| 亚洲国产成人一精品久久久| 激情视频va一区二区三区| 亚洲国产精品国产精品| 在线观看免费视频网站a站| 久久久国产精品麻豆| 在线天堂最新版资源| 在线看a的网站| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 激情视频va一区二区三区| www.av在线官网国产| av片东京热男人的天堂| 狂野欧美激情性bbbbbb| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| 欧美国产精品va在线观看不卡| 人妻少妇偷人精品九色| 天天躁日日躁夜夜躁夜夜| 国产片特级美女逼逼视频| 久久久精品区二区三区| 欧美国产精品va在线观看不卡| 日韩一区二区三区影片| 欧美成人午夜免费资源| 国产精品久久久久久久久免| 女人高潮潮喷娇喘18禁视频| 高清视频免费观看一区二区| 边亲边吃奶的免费视频| 极品人妻少妇av视频| 久久久久久久精品精品| a 毛片基地| 免费黄频网站在线观看国产| 看十八女毛片水多多多| 国产极品天堂在线| 一级片'在线观看视频| 人妻人人澡人人爽人人| 日韩制服丝袜自拍偷拍| 老司机影院毛片| 久久久久久伊人网av| 中文字幕精品免费在线观看视频| 宅男免费午夜| 国产麻豆69| 99久国产av精品国产电影| 久热这里只有精品99| 成人黄色视频免费在线看| 99久久综合免费| 丁香六月天网| 麻豆av在线久日| 久久青草综合色| 日日啪夜夜爽| 久久99蜜桃精品久久| 国产av国产精品国产| 国产一区有黄有色的免费视频| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 亚洲成人手机| 少妇的逼水好多| 男人操女人黄网站| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 精品国产一区二区久久| 欧美成人午夜精品| 日本免费在线观看一区| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 国产精品亚洲av一区麻豆 | 熟妇人妻不卡中文字幕| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 尾随美女入室| 大码成人一级视频| 国产日韩欧美视频二区| 麻豆精品久久久久久蜜桃| 亚洲熟女精品中文字幕| 免费在线观看黄色视频的| 久久久久久久精品精品| 国产免费又黄又爽又色| 人人妻人人澡人人看| 五月天丁香电影| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 亚洲av综合色区一区| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 免费在线观看黄色视频的| 丝袜脚勾引网站| 亚洲中文av在线| 国产激情久久老熟女| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 99久久综合免费| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| 黄网站色视频无遮挡免费观看| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 久久狼人影院| 中国三级夫妇交换| 久久久久久人人人人人| 婷婷色麻豆天堂久久| 亚洲成人手机| 新久久久久国产一级毛片| 亚洲第一青青草原| 国产一区二区激情短视频 | 亚洲欧美日韩另类电影网站| 亚洲成人一二三区av| 18+在线观看网站| 免费高清在线观看视频在线观看| 成人18禁高潮啪啪吃奶动态图| 青春草国产在线视频| 久久久久久人人人人人| 亚洲欧美日韩另类电影网站| 老司机影院成人| 亚洲欧美一区二区三区久久| 女性被躁到高潮视频| 青春草国产在线视频| 亚洲图色成人| 国产成人精品一,二区| 亚洲视频免费观看视频| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦在线观看免费高清www| 成人18禁高潮啪啪吃奶动态图| 在线观看免费高清a一片| 久久国内精品自在自线图片| 青春草视频在线免费观看| kizo精华| 免费观看性生交大片5| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说| 亚洲三区欧美一区| 久久人人97超碰香蕉20202| 国产日韩欧美在线精品| 宅男免费午夜| 久久国产精品大桥未久av| 国产成人精品久久二区二区91 | 国产精品久久久av美女十八| 国产av一区二区精品久久| 不卡视频在线观看欧美| 中文字幕人妻丝袜制服| 国产极品天堂在线| 久久久精品国产亚洲av高清涩受| 在线观看三级黄色| 人人妻人人添人人爽欧美一区卜| 午夜老司机福利剧场| 一级黄片播放器| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 亚洲国产日韩一区二区| 国产福利在线免费观看视频| 波多野结衣一区麻豆| 亚洲综合色网址| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 99热全是精品| 91成人精品电影| 亚洲视频免费观看视频| 精品国产一区二区三区久久久樱花| 亚洲精品久久久久久婷婷小说| 亚洲欧洲国产日韩| 国产亚洲最大av| 好男人视频免费观看在线| 99热全是精品| 丝袜喷水一区| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| av免费观看日本| 有码 亚洲区| 午夜日韩欧美国产| 日韩中文字幕欧美一区二区 | 国产精品人妻久久久影院| 天堂8中文在线网| 美女国产高潮福利片在线看| 自线自在国产av| a级片在线免费高清观看视频| 在线天堂最新版资源| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 各种免费的搞黄视频| 亚洲精品av麻豆狂野| 美国免费a级毛片| 超碰97精品在线观看| h视频一区二区三区| 色网站视频免费| 日本午夜av视频| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美网| 婷婷成人精品国产| 考比视频在线观看| 国产成人精品久久久久久| 视频区图区小说| 久久人人爽av亚洲精品天堂| 在现免费观看毛片| 精品99又大又爽又粗少妇毛片| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 久久这里只有精品19| 人人妻人人添人人爽欧美一区卜| 午夜激情av网站| 天天躁狠狠躁夜夜躁狠狠躁| 看十八女毛片水多多多| 日本av免费视频播放| 男女高潮啪啪啪动态图| 亚洲av免费高清在线观看| 韩国精品一区二区三区| 99国产精品免费福利视频| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 久热这里只有精品99| 制服丝袜香蕉在线| 一区二区av电影网| 天堂8中文在线网| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 久久精品熟女亚洲av麻豆精品| 国产有黄有色有爽视频| 久久久精品国产亚洲av高清涩受| 久久精品久久精品一区二区三区| 国产精品一二三区在线看| 赤兔流量卡办理| 纵有疾风起免费观看全集完整版| 一级片免费观看大全| 久久久久视频综合| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 黄色配什么色好看| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 麻豆乱淫一区二区| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 咕卡用的链子| 韩国精品一区二区三区| 久久久久久久久久久免费av| 26uuu在线亚洲综合色| 久久97久久精品| 18禁动态无遮挡网站| 亚洲精品美女久久av网站| 男人操女人黄网站| 久久青草综合色| 国产精品蜜桃在线观看| 黄色配什么色好看| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 啦啦啦啦在线视频资源| 国产成人一区二区在线| 91国产中文字幕| 欧美日韩视频高清一区二区三区二| 韩国高清视频一区二区三区| 久久av网站| 超色免费av| 搡老乐熟女国产| 亚洲三区欧美一区| 免费在线观看完整版高清| 18在线观看网站| 国产一区二区 视频在线| 三级国产精品片| 亚洲久久久国产精品| 国产精品一国产av| 国产av国产精品国产| 久久久久久人妻| 亚洲成人av在线免费| 一本色道久久久久久精品综合| 2021少妇久久久久久久久久久| 日本欧美视频一区| 亚洲精品aⅴ在线观看| 国产精品 欧美亚洲| 免费黄色在线免费观看| 尾随美女入室| 69精品国产乱码久久久| 男男h啪啪无遮挡| 亚洲精品一区蜜桃| 精品国产一区二区三区久久久樱花| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 久久狼人影院| 18在线观看网站| 最近中文字幕高清免费大全6| 18禁观看日本| 日韩人妻精品一区2区三区| 一二三四中文在线观看免费高清| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 国产精品国产三级国产专区5o| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 美女午夜性视频免费| 国产极品粉嫩免费观看在线| 老司机影院成人| 少妇的逼水好多| 丝袜人妻中文字幕| 制服人妻中文乱码| 亚洲国产成人一精品久久久| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影 | 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 如何舔出高潮| 国产精品av久久久久免费| 国产激情久久老熟女| 啦啦啦啦在线视频资源| 高清黄色对白视频在线免费看| av在线播放精品| 国产在线一区二区三区精| 制服丝袜香蕉在线| 国产精品一区二区在线不卡| 18禁动态无遮挡网站| 欧美激情高清一区二区三区 | 国产男女内射视频| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 亚洲内射少妇av| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 97在线视频观看| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 97在线视频观看| 国产欧美日韩一区二区三区在线| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 美女视频免费永久观看网站| 午夜福利在线免费观看网站| 色哟哟·www| 久久久久久久国产电影| 久久精品国产亚洲av高清一级| 两个人看的免费小视频| 精品人妻一区二区三区麻豆| av网站在线播放免费| 欧美成人午夜精品| 亚洲av电影在线进入| av网站在线播放免费| 999精品在线视频| 肉色欧美久久久久久久蜜桃| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 丰满乱子伦码专区| 韩国精品一区二区三区| 日韩一本色道免费dvd| 国产免费视频播放在线视频| 国产xxxxx性猛交| 日本av免费视频播放| 欧美人与性动交α欧美软件| 久久av网站| 各种免费的搞黄视频| 天堂俺去俺来也www色官网| 亚洲,欧美精品.| 国产一区二区在线观看av| 国产精品免费视频内射| 亚洲经典国产精华液单| 有码 亚洲区| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 热re99久久国产66热| 国产午夜精品一二区理论片| 国产麻豆69| 一区二区三区激情视频| 黄频高清免费视频| 久久青草综合色| 午夜福利乱码中文字幕| 国产精品秋霞免费鲁丝片| 亚洲精品第二区| 国产有黄有色有爽视频| 日韩成人av中文字幕在线观看| 欧美av亚洲av综合av国产av | 亚洲精品,欧美精品| 我要看黄色一级片免费的| 午夜福利,免费看| 亚洲综合色网址| 国产深夜福利视频在线观看| 91午夜精品亚洲一区二区三区| 9191精品国产免费久久| 国产毛片在线视频| 可以免费在线观看a视频的电影网站 | 欧美中文综合在线视频| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 美国免费a级毛片| 看免费成人av毛片| 有码 亚洲区| 日韩电影二区| 国产成人精品婷婷| 日本欧美视频一区| 精品午夜福利在线看| 国产一区有黄有色的免费视频| 一区二区av电影网| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 九草在线视频观看| 制服人妻中文乱码| 青春草视频在线免费观看| 性少妇av在线| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| 热99国产精品久久久久久7| 亚洲成色77777| 日韩成人av中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 日韩一卡2卡3卡4卡2021年| 国产成人欧美| 亚洲精品久久久久久婷婷小说| 免费日韩欧美在线观看| 久久久久久久久久久免费av| 久久综合国产亚洲精品| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 国产免费视频播放在线视频| a级片在线免费高清观看视频| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 久久这里只有精品19| 女人被躁到高潮嗷嗷叫费观| 国产精品成人在线| 99热全是精品| 日韩人妻精品一区2区三区| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 亚洲,一卡二卡三卡| 中文字幕人妻丝袜一区二区 | 丰满乱子伦码专区| 亚洲国产看品久久| 精品午夜福利在线看| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 九九爱精品视频在线观看| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| av免费观看日本| 亚洲国产欧美日韩在线播放| 午夜av观看不卡| 老汉色∧v一级毛片| 欧美日韩视频精品一区| 999精品在线视频| 哪个播放器可以免费观看大片| 热re99久久精品国产66热6| 91国产中文字幕| 另类精品久久| 91国产中文字幕| 啦啦啦啦在线视频资源| 国产精品成人在线| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 丰满饥渴人妻一区二区三| 青草久久国产| 丝袜在线中文字幕| 欧美日韩一级在线毛片| 成年av动漫网址| 精品久久久久久电影网| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆 | 一个人免费看片子| av又黄又爽大尺度在线免费看| 亚洲国产毛片av蜜桃av| 在线观看三级黄色| h视频一区二区三区| av一本久久久久| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看| 91在线精品国自产拍蜜月| 女人久久www免费人成看片| 99久久综合免费| 你懂的网址亚洲精品在线观看| 欧美日韩精品网址| 美女主播在线视频| 国产野战对白在线观看| 成人国语在线视频| 精品一区二区三卡| 欧美另类一区| 亚洲男人天堂网一区| 啦啦啦在线免费观看视频4| 国产免费现黄频在线看| 一区二区三区乱码不卡18| 久久精品国产亚洲av高清一级| 国产 精品1|