• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole

    2014-09-02 06:33:32CHENLinWEIMeilin
    化學(xué)研究 2014年5期
    關(guān)鍵詞:苯并咪唑鉬酸梅林

    CHEN Lin, WEI Meilin

    (School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China)

    Crystalstructureandproton-conductivityofacomplexbasedonphosphomolybdicacidand2-(2-hydroxybenzene)benzimidazole

    CHEN Lin, WEI Meilin*

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    A proton-conductive organic-inorganic complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1), was constructed with phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole (L) as the starting materials. Single-crystal X-ray diffraction analysis reveals that complex1exhibits a two-dimensional hydrogen-bonding network structure based-on phosphomolybdic acid, L molecules and solvent methanol molecules. Besides, complex1shows proton conductivity of about 10-4S·cm-1at 100 ℃ under 98% relative humidity.

    phosphomolybdic acid;benzimidazole; organic-inorganic complex;crystal structure; proton conductivity

    Solid-state materials with proton conductivities have interested us from the point of view of transport dynamics and their applications in fuel cells[1-6]. Supramolecular assemblies built by means of hydrogen-bonding interactions have provided numerous solid-state materials with very attractive properties. For a long time, we have focused on organic/inorganic complexes based-on Keggin-type heteropolyacids dispersing in self-ordered hydrogen-bonded networks from the ligands containing 2-substituted benzimidazoles such as 2-(3-pyridyl)benzimidazole molecules[4], which have attracted considerable interest for their versatile coordination modes and potential to form supramolecular aggregates through π-π stacking and hydrogen bonding interactions[4,7]. In the present research, by a self-assembly of phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules (L), we have constructed a proton-conductive organic/inorganic hybrid complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1). X-ray diffraction analyses at 293 K revealed that complex1presented a two-dimensional(2D) supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The results of the impedance measurement show that complex1is a good proton conductor. Interestingly, complex1shows proton conductivities across a wide range of temperatures and relative humidity (RH) and achieve proton conductivity over ~10-4S·cm-1at 100 ℃ under 98% RH. Here we report the synthesis and structural characterization of complex1as well as its proton conductivity evaluation in relation to temperature and RH.

    1 Experimental

    1.1 Materials and instruments

    All organic solvents and materials used for synthesis were of reagent grade and used without further purification.α-H3PMo12O40·6H2O was also prepared according to a literature method[1-4]and characterized by IR spectrum and TG analysis. L was prepared according to a literature method[8]. Elemental analyses (C, H, and N) were carried out on a Perkin-Elmer 240C analyzer. X-ray powder diffraction (XRD) was performed on a Bruker D8 Advance Instrument using Cu-Kαradiation and a fixed power source (40 kV, 40 mA). IR spectrum was recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400-4 000 cm-1region at room temperature. Thermogravimetric analysis and differential scanning calorimetry were performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10 ℃·min-1. For an electrical conductivity study, the powdered crystalline samples were compressed to 1.0-1.2 mm in thickness and 12.0 mm in diameter under a pressure of 12-14 MPa.Alternatingcurrent (Ac) impedance spectroscopy measurement was performed on a chi660d (Shanghai Chenhua) electrochemical impedance analyzer with copper electrodes[1-6](the purity of Cu is more than 99.8%; the pellet was contacted with two copper plates) over the frequency range from 105Hz to 10 Hz. The conductivity was calculated asσ= (1/R) × (h/S), whereRis the resistance,his the thickness, andSis the area of the tablet.

    1.2 Synthesis of the title compound

    Complex1was prepared by layering method. A buffer layer of a solution (10 mL) of methanol-water (1∶1,V/V) was carefully layered over 5 mL of an aqueous solution ofα-H3PMo12O40·6H2O (120 mg, 0.06 mmol). Then a methanol (5 mL) of L (25.2 mg, 0.12 mmol) was carefully layered over the buffer layer. Two weeks later, red crystals appeared and were collected and dried in air after quickly being washed with water. Yield: 91 mg, 76% based onα-H3PMo12O40·6H2O. Anal. Calcd (%) for C30H53Mo12N4O53P: calcd(%): C, 14.41; H, 2.14; N, 2.24; Found (%): C, 14.33; H, 2.07; N, 2.16. IR (KBr, cm-1): four characteristic vibrations resulting from heteropolyanions with the Keggin structure: 809ν(Mo-Oc), 881ν(Mo-Ob), 955ν(Mo=Ot), 1 068ν(P-Oa); some vibrations resulting from L molecules: 3 270ν(O-H), 1 625ν(C=N), 1 245ν(C-O), 1 062ν(C-C).

    1.3 Structure determination

    Intensity data of complex1were collected on a Siemens SMART CCD diffractometer with graphite-monochromated Cu-Kαradiation (λ= 0.071 073 nm) using SMART and SAINT. The structure was solved by direct methods and refined onF2by using full-matrix least-squares method with SHELXTL version 5.1[9]. All non-hydrogen atoms except for solvent molecules were refined anisotropically. Hydrogen atoms of organic molecules were localized in their calculated positions and refined using a riding model. Hydrogen atoms of solvent water molecules were not treated. The crystal parameters, data collection and refinement results for complex1are summarized in Table 1, and the selected hydrogen bond parameters in Table 2 with the lables of atoms shown in Fig.1. CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centreviahttp://www.ccdc.cam.ac.uk/data_request/cif.

    Table 1 Crystallographic data and refinement parameters for the title complex

    Fig.1 Molecular structure unit of complex 1 showing the labeling atoms at 30% probability thermal ellipsoids and hydrogen-bonding interactions(solvent water molecules and hydrogen atoms have been omitted for clarity)

    Table2Hydrogenbondlengths(nm)andbondangles(°)

    D-H…A(D…A)d(D-H)d(H…A)d(D…A)∠D-H…ASymmetryO23-H23A…O250.08200.18440.2663(8)176.60N1-H1A…O240.08600.19650.2802(9)163.96O24-H24A…O70.08500.21930.2954(8)149.11(-x+1,-y+1,-z+1)O23…O170.3050(8)N2…O170.2995(7)

    2 Results and discussion

    2.1 Structure description

    Complex1, [H3(PMo12O40)L2·7H2O·4CH3OH]n, was synthesized by the reaction of phosphomolybdic acid and L molecules at room temperature. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy, TG and elemental analyses. X-ray diffraction analyses at 293 K revealed that complex1crystallized in the triclinic space groupPī and presented a 2D supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The molecular structure of1is shown in Fig. 1. The molecular unit contains two L molecules, one phosphomolybdic acid molecule, four methanol molecules and seven water molecules. In the L molecule, the dihedral angle between the benzimidazole ring and the benzene ring of 2-hydroxybenzene is 6.26°. Bond valence sum (BVS) calculations[10]indicate that the N2 atom of the imidazole ring is the possible binding site of a proton from phosphomolybdic acid. Based on hydrogen-bonding interactions, two L molecules, one phosphomolybdic acid molecule and four methanol molecules form a cluster, [(H3PMo12O40)L2(CH3OH)4]. Moreover, the clusters are connected with each other based-on the hydrogen-bonded interactions between the O7 atoms of [PMo12O40]3-anions and the O24 atoms of methanol molecules to form a 2D layer structure with voids (Fig. 2). Solvent water molecules were just embedded in the voids. In addition, the presence of positively species, H+, from phosphomolybdic acid being embedded in the voids of the 2D anionic framework, could not only attract the polyanions to stabilize the 2D supramolecular framework, but also provide potential proton carriers.

    In the [PMo12O40]3-anion, the bond lengths of P-O and Mo-O are 1.480(8)-1.603(9) and 0.163 7(6)-0.248 1(9) nm, respectively. The bond lengths of P-O and Mo-O are respectively comparable to those in the polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests. In addition, the O-P-O angles are in the range of 66.7(5)°-112.2(4)°. All these results indicate that the [PMo12O40]3-units have a normal Keggin structure[1-4].

    Therefore, in complex1, based on electrostatic and hydrogen-bonding interactions, [PMo12O40]3-anions were stabilized in the supramolecular framework and not easily dissociated from the hybrid network. In addition, the protons from Keggin-type heteropolyacids, the protons belong to L molecules and hydrogen bonding networks indicate that complex1can potentially be a good proton-conducting material.

    Fig.2 The 2D hydrogen-bonded network in complex 1 down the b axis

    2.2 TG analysis

    Fig.3 The curve of the Perkin-Elmer thermal analysis of complex 1 in the atmosphere of N2

    Fig. 3 shows the TG result for complex1. Thermal analysis of the powder of the crystalline sample of complex1in an atmosphere of N2reveals that the robustness of the porous network could retain up to 300 ℃ with a weight loss of about 4.91% in the temperature range 20-110 ℃(the weight loss corresponds to the loss of all solvent water molecules). The robustness of the porous network begins to decompose above 300 ℃ due to the loss of methanol molecules and L molecules, indicating that methanol molecules and L molecules in the unit structure are involved in hydrogen-bonding interactions with the supramolecular framework, which is consistent with the result of structural analysis, and could be hold in the supramolecular framework at 300 ℃.

    2.3 Proton conductivity

    The proton conductivity of complex1was measured at 25 ℃ in the RH range 35%-98% by a complex-plane impedance method using a compacted pellet of the powdered crystalline sample, which has the same structure as the single-crystal. At 25 ℃, complex1showed poor proton conductivities of ~10-9S·cm-1under 35% RH conditions, and its proton conductivities reached ~6.5×10-8S·cm-1with RH up to 98%. The proton conductivities of1were also measured at 100 ℃ in the RH range 35%-98% by a complex-plane impedance method. Fig. 4 shows the lg [σ/(S·cm-1)] versus RH plots of complex1at 25 and 100 ℃ under 35%-98% RH. The conductivities of complex1increase with increasing RH at both temperatures. Again, we measured its ionic conductivities up to 100 ℃ under 98% RH conditions. As the temperature increases, the proton conductivities of complex1increase on a logarithmic scale even with almost saturated humidities. Fig. 5 shows the Arrhenius plots of the proton conductivities of complex1in the temperature range of 25-100 ℃ under 98% RH conditions. The ln(σT) increases almost linearly with temperature range from 25 to 100 ℃, and the corresponding activation energy (Ea) of conductivity was estimated to be 1.25 eV. TheEavalue is high in the temperature range of 25-100 ℃. This is probably due to the fact that protons originating from phosphomolybdic acid and those originating from L molecules need a endothermal process for dissociation as hydrated forms such as H+, H3O+or other proton species[1-4]. Therefore, the fact that complex1exhibits good proton conductivities(5.21×10-5-2.21×10-4S·cm-1) in the temperature range of 85-100 ℃ is indicative of a high carrier concentration based on the dissociating processes of proton from L molecules and phosphomolybdic acid. The powder X-ray diffraction data suggest that the powder sample after the proton-conductive measurement has the same supramolecular framework as that of complex1.

    Fig.4 Relative humidity dependence of the proton conductivity of complex 1

    Fig.5 Arrhenius plots of the proton conductivity of complex 1

    3 Conclusion

    In summary, a proton-conductive organic-inorganic complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules has been constructed. The organic-inorganic hybrid matrix changed the environment around phosphomolybdic acid and influenced the formation of self-ordered hydrogen-bonding network within the resultant structure. Thus, complex1provides a route in increasing the stability and proton conductivity of organic-inorganic hybrid materials based on Keggin-type heteropolyacids and 2-(2-hydroxybenzene)benzimidazole molecules up to 100 ℃.

    [1] WEI Meilin, ZHUANG Pengfei, LI Huihua, et al. Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-Keggin-anion chains [J]. Eur J Inorg Chem, 2011(9): 1473-1478.

    [2] WEI Meilin, ZHUANG Pengfei, MIAO Qiuxiang, et al. Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains [J]. Solid State Chem, 2011, 184: 1472-1477.

    [3] WEI Meilin, WANG Xiaoxiang, DUAN Xianying. Crystal structures and proton conductivities of a MOF and two POM-MOF composites based on CuIIions and 2,2′-bipyridyl-3,3′-dicarboxylic acid [J]. Chem Eur J, 2013, 19(5): 1607-1616.

    [4] WEI Meilin, WANG Yuxia, WANG Xinjun. Two proton-conductive hybrids based on 2-(3-pyridyl) benzimidazole molecules and Keggin-type heteropolyacids [J]. Solid State Chem, 2014, 209: 29-36.

    [5] 孫晶晶,魏梅林. 異煙酸氮氧化物/磷鉬酸鎳絡(luò)合物摻雜硅膠復(fù)合物的制備及其質(zhì)子導(dǎo)電性 [J]. 化學(xué)研究, 2014, 25(1): 63-66.

    [6] 王玉霞,魏梅林. 2,2′-聯(lián)咪唑磷鎢酸鹽和氧化石墨復(fù)合物的制備及其質(zhì)子導(dǎo)電性能 [J]. 化學(xué)研究, 2014, 25(1): 53-57.

    [7] MOON D, LAH M S, DELSESTO R E, et al. The effect of ligand charge on the coordination geometry of and Fe(III) ion: five- and six-coordinate Fe(III) complexes of tris(2-benzimidazolylmethyl)amine [J]. Inorg Chem, 2002, 41: 4708-4714.

    [8] CARINAR F, WILLIAMS A F, BERNARDINELLI G. Moleculartricorns: Self-assembly of trinuclear palladium(II) complexes [J]. Inorg Chem, 2001, 40: 1826-1832.

    [9] SHELDRICK G M. SHELXL 97, Version 5.1, Program for crystal structure solution and refinement [CP]. University of G?ttingen, Germany, 1997.

    [10] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database [J]. Acta Cryst B, 1985, 41: 244-247.

    [責(zé)任編輯:吳文鵬]

    基于磷鉬酸和2-(2-羥基苯)苯并咪唑復(fù)合物的晶體結(jié)構(gòu)和質(zhì)子導(dǎo)電性

    陳 林, 魏梅林*

    (河南師范大學(xué) 化學(xué)化工學(xué)院,河南 新鄉(xiāng) 453007)

    以磷鉬酸和2-(2-羥基苯)苯并咪唑(L)為原料制備了具有質(zhì)子導(dǎo)電性的有機(jī)-無機(jī)化合物[H3L2(PMo12O40)·7H2O·4CH3OH]n(1). 單晶X射線衍射分析結(jié)果表明化合物1具有基于磷鉬酸、2-(2-羥基苯)苯并咪唑及溶劑甲醇分子的二維氫鍵網(wǎng)絡(luò)結(jié)構(gòu);質(zhì)子導(dǎo)電性能測試結(jié)果表明該化合物在100 ℃、相對(duì)濕度為98%時(shí)的電導(dǎo)率達(dá)到10-4S·cm-1.

    磷鉬酸;苯并咪唑;有機(jī)-無機(jī)化合物;晶體結(jié)構(gòu);質(zhì)子導(dǎo)電性

    date:2014-03-11.

    National Natural Science Foundation of China(21171050).

    Biography:CHEN Lin(1989-), male, postgraduate, majoring in functional coordination compounds.*

    , E-mail: weimeilinhd@163.com.

    O 611DocumentcodeAArticleID1008-1011(2014)05-0461-05

    10.14002/j.hxya.2014.05.006

    猜你喜歡
    苯并咪唑鉬酸梅林
    專利名稱:一種硫摻雜鉬酸鉍納米片狀可見光催化劑的制備方法
    吃梅子
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    一種鉬酸鋰的制備方法
    芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
    像媽媽一樣
    搖籃(2016年10期)2016-06-23 07:55:56
    像爸爸一樣
    搖籃(2016年10期)2016-06-23 07:55:31
    1,1-二(苯并咪唑-2-基)-2-(喹喔啉-2-基)乙烯的合成及其性能
    高性能鉬酸鋅/堿式鉬酸鋅微粉合成研究*
    2-氨甲基-1H-苯并咪唑鈷(Ⅱ)和鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和抑菌活性
    午夜久久久久精精品| 长腿黑丝高跟| 777久久人妻少妇嫩草av网站| 国产av一区在线观看免费| 黄片大片在线免费观看| 亚洲中文av在线| 少妇被粗大的猛进出69影院| 人人妻人人澡欧美一区二区 | 岛国在线观看网站| 两个人看的免费小视频| 两人在一起打扑克的视频| 欧美成人性av电影在线观看| 国产精品,欧美在线| 日韩成人在线观看一区二区三区| 国产一区二区三区视频了| 99久久99久久久精品蜜桃| 看片在线看免费视频| 亚洲男人的天堂狠狠| 亚洲成a人片在线一区二区| 一区二区三区精品91| 最近最新免费中文字幕在线| 在线免费观看的www视频| 亚洲激情在线av| 日韩欧美一区视频在线观看| 久久久久久免费高清国产稀缺| 黑人欧美特级aaaaaa片| 法律面前人人平等表现在哪些方面| 热99re8久久精品国产| 国产欧美日韩一区二区精品| 一区在线观看完整版| 日韩高清综合在线| 免费女性裸体啪啪无遮挡网站| 国产精品精品国产色婷婷| 嫩草影院精品99| 天天添夜夜摸| 极品教师在线免费播放| 亚洲性夜色夜夜综合| av有码第一页| 国产精品日韩av在线免费观看 | 久久久久国产一级毛片高清牌| 久久草成人影院| 国产精华一区二区三区| 亚洲七黄色美女视频| 国产午夜精品久久久久久| 麻豆国产av国片精品| 国产亚洲精品久久久久5区| 大陆偷拍与自拍| 国产三级黄色录像| 国产黄a三级三级三级人| 午夜免费观看网址| 岛国视频午夜一区免费看| 久久狼人影院| 啦啦啦免费观看视频1| 国产不卡一卡二| 国产不卡一卡二| av欧美777| 天天躁狠狠躁夜夜躁狠狠躁| 色在线成人网| 波多野结衣av一区二区av| 欧美日本亚洲视频在线播放| 色在线成人网| 成人三级黄色视频| 亚洲国产毛片av蜜桃av| 在线视频色国产色| 久久狼人影院| 国产精品,欧美在线| 国产欧美日韩一区二区三| 国产91精品成人一区二区三区| 国产免费av片在线观看野外av| 国产精品免费一区二区三区在线| 丰满的人妻完整版| 欧美黄色片欧美黄色片| 精品乱码久久久久久99久播| 黄色女人牲交| 亚洲精品美女久久久久99蜜臀| 久久久久久国产a免费观看| 黄色视频不卡| 欧美日本中文国产一区发布| 国产亚洲欧美在线一区二区| 欧美激情极品国产一区二区三区| 国产黄a三级三级三级人| 国产一区二区激情短视频| 国产av精品麻豆| 欧美激情高清一区二区三区| 啪啪无遮挡十八禁网站| 老鸭窝网址在线观看| 欧美乱妇无乱码| 美女 人体艺术 gogo| 欧美中文日本在线观看视频| 欧美国产日韩亚洲一区| 少妇的丰满在线观看| 99久久国产精品久久久| 欧美丝袜亚洲另类 | 精品久久久久久久人妻蜜臀av | 亚洲熟女毛片儿| 激情在线观看视频在线高清| 91九色精品人成在线观看| 亚洲一区二区三区不卡视频| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕精品免费在线观看视频| 热re99久久国产66热| 黑人操中国人逼视频| 熟妇人妻久久中文字幕3abv| 亚洲国产精品合色在线| 精品国产亚洲在线| 亚洲成人久久性| 神马国产精品三级电影在线观看 | 法律面前人人平等表现在哪些方面| 美女扒开内裤让男人捅视频| 亚洲情色 制服丝袜| 精品国内亚洲2022精品成人| 国产成人精品久久二区二区免费| 中文字幕精品免费在线观看视频| 日本黄色视频三级网站网址| 国产男靠女视频免费网站| 色在线成人网| 99热只有精品国产| 亚洲精品国产精品久久久不卡| av在线天堂中文字幕| 久久精品91无色码中文字幕| 69精品国产乱码久久久| 国产单亲对白刺激| 欧美中文综合在线视频| 我的亚洲天堂| 在线国产一区二区在线| 亚洲专区字幕在线| 国语自产精品视频在线第100页| 欧美亚洲日本最大视频资源| 此物有八面人人有两片| 天天躁狠狠躁夜夜躁狠狠躁| 美女午夜性视频免费| 亚洲,欧美精品.| 淫秽高清视频在线观看| 69av精品久久久久久| 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| 黄色丝袜av网址大全| 人妻丰满熟妇av一区二区三区| 超碰成人久久| 亚洲专区国产一区二区| 999精品在线视频| 大香蕉久久成人网| 人人妻人人澡人人看| 狂野欧美激情性xxxx| 国产日韩一区二区三区精品不卡| 精品国产国语对白av| 亚洲va日本ⅴa欧美va伊人久久| 国产视频一区二区在线看| 久久婷婷成人综合色麻豆| 日本欧美视频一区| 久久精品影院6| 男女下面插进去视频免费观看| 亚洲色图 男人天堂 中文字幕| 首页视频小说图片口味搜索| 欧美中文综合在线视频| 国产99久久九九免费精品| 搞女人的毛片| 国产成人欧美| 日韩精品免费视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 91成年电影在线观看| 麻豆av在线久日| 99香蕉大伊视频| 精品久久蜜臀av无| √禁漫天堂资源中文www| 精品卡一卡二卡四卡免费| av免费在线观看网站| 亚洲成人久久性| 欧美黑人精品巨大| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久人妻精品电影| 麻豆国产av国片精品| 精品久久蜜臀av无| 日日夜夜操网爽| 欧美乱色亚洲激情| 亚洲中文字幕一区二区三区有码在线看 | 自拍欧美九色日韩亚洲蝌蚪91| 91大片在线观看| 色老头精品视频在线观看| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 国产精品二区激情视频| 香蕉丝袜av| 亚洲五月婷婷丁香| 亚洲国产精品久久男人天堂| 久久精品国产综合久久久| 又紧又爽又黄一区二区| 国产精品影院久久| 亚洲久久久国产精品| 亚洲七黄色美女视频| 热99re8久久精品国产| 亚洲情色 制服丝袜| 亚洲自偷自拍图片 自拍| 精品电影一区二区在线| 久久婷婷人人爽人人干人人爱 | 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品一区二区www| 亚洲成人久久性| 99热只有精品国产| 一个人观看的视频www高清免费观看 | 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 好男人在线观看高清免费视频 | 久久午夜综合久久蜜桃| 亚洲av五月六月丁香网| 男人舔女人的私密视频| 岛国视频午夜一区免费看| 亚洲黑人精品在线| 国内精品久久久久久久电影| 精品一区二区三区av网在线观看| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| 啦啦啦 在线观看视频| 亚洲五月婷婷丁香| 亚洲第一电影网av| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女 | 国内精品久久久久久久电影| 日日夜夜操网爽| 在线观看免费视频日本深夜| 国产又爽黄色视频| 欧美日韩亚洲综合一区二区三区_| 好男人在线观看高清免费视频 | 精品一区二区三区四区五区乱码| 欧美另类亚洲清纯唯美| 国产亚洲精品av在线| 自线自在国产av| 亚洲男人天堂网一区| 18禁裸乳无遮挡免费网站照片 | 视频在线观看一区二区三区| 久久草成人影院| 搞女人的毛片| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人爽人人添夜夜欢视频| 中国美女看黄片| 黄色丝袜av网址大全| 久久精品亚洲精品国产色婷小说| 日本五十路高清| av有码第一页| 在线观看免费午夜福利视频| 窝窝影院91人妻| 国产一区二区三区视频了| 18禁国产床啪视频网站| 国产成人精品无人区| 亚洲成a人片在线一区二区| 精品久久久久久久人妻蜜臀av | 深夜精品福利| 免费女性裸体啪啪无遮挡网站| 久久中文字幕一级| 性少妇av在线| 好看av亚洲va欧美ⅴa在| 欧美日本亚洲视频在线播放| 成在线人永久免费视频| 欧美丝袜亚洲另类 | 大型av网站在线播放| 国产区一区二久久| 丁香六月欧美| 18禁观看日本| 99精品欧美一区二区三区四区| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 国产精品,欧美在线| 午夜福利在线观看吧| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 丰满的人妻完整版| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 99精品在免费线老司机午夜| 999久久久精品免费观看国产| 久久婷婷人人爽人人干人人爱 | 咕卡用的链子| 久久人人97超碰香蕉20202| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 91字幕亚洲| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片播放在线免费| 18禁观看日本| 成在线人永久免费视频| 久久久久国产一级毛片高清牌| 色老头精品视频在线观看| 国产高清激情床上av| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 少妇 在线观看| 欧美黑人欧美精品刺激| 黄色片一级片一级黄色片| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 国产亚洲精品综合一区在线观看 | 可以免费在线观看a视频的电影网站| 无限看片的www在线观看| 一a级毛片在线观看| 久久亚洲真实| 日韩欧美在线二视频| 国产亚洲av高清不卡| 国产私拍福利视频在线观看| 一区二区三区精品91| 啦啦啦观看免费观看视频高清 | 一本久久中文字幕| 精品久久久久久久久久免费视频| 中文亚洲av片在线观看爽| 久久天堂一区二区三区四区| 又大又爽又粗| www.熟女人妻精品国产| 亚洲国产高清在线一区二区三 | 久久婷婷成人综合色麻豆| 国产一区二区激情短视频| 国产成人av教育| 国产亚洲精品综合一区在线观看 | 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 国产成年人精品一区二区| 在线观看日韩欧美| netflix在线观看网站| 欧美av亚洲av综合av国产av| 高清黄色对白视频在线免费看| 国产精品 欧美亚洲| 不卡一级毛片| 亚洲精品国产精品久久久不卡| 国产成人一区二区三区免费视频网站| 国产熟女xx| 国产又色又爽无遮挡免费看| 99riav亚洲国产免费| av天堂久久9| 国产欧美日韩一区二区三区在线| 亚洲性夜色夜夜综合| www.精华液| 在线观看66精品国产| 十八禁网站免费在线| 99在线视频只有这里精品首页| 国产1区2区3区精品| 乱人伦中国视频| 人成视频在线观看免费观看| 怎么达到女性高潮| 亚洲精品一区av在线观看| 大型av网站在线播放| svipshipincom国产片| 精品国产亚洲在线| 欧美激情极品国产一区二区三区| 极品人妻少妇av视频| 亚洲专区字幕在线| avwww免费| 久久久久九九精品影院| 人妻丰满熟妇av一区二区三区| 国产亚洲精品第一综合不卡| 国产三级黄色录像| 桃色一区二区三区在线观看| 曰老女人黄片| 18禁国产床啪视频网站| 午夜老司机福利片| 一边摸一边抽搐一进一出视频| 色综合亚洲欧美另类图片| 禁无遮挡网站| 麻豆一二三区av精品| 欧美在线黄色| 91国产中文字幕| 亚洲国产欧美网| 男女下面进入的视频免费午夜 | 午夜a级毛片| 两性夫妻黄色片| 亚洲国产欧美网| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 韩国av一区二区三区四区| 美国免费a级毛片| 精品国产亚洲在线| 久久久久久国产a免费观看| 夜夜夜夜夜久久久久| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看完整版高清| 中文字幕色久视频| 久久婷婷成人综合色麻豆| 久久中文字幕人妻熟女| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点 | 日本三级黄在线观看| 久久人人97超碰香蕉20202| 国产高清有码在线观看视频 | 伊人久久大香线蕉亚洲五| 日本免费a在线| 校园春色视频在线观看| 亚洲五月色婷婷综合| 深夜精品福利| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 男人的好看免费观看在线视频 | 欧美日韩福利视频一区二区| 亚洲色图av天堂| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 男男h啪啪无遮挡| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 级片在线观看| 身体一侧抽搐| 91成年电影在线观看| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 国产不卡一卡二| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 亚洲精品国产区一区二| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 91九色精品人成在线观看| 午夜免费观看网址| 99在线视频只有这里精品首页| 色综合婷婷激情| 在线视频色国产色| 免费人成视频x8x8入口观看| 黄片播放在线免费| 乱人伦中国视频| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| 老司机靠b影院| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| 日韩视频一区二区在线观看| 国产激情久久老熟女| 午夜精品国产一区二区电影| 在线天堂中文资源库| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| e午夜精品久久久久久久| 一级黄色大片毛片| 国产午夜精品久久久久久| 国产精品秋霞免费鲁丝片| 亚洲最大成人中文| 美女高潮喷水抽搐中文字幕| 极品人妻少妇av视频| 精品福利观看| 男女床上黄色一级片免费看| 一a级毛片在线观看| 日本a在线网址| 亚洲国产欧美网| 国产黄a三级三级三级人| 免费在线观看日本一区| 亚洲精品美女久久av网站| 欧美一级a爱片免费观看看 | 欧美黄色淫秽网站| 嫩草影视91久久| 国产熟女午夜一区二区三区| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 亚洲成人国产一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清视频在线播放一区| 一级片免费观看大全| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| 久久久久久亚洲精品国产蜜桃av| 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看 | 每晚都被弄得嗷嗷叫到高潮| 国产精华一区二区三区| 黄色成人免费大全| 亚洲精品中文字幕一二三四区| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看| 99久久国产精品久久久| 欧美成人午夜精品| 搡老妇女老女人老熟妇| 中文字幕av电影在线播放| 一进一出好大好爽视频| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 天堂动漫精品| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 国产在线精品亚洲第一网站| 国产一区在线观看成人免费| 日本一区二区免费在线视频| 国产视频一区二区在线看| 久久人妻福利社区极品人妻图片| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片 | 国产精品美女特级片免费视频播放器 | 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 一夜夜www| 黑人操中国人逼视频| 亚洲av成人av| 亚洲欧洲精品一区二区精品久久久| 亚洲精品在线观看二区| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 搡老妇女老女人老熟妇| 久久久久久久久中文| 亚洲熟妇中文字幕五十中出| 久久伊人香网站| 亚洲国产毛片av蜜桃av| 亚洲欧美激情综合另类| 999久久久国产精品视频| 成年人黄色毛片网站| 麻豆成人av在线观看| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 国产高清激情床上av| 午夜福利成人在线免费观看| 国产av在哪里看| 久99久视频精品免费| 欧美亚洲日本最大视频资源| 久久精品成人免费网站| 手机成人av网站| 51午夜福利影视在线观看| 91在线观看av| 久久精品人人爽人人爽视色| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 国产片内射在线| 精品一品国产午夜福利视频| 中文字幕色久视频| 91成人精品电影| 美女 人体艺术 gogo| 亚洲精品国产区一区二| 一本久久中文字幕| 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 欧美国产精品va在线观看不卡| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av | 国产成人影院久久av| 亚洲专区国产一区二区| 色播亚洲综合网| 成人国产综合亚洲| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看 | 精品久久久精品久久久| 精品久久久久久久毛片微露脸| 一级毛片精品| 国产精品二区激情视频| 精品第一国产精品| 久热这里只有精品99| 欧美另类亚洲清纯唯美| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 亚洲中文字幕日韩| 日韩高清综合在线| 黄色成人免费大全| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av高清一级| 国产免费男女视频| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯| 搞女人的毛片| 久久精品国产亚洲av高清一级| 欧美国产精品va在线观看不卡| 免费看美女性在线毛片视频| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 国产亚洲精品一区二区www| 免费看美女性在线毛片视频| 午夜福利影视在线免费观看| 日韩欧美免费精品| 国产精品乱码一区二三区的特点 | 色播在线永久视频| 免费高清在线观看日韩| 91在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 两个人视频免费观看高清| 一边摸一边抽搐一进一出视频| 免费人成视频x8x8入口观看| 97人妻天天添夜夜摸| 免费看十八禁软件| 一区二区三区激情视频| 国产av又大| 午夜精品国产一区二区电影| 国产麻豆成人av免费视频| 人人妻,人人澡人人爽秒播| 19禁男女啪啪无遮挡网站| 三级毛片av免费| 人人妻人人澡欧美一区二区 | 欧美+亚洲+日韩+国产| 国产精品秋霞免费鲁丝片| 久久人人精品亚洲av| 中出人妻视频一区二区| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 丰满的人妻完整版|