• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole

    2014-09-02 06:33:32CHENLinWEIMeilin
    化學(xué)研究 2014年5期
    關(guān)鍵詞:苯并咪唑鉬酸梅林

    CHEN Lin, WEI Meilin

    (School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China)

    Crystalstructureandproton-conductivityofacomplexbasedonphosphomolybdicacidand2-(2-hydroxybenzene)benzimidazole

    CHEN Lin, WEI Meilin*

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    A proton-conductive organic-inorganic complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1), was constructed with phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole (L) as the starting materials. Single-crystal X-ray diffraction analysis reveals that complex1exhibits a two-dimensional hydrogen-bonding network structure based-on phosphomolybdic acid, L molecules and solvent methanol molecules. Besides, complex1shows proton conductivity of about 10-4S·cm-1at 100 ℃ under 98% relative humidity.

    phosphomolybdic acid;benzimidazole; organic-inorganic complex;crystal structure; proton conductivity

    Solid-state materials with proton conductivities have interested us from the point of view of transport dynamics and their applications in fuel cells[1-6]. Supramolecular assemblies built by means of hydrogen-bonding interactions have provided numerous solid-state materials with very attractive properties. For a long time, we have focused on organic/inorganic complexes based-on Keggin-type heteropolyacids dispersing in self-ordered hydrogen-bonded networks from the ligands containing 2-substituted benzimidazoles such as 2-(3-pyridyl)benzimidazole molecules[4], which have attracted considerable interest for their versatile coordination modes and potential to form supramolecular aggregates through π-π stacking and hydrogen bonding interactions[4,7]. In the present research, by a self-assembly of phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules (L), we have constructed a proton-conductive organic/inorganic hybrid complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1). X-ray diffraction analyses at 293 K revealed that complex1presented a two-dimensional(2D) supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The results of the impedance measurement show that complex1is a good proton conductor. Interestingly, complex1shows proton conductivities across a wide range of temperatures and relative humidity (RH) and achieve proton conductivity over ~10-4S·cm-1at 100 ℃ under 98% RH. Here we report the synthesis and structural characterization of complex1as well as its proton conductivity evaluation in relation to temperature and RH.

    1 Experimental

    1.1 Materials and instruments

    All organic solvents and materials used for synthesis were of reagent grade and used without further purification.α-H3PMo12O40·6H2O was also prepared according to a literature method[1-4]and characterized by IR spectrum and TG analysis. L was prepared according to a literature method[8]. Elemental analyses (C, H, and N) were carried out on a Perkin-Elmer 240C analyzer. X-ray powder diffraction (XRD) was performed on a Bruker D8 Advance Instrument using Cu-Kαradiation and a fixed power source (40 kV, 40 mA). IR spectrum was recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400-4 000 cm-1region at room temperature. Thermogravimetric analysis and differential scanning calorimetry were performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10 ℃·min-1. For an electrical conductivity study, the powdered crystalline samples were compressed to 1.0-1.2 mm in thickness and 12.0 mm in diameter under a pressure of 12-14 MPa.Alternatingcurrent (Ac) impedance spectroscopy measurement was performed on a chi660d (Shanghai Chenhua) electrochemical impedance analyzer with copper electrodes[1-6](the purity of Cu is more than 99.8%; the pellet was contacted with two copper plates) over the frequency range from 105Hz to 10 Hz. The conductivity was calculated asσ= (1/R) × (h/S), whereRis the resistance,his the thickness, andSis the area of the tablet.

    1.2 Synthesis of the title compound

    Complex1was prepared by layering method. A buffer layer of a solution (10 mL) of methanol-water (1∶1,V/V) was carefully layered over 5 mL of an aqueous solution ofα-H3PMo12O40·6H2O (120 mg, 0.06 mmol). Then a methanol (5 mL) of L (25.2 mg, 0.12 mmol) was carefully layered over the buffer layer. Two weeks later, red crystals appeared and were collected and dried in air after quickly being washed with water. Yield: 91 mg, 76% based onα-H3PMo12O40·6H2O. Anal. Calcd (%) for C30H53Mo12N4O53P: calcd(%): C, 14.41; H, 2.14; N, 2.24; Found (%): C, 14.33; H, 2.07; N, 2.16. IR (KBr, cm-1): four characteristic vibrations resulting from heteropolyanions with the Keggin structure: 809ν(Mo-Oc), 881ν(Mo-Ob), 955ν(Mo=Ot), 1 068ν(P-Oa); some vibrations resulting from L molecules: 3 270ν(O-H), 1 625ν(C=N), 1 245ν(C-O), 1 062ν(C-C).

    1.3 Structure determination

    Intensity data of complex1were collected on a Siemens SMART CCD diffractometer with graphite-monochromated Cu-Kαradiation (λ= 0.071 073 nm) using SMART and SAINT. The structure was solved by direct methods and refined onF2by using full-matrix least-squares method with SHELXTL version 5.1[9]. All non-hydrogen atoms except for solvent molecules were refined anisotropically. Hydrogen atoms of organic molecules were localized in their calculated positions and refined using a riding model. Hydrogen atoms of solvent water molecules were not treated. The crystal parameters, data collection and refinement results for complex1are summarized in Table 1, and the selected hydrogen bond parameters in Table 2 with the lables of atoms shown in Fig.1. CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centreviahttp://www.ccdc.cam.ac.uk/data_request/cif.

    Table 1 Crystallographic data and refinement parameters for the title complex

    Fig.1 Molecular structure unit of complex 1 showing the labeling atoms at 30% probability thermal ellipsoids and hydrogen-bonding interactions(solvent water molecules and hydrogen atoms have been omitted for clarity)

    Table2Hydrogenbondlengths(nm)andbondangles(°)

    D-H…A(D…A)d(D-H)d(H…A)d(D…A)∠D-H…ASymmetryO23-H23A…O250.08200.18440.2663(8)176.60N1-H1A…O240.08600.19650.2802(9)163.96O24-H24A…O70.08500.21930.2954(8)149.11(-x+1,-y+1,-z+1)O23…O170.3050(8)N2…O170.2995(7)

    2 Results and discussion

    2.1 Structure description

    Complex1, [H3(PMo12O40)L2·7H2O·4CH3OH]n, was synthesized by the reaction of phosphomolybdic acid and L molecules at room temperature. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy, TG and elemental analyses. X-ray diffraction analyses at 293 K revealed that complex1crystallized in the triclinic space groupPī and presented a 2D supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The molecular structure of1is shown in Fig. 1. The molecular unit contains two L molecules, one phosphomolybdic acid molecule, four methanol molecules and seven water molecules. In the L molecule, the dihedral angle between the benzimidazole ring and the benzene ring of 2-hydroxybenzene is 6.26°. Bond valence sum (BVS) calculations[10]indicate that the N2 atom of the imidazole ring is the possible binding site of a proton from phosphomolybdic acid. Based on hydrogen-bonding interactions, two L molecules, one phosphomolybdic acid molecule and four methanol molecules form a cluster, [(H3PMo12O40)L2(CH3OH)4]. Moreover, the clusters are connected with each other based-on the hydrogen-bonded interactions between the O7 atoms of [PMo12O40]3-anions and the O24 atoms of methanol molecules to form a 2D layer structure with voids (Fig. 2). Solvent water molecules were just embedded in the voids. In addition, the presence of positively species, H+, from phosphomolybdic acid being embedded in the voids of the 2D anionic framework, could not only attract the polyanions to stabilize the 2D supramolecular framework, but also provide potential proton carriers.

    In the [PMo12O40]3-anion, the bond lengths of P-O and Mo-O are 1.480(8)-1.603(9) and 0.163 7(6)-0.248 1(9) nm, respectively. The bond lengths of P-O and Mo-O are respectively comparable to those in the polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests. In addition, the O-P-O angles are in the range of 66.7(5)°-112.2(4)°. All these results indicate that the [PMo12O40]3-units have a normal Keggin structure[1-4].

    Therefore, in complex1, based on electrostatic and hydrogen-bonding interactions, [PMo12O40]3-anions were stabilized in the supramolecular framework and not easily dissociated from the hybrid network. In addition, the protons from Keggin-type heteropolyacids, the protons belong to L molecules and hydrogen bonding networks indicate that complex1can potentially be a good proton-conducting material.

    Fig.2 The 2D hydrogen-bonded network in complex 1 down the b axis

    2.2 TG analysis

    Fig.3 The curve of the Perkin-Elmer thermal analysis of complex 1 in the atmosphere of N2

    Fig. 3 shows the TG result for complex1. Thermal analysis of the powder of the crystalline sample of complex1in an atmosphere of N2reveals that the robustness of the porous network could retain up to 300 ℃ with a weight loss of about 4.91% in the temperature range 20-110 ℃(the weight loss corresponds to the loss of all solvent water molecules). The robustness of the porous network begins to decompose above 300 ℃ due to the loss of methanol molecules and L molecules, indicating that methanol molecules and L molecules in the unit structure are involved in hydrogen-bonding interactions with the supramolecular framework, which is consistent with the result of structural analysis, and could be hold in the supramolecular framework at 300 ℃.

    2.3 Proton conductivity

    The proton conductivity of complex1was measured at 25 ℃ in the RH range 35%-98% by a complex-plane impedance method using a compacted pellet of the powdered crystalline sample, which has the same structure as the single-crystal. At 25 ℃, complex1showed poor proton conductivities of ~10-9S·cm-1under 35% RH conditions, and its proton conductivities reached ~6.5×10-8S·cm-1with RH up to 98%. The proton conductivities of1were also measured at 100 ℃ in the RH range 35%-98% by a complex-plane impedance method. Fig. 4 shows the lg [σ/(S·cm-1)] versus RH plots of complex1at 25 and 100 ℃ under 35%-98% RH. The conductivities of complex1increase with increasing RH at both temperatures. Again, we measured its ionic conductivities up to 100 ℃ under 98% RH conditions. As the temperature increases, the proton conductivities of complex1increase on a logarithmic scale even with almost saturated humidities. Fig. 5 shows the Arrhenius plots of the proton conductivities of complex1in the temperature range of 25-100 ℃ under 98% RH conditions. The ln(σT) increases almost linearly with temperature range from 25 to 100 ℃, and the corresponding activation energy (Ea) of conductivity was estimated to be 1.25 eV. TheEavalue is high in the temperature range of 25-100 ℃. This is probably due to the fact that protons originating from phosphomolybdic acid and those originating from L molecules need a endothermal process for dissociation as hydrated forms such as H+, H3O+or other proton species[1-4]. Therefore, the fact that complex1exhibits good proton conductivities(5.21×10-5-2.21×10-4S·cm-1) in the temperature range of 85-100 ℃ is indicative of a high carrier concentration based on the dissociating processes of proton from L molecules and phosphomolybdic acid. The powder X-ray diffraction data suggest that the powder sample after the proton-conductive measurement has the same supramolecular framework as that of complex1.

    Fig.4 Relative humidity dependence of the proton conductivity of complex 1

    Fig.5 Arrhenius plots of the proton conductivity of complex 1

    3 Conclusion

    In summary, a proton-conductive organic-inorganic complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules has been constructed. The organic-inorganic hybrid matrix changed the environment around phosphomolybdic acid and influenced the formation of self-ordered hydrogen-bonding network within the resultant structure. Thus, complex1provides a route in increasing the stability and proton conductivity of organic-inorganic hybrid materials based on Keggin-type heteropolyacids and 2-(2-hydroxybenzene)benzimidazole molecules up to 100 ℃.

    [1] WEI Meilin, ZHUANG Pengfei, LI Huihua, et al. Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-Keggin-anion chains [J]. Eur J Inorg Chem, 2011(9): 1473-1478.

    [2] WEI Meilin, ZHUANG Pengfei, MIAO Qiuxiang, et al. Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains [J]. Solid State Chem, 2011, 184: 1472-1477.

    [3] WEI Meilin, WANG Xiaoxiang, DUAN Xianying. Crystal structures and proton conductivities of a MOF and two POM-MOF composites based on CuIIions and 2,2′-bipyridyl-3,3′-dicarboxylic acid [J]. Chem Eur J, 2013, 19(5): 1607-1616.

    [4] WEI Meilin, WANG Yuxia, WANG Xinjun. Two proton-conductive hybrids based on 2-(3-pyridyl) benzimidazole molecules and Keggin-type heteropolyacids [J]. Solid State Chem, 2014, 209: 29-36.

    [5] 孫晶晶,魏梅林. 異煙酸氮氧化物/磷鉬酸鎳絡(luò)合物摻雜硅膠復(fù)合物的制備及其質(zhì)子導(dǎo)電性 [J]. 化學(xué)研究, 2014, 25(1): 63-66.

    [6] 王玉霞,魏梅林. 2,2′-聯(lián)咪唑磷鎢酸鹽和氧化石墨復(fù)合物的制備及其質(zhì)子導(dǎo)電性能 [J]. 化學(xué)研究, 2014, 25(1): 53-57.

    [7] MOON D, LAH M S, DELSESTO R E, et al. The effect of ligand charge on the coordination geometry of and Fe(III) ion: five- and six-coordinate Fe(III) complexes of tris(2-benzimidazolylmethyl)amine [J]. Inorg Chem, 2002, 41: 4708-4714.

    [8] CARINAR F, WILLIAMS A F, BERNARDINELLI G. Moleculartricorns: Self-assembly of trinuclear palladium(II) complexes [J]. Inorg Chem, 2001, 40: 1826-1832.

    [9] SHELDRICK G M. SHELXL 97, Version 5.1, Program for crystal structure solution and refinement [CP]. University of G?ttingen, Germany, 1997.

    [10] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database [J]. Acta Cryst B, 1985, 41: 244-247.

    [責(zé)任編輯:吳文鵬]

    基于磷鉬酸和2-(2-羥基苯)苯并咪唑復(fù)合物的晶體結(jié)構(gòu)和質(zhì)子導(dǎo)電性

    陳 林, 魏梅林*

    (河南師范大學(xué) 化學(xué)化工學(xué)院,河南 新鄉(xiāng) 453007)

    以磷鉬酸和2-(2-羥基苯)苯并咪唑(L)為原料制備了具有質(zhì)子導(dǎo)電性的有機(jī)-無機(jī)化合物[H3L2(PMo12O40)·7H2O·4CH3OH]n(1). 單晶X射線衍射分析結(jié)果表明化合物1具有基于磷鉬酸、2-(2-羥基苯)苯并咪唑及溶劑甲醇分子的二維氫鍵網(wǎng)絡(luò)結(jié)構(gòu);質(zhì)子導(dǎo)電性能測試結(jié)果表明該化合物在100 ℃、相對(duì)濕度為98%時(shí)的電導(dǎo)率達(dá)到10-4S·cm-1.

    磷鉬酸;苯并咪唑;有機(jī)-無機(jī)化合物;晶體結(jié)構(gòu);質(zhì)子導(dǎo)電性

    date:2014-03-11.

    National Natural Science Foundation of China(21171050).

    Biography:CHEN Lin(1989-), male, postgraduate, majoring in functional coordination compounds.*

    , E-mail: weimeilinhd@163.com.

    O 611DocumentcodeAArticleID1008-1011(2014)05-0461-05

    10.14002/j.hxya.2014.05.006

    猜你喜歡
    苯并咪唑鉬酸梅林
    專利名稱:一種硫摻雜鉬酸鉍納米片狀可見光催化劑的制備方法
    吃梅子
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    一種鉬酸鋰的制備方法
    芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
    像媽媽一樣
    搖籃(2016年10期)2016-06-23 07:55:56
    像爸爸一樣
    搖籃(2016年10期)2016-06-23 07:55:31
    1,1-二(苯并咪唑-2-基)-2-(喹喔啉-2-基)乙烯的合成及其性能
    高性能鉬酸鋅/堿式鉬酸鋅微粉合成研究*
    2-氨甲基-1H-苯并咪唑鈷(Ⅱ)和鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和抑菌活性
    国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 黄色一级大片看看| 99精品久久久久人妻精品| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 国产精品国产三级国产专区5o| 女人高潮潮喷娇喘18禁视频| 国产精品.久久久| 亚洲国产欧美一区二区综合| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 久久久久久免费高清国产稀缺| 久久精品熟女亚洲av麻豆精品| 国产精品二区激情视频| 午夜av观看不卡| 男女边吃奶边做爰视频| 一级毛片我不卡| 性色av一级| 午夜免费观看性视频| 国产亚洲欧美在线一区二区| 午夜老司机福利片| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 国产淫语在线视频| 人成视频在线观看免费观看| 少妇的丰满在线观看| 99国产精品99久久久久| 自线自在国产av| 国产精品二区激情视频| 在线观看免费午夜福利视频| 久久人人爽av亚洲精品天堂| 亚洲精品国产区一区二| 午夜福利,免费看| 日韩人妻精品一区2区三区| 国产97色在线日韩免费| 国产精品熟女久久久久浪| 亚洲 国产 在线| www.999成人在线观看| 亚洲精品日韩在线中文字幕| 男女高潮啪啪啪动态图| 久久国产精品影院| 国产一卡二卡三卡精品| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久 | 婷婷色麻豆天堂久久| bbb黄色大片| 国产成人啪精品午夜网站| 午夜福利视频精品| 丝袜脚勾引网站| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看 | 亚洲第一av免费看| 天天添夜夜摸| bbb黄色大片| www.熟女人妻精品国产| 女性被躁到高潮视频| 久久久久久久大尺度免费视频| 久久精品aⅴ一区二区三区四区| 国产精品.久久久| 91国产中文字幕| 狂野欧美激情性xxxx| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看 | 国产伦人伦偷精品视频| 超色免费av| 少妇的丰满在线观看| 99国产精品99久久久久| 成人国产一区最新在线观看 | www.熟女人妻精品国产| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说| 男女免费视频国产| 国产一区亚洲一区在线观看| 国产精品免费视频内射| 国产精品久久久人人做人人爽| 极品少妇高潮喷水抽搐| 午夜福利免费观看在线| 国产一区二区在线观看av| e午夜精品久久久久久久| 国产熟女午夜一区二区三区| 免费人妻精品一区二区三区视频| 亚洲av日韩精品久久久久久密 | 黄色片一级片一级黄色片| bbb黄色大片| 狂野欧美激情性xxxx| 黑人猛操日本美女一级片| 久久热在线av| 久久国产亚洲av麻豆专区| 久久精品亚洲熟妇少妇任你| 99热全是精品| 男人舔女人的私密视频| 国产日韩欧美在线精品| 久久鲁丝午夜福利片| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 国产一级毛片在线| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 99国产精品一区二区三区| tube8黄色片| 国产有黄有色有爽视频| 一级片'在线观看视频| 午夜91福利影院| 精品人妻1区二区| 老司机影院毛片| 国产麻豆69| 中文乱码字字幕精品一区二区三区| 男女边吃奶边做爰视频| 国产1区2区3区精品| 午夜福利影视在线免费观看| 一边摸一边抽搐一进一出视频| 亚洲精品日本国产第一区| 国产精品99久久99久久久不卡| 激情视频va一区二区三区| 免费黄频网站在线观看国产| 国产成人一区二区在线| 丁香六月天网| 老司机影院成人| 国产精品久久久久久精品古装| 国产精品久久久久久精品古装| 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 天天躁夜夜躁狠狠久久av| 亚洲七黄色美女视频| 视频在线观看一区二区三区| 精品久久久久久电影网| 中文字幕色久视频| 色综合欧美亚洲国产小说| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 国产深夜福利视频在线观看| 在线观看一区二区三区激情| 高清视频免费观看一区二区| 欧美精品一区二区大全| 精品人妻一区二区三区麻豆| 国产又爽黄色视频| 老汉色av国产亚洲站长工具| 黄色一级大片看看| av福利片在线| 国产视频首页在线观看| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 国产亚洲av片在线观看秒播厂| kizo精华| 51午夜福利影视在线观看| 欧美黄色淫秽网站| 午夜91福利影院| 亚洲欧美激情在线| 亚洲第一av免费看| 国产午夜精品一二区理论片| 最近中文字幕2019免费版| 男女之事视频高清在线观看 | 超色免费av| 日韩大片免费观看网站| 亚洲国产中文字幕在线视频| 中文字幕最新亚洲高清| 好男人视频免费观看在线| 欧美精品亚洲一区二区| 亚洲国产精品国产精品| 国产一卡二卡三卡精品| 久久人妻福利社区极品人妻图片 | 老司机深夜福利视频在线观看 | av线在线观看网站| 亚洲精品国产av蜜桃| 久久久久久久大尺度免费视频| 午夜免费观看性视频| 天堂中文最新版在线下载| 国产熟女欧美一区二区| 欧美精品一区二区免费开放| 丰满人妻熟妇乱又伦精品不卡| 大片免费播放器 马上看| a级毛片黄视频| 国产无遮挡羞羞视频在线观看| 免费黄频网站在线观看国产| 19禁男女啪啪无遮挡网站| 亚洲av欧美aⅴ国产| 免费高清在线观看视频在线观看| 国产女主播在线喷水免费视频网站| 欧美日韩一级在线毛片| 欧美少妇被猛烈插入视频| 国产在视频线精品| 亚洲精品在线美女| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 精品久久蜜臀av无| 少妇猛男粗大的猛烈进出视频| 国产精品一二三区在线看| 国产又爽黄色视频| 肉色欧美久久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 激情五月婷婷亚洲| 丝袜喷水一区| 只有这里有精品99| 女性被躁到高潮视频| 亚洲,欧美精品.| 日本av免费视频播放| 午夜日韩欧美国产| 人人妻人人爽人人添夜夜欢视频| 亚洲综合色网址| 亚洲熟女毛片儿| 天天添夜夜摸| 色视频在线一区二区三区| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 亚洲中文av在线| 精品欧美一区二区三区在线| 欧美 日韩 精品 国产| 欧美激情高清一区二区三区| 国产精品一区二区在线不卡| 韩国精品一区二区三区| 最新的欧美精品一区二区| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 日韩av免费高清视频| 久久久久久久大尺度免费视频| 亚洲国产精品一区二区三区在线| 国产99久久九九免费精品| 久久久国产欧美日韩av| 一区在线观看完整版| 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 欧美久久黑人一区二区| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 亚洲精品国产av成人精品| 亚洲国产精品999| 两人在一起打扑克的视频| 少妇 在线观看| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| 五月开心婷婷网| 国产精品欧美亚洲77777| 嫩草影视91久久| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 亚洲精品美女久久久久99蜜臀 | 亚洲少妇的诱惑av| 后天国语完整版免费观看| av电影中文网址| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 另类精品久久| 母亲3免费完整高清在线观看| 黄色怎么调成土黄色| 日本欧美视频一区| 国产熟女午夜一区二区三区| 国产精品一区二区精品视频观看| 国产有黄有色有爽视频| 精品少妇内射三级| 成年人免费黄色播放视频| 国产精品 欧美亚洲| 欧美亚洲日本最大视频资源| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 少妇的丰满在线观看| 日本猛色少妇xxxxx猛交久久| 女性被躁到高潮视频| 日韩精品免费视频一区二区三区| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| av不卡在线播放| 考比视频在线观看| 只有这里有精品99| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 国产成人av教育| 国产精品一区二区免费欧美 | 国产片特级美女逼逼视频| 久久久久国产精品人妻一区二区| 国产在线观看jvid| 美女高潮到喷水免费观看| 亚洲国产欧美一区二区综合| 国产视频首页在线观看| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 人妻人人澡人人爽人人| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 一级片免费观看大全| 日本猛色少妇xxxxx猛交久久| 亚洲熟女毛片儿| 一本一本久久a久久精品综合妖精| 男人操女人黄网站| 久久人人爽av亚洲精品天堂| 中文字幕制服av| 最近中文字幕2019免费版| 亚洲国产欧美在线一区| 国语对白做爰xxxⅹ性视频网站| 人妻人人澡人人爽人人| 在线观看www视频免费| 成人亚洲精品一区在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美人与性动交α欧美软件| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| av天堂久久9| 在线亚洲精品国产二区图片欧美| 最近中文字幕2019免费版| 性少妇av在线| 欧美精品啪啪一区二区三区 | 国产视频首页在线观看| 精品国产超薄肉色丝袜足j| 十八禁网站网址无遮挡| 日本色播在线视频| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| 亚洲成人免费电影在线观看 | 国产高清videossex| 欧美日韩黄片免| 国产伦理片在线播放av一区| 久久精品亚洲av国产电影网| 夫妻午夜视频| 午夜福利影视在线免费观看| 精品亚洲成a人片在线观看| 你懂的网址亚洲精品在线观看| 成人三级做爰电影| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 国产精品亚洲av一区麻豆| 国产极品粉嫩免费观看在线| 日本av手机在线免费观看| 亚洲图色成人| 十八禁网站网址无遮挡| 又大又黄又爽视频免费| 王馨瑶露胸无遮挡在线观看| 亚洲第一av免费看| 99国产精品一区二区蜜桃av | av视频免费观看在线观看| 免费观看人在逋| 午夜老司机福利片| 欧美日韩视频高清一区二区三区二| 亚洲国产最新在线播放| 国产精品免费视频内射| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 成人亚洲欧美一区二区av| 免费人妻精品一区二区三区视频| 日韩av免费高清视频| 国产成人免费无遮挡视频| 少妇 在线观看| 国产一区有黄有色的免费视频| 欧美黄色片欧美黄色片| 日韩av不卡免费在线播放| 两人在一起打扑克的视频| 中文字幕最新亚洲高清| 日日夜夜操网爽| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| 男女边摸边吃奶| 美国免费a级毛片| 亚洲成人国产一区在线观看 | 一本大道久久a久久精品| 1024香蕉在线观看| 日本wwww免费看| 亚洲精品成人av观看孕妇| 成人亚洲欧美一区二区av| 亚洲国产精品一区三区| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 午夜91福利影院| 赤兔流量卡办理| 欧美亚洲 丝袜 人妻 在线| 美女福利国产在线| 精品一区二区三卡| 两性夫妻黄色片| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 久久久久久久久免费视频了| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 99国产精品99久久久久| 成年动漫av网址| 香蕉国产在线看| 国产在视频线精品| 免费看不卡的av| 精品熟女少妇八av免费久了| 超碰成人久久| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 九草在线视频观看| 熟女少妇亚洲综合色aaa.| 飞空精品影院首页| 国产亚洲精品久久久久5区| 搡老乐熟女国产| 天天躁夜夜躁狠狠躁躁| 大型av网站在线播放| 免费在线观看日本一区| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 在线观看免费高清a一片| 国产亚洲av片在线观看秒播厂| 天天操日日干夜夜撸| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 亚洲精品日本国产第一区| 国产欧美日韩精品亚洲av| 国产精品免费大片| 国产爽快片一区二区三区| 国产成人精品久久二区二区91| 50天的宝宝边吃奶边哭怎么回事| 美女午夜性视频免费| 国产精品.久久久| 交换朋友夫妻互换小说| 精品高清国产在线一区| 免费看不卡的av| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 国产成人精品无人区| 欧美久久黑人一区二区| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 久久99热这里只频精品6学生| 国产xxxxx性猛交| 免费在线观看黄色视频的| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲国产日韩| 国产精品一区二区精品视频观看| 亚洲成色77777| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 精品熟女少妇八av免费久了| 亚洲熟女毛片儿| 满18在线观看网站| 亚洲中文日韩欧美视频| av视频免费观看在线观看| 欧美黄色淫秽网站| 欧美成人精品欧美一级黄| 国产福利在线免费观看视频| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 99热网站在线观看| 国产一级毛片在线| 久久久亚洲精品成人影院| 国产在视频线精品| 捣出白浆h1v1| 丰满人妻熟妇乱又伦精品不卡| 在线观看人妻少妇| 极品人妻少妇av视频| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费| 久久 成人 亚洲| 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 国产爽快片一区二区三区| 久久天躁狠狠躁夜夜2o2o | 欧美日本中文国产一区发布| 激情五月婷婷亚洲| 一区福利在线观看| 99热网站在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品日韩在线中文字幕| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 国产高清videossex| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| 一级黄色大片毛片| 日本a在线网址| 日韩中文字幕视频在线看片| 老司机靠b影院| 日韩av在线免费看完整版不卡| 午夜日韩欧美国产| 亚洲国产精品999| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 一级片免费观看大全| 亚洲精品国产av成人精品| 午夜福利,免费看| 国产精品免费大片| 午夜福利视频在线观看免费| 久久精品亚洲av国产电影网| 97人妻天天添夜夜摸| 男女免费视频国产| 成年人午夜在线观看视频| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 高清视频免费观看一区二区| 伦理电影免费视频| 搡老岳熟女国产| 少妇人妻 视频| 久久久久久久大尺度免费视频| 亚洲人成电影观看| 少妇 在线观看| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 美女脱内裤让男人舔精品视频| 免费一级毛片在线播放高清视频 | 亚洲av日韩在线播放| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| 成人免费观看视频高清| 一级毛片女人18水好多 | 一本色道久久久久久精品综合| 精品人妻在线不人妻| 脱女人内裤的视频| 一级毛片黄色毛片免费观看视频| 99热全是精品| 极品人妻少妇av视频| 久久亚洲精品不卡| 久久99热这里只频精品6学生| 久久人妻福利社区极品人妻图片 | 操出白浆在线播放| 无遮挡黄片免费观看| av天堂久久9| 国产精品一区二区在线观看99| 丝袜脚勾引网站| 69精品国产乱码久久久| 天天影视国产精品| 国产一区二区 视频在线| 老司机影院毛片| 九色亚洲精品在线播放| 美女主播在线视频| 亚洲国产看品久久| 久久久久久久久免费视频了| 美女脱内裤让男人舔精品视频| 久热爱精品视频在线9| 婷婷色综合大香蕉| 日韩 欧美 亚洲 中文字幕| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 免费看av在线观看网站| 狂野欧美激情性xxxx| 免费在线观看完整版高清| 丝袜美足系列| 日韩av不卡免费在线播放| 成人国产一区最新在线观看 | 日本黄色日本黄色录像| 精品久久久精品久久久| 免费人妻精品一区二区三区视频| 十八禁高潮呻吟视频| 亚洲欧洲精品一区二区精品久久久| 久久久国产精品麻豆| 国产精品久久久久久精品电影小说| 别揉我奶头~嗯~啊~动态视频 | 国产伦人伦偷精品视频| 妹子高潮喷水视频| 精品国产一区二区久久| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 男女床上黄色一级片免费看| 中文字幕精品免费在线观看视频| 超色免费av| 午夜免费成人在线视频| 制服人妻中文乱码| 免费观看人在逋| 欧美日韩黄片免| 亚洲综合色网址| 黄色一级大片看看| 国产黄色视频一区二区在线观看| 国产麻豆69| 另类亚洲欧美激情| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久久久久婷婷小说| 悠悠久久av| 欧美中文综合在线视频| 波野结衣二区三区在线| 亚洲成人免费电影在线观看 | kizo精华| 国产在视频线精品| 日本色播在线视频| 午夜免费观看性视频| 9191精品国产免费久久| 国产黄频视频在线观看| 一个人免费看片子| 一区二区三区四区激情视频| 久久免费观看电影| 老熟女久久久| 亚洲情色 制服丝袜| 免费观看人在逋| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 女人久久www免费人成看片| 欧美精品亚洲一区二区| 精品国产一区二区久久| 国产伦理片在线播放av一区| 老司机影院成人| 国产成人av教育| 亚洲成人国产一区在线观看 | 久久99精品国语久久久| 国产成人系列免费观看| 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看| 国产三级黄色录像| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 熟女av电影|