• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal structure and proton-conductivity of a complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole

    2014-09-02 06:33:32CHENLinWEIMeilin
    化學(xué)研究 2014年5期
    關(guān)鍵詞:苯并咪唑鉬酸梅林

    CHEN Lin, WEI Meilin

    (School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China)

    Crystalstructureandproton-conductivityofacomplexbasedonphosphomolybdicacidand2-(2-hydroxybenzene)benzimidazole

    CHEN Lin, WEI Meilin*

    (SchoolofChemistryandChemicalEngineering,HenanNormalUniversity,Xinxiang453007,Henan,China)

    A proton-conductive organic-inorganic complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1), was constructed with phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole (L) as the starting materials. Single-crystal X-ray diffraction analysis reveals that complex1exhibits a two-dimensional hydrogen-bonding network structure based-on phosphomolybdic acid, L molecules and solvent methanol molecules. Besides, complex1shows proton conductivity of about 10-4S·cm-1at 100 ℃ under 98% relative humidity.

    phosphomolybdic acid;benzimidazole; organic-inorganic complex;crystal structure; proton conductivity

    Solid-state materials with proton conductivities have interested us from the point of view of transport dynamics and their applications in fuel cells[1-6]. Supramolecular assemblies built by means of hydrogen-bonding interactions have provided numerous solid-state materials with very attractive properties. For a long time, we have focused on organic/inorganic complexes based-on Keggin-type heteropolyacids dispersing in self-ordered hydrogen-bonded networks from the ligands containing 2-substituted benzimidazoles such as 2-(3-pyridyl)benzimidazole molecules[4], which have attracted considerable interest for their versatile coordination modes and potential to form supramolecular aggregates through π-π stacking and hydrogen bonding interactions[4,7]. In the present research, by a self-assembly of phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules (L), we have constructed a proton-conductive organic/inorganic hybrid complex, [H3L2(PMo12O40)·7H2O·4CH3OH]n(1). X-ray diffraction analyses at 293 K revealed that complex1presented a two-dimensional(2D) supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The results of the impedance measurement show that complex1is a good proton conductor. Interestingly, complex1shows proton conductivities across a wide range of temperatures and relative humidity (RH) and achieve proton conductivity over ~10-4S·cm-1at 100 ℃ under 98% RH. Here we report the synthesis and structural characterization of complex1as well as its proton conductivity evaluation in relation to temperature and RH.

    1 Experimental

    1.1 Materials and instruments

    All organic solvents and materials used for synthesis were of reagent grade and used without further purification.α-H3PMo12O40·6H2O was also prepared according to a literature method[1-4]and characterized by IR spectrum and TG analysis. L was prepared according to a literature method[8]. Elemental analyses (C, H, and N) were carried out on a Perkin-Elmer 240C analyzer. X-ray powder diffraction (XRD) was performed on a Bruker D8 Advance Instrument using Cu-Kαradiation and a fixed power source (40 kV, 40 mA). IR spectrum was recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400-4 000 cm-1region at room temperature. Thermogravimetric analysis and differential scanning calorimetry were performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10 ℃·min-1. For an electrical conductivity study, the powdered crystalline samples were compressed to 1.0-1.2 mm in thickness and 12.0 mm in diameter under a pressure of 12-14 MPa.Alternatingcurrent (Ac) impedance spectroscopy measurement was performed on a chi660d (Shanghai Chenhua) electrochemical impedance analyzer with copper electrodes[1-6](the purity of Cu is more than 99.8%; the pellet was contacted with two copper plates) over the frequency range from 105Hz to 10 Hz. The conductivity was calculated asσ= (1/R) × (h/S), whereRis the resistance,his the thickness, andSis the area of the tablet.

    1.2 Synthesis of the title compound

    Complex1was prepared by layering method. A buffer layer of a solution (10 mL) of methanol-water (1∶1,V/V) was carefully layered over 5 mL of an aqueous solution ofα-H3PMo12O40·6H2O (120 mg, 0.06 mmol). Then a methanol (5 mL) of L (25.2 mg, 0.12 mmol) was carefully layered over the buffer layer. Two weeks later, red crystals appeared and were collected and dried in air after quickly being washed with water. Yield: 91 mg, 76% based onα-H3PMo12O40·6H2O. Anal. Calcd (%) for C30H53Mo12N4O53P: calcd(%): C, 14.41; H, 2.14; N, 2.24; Found (%): C, 14.33; H, 2.07; N, 2.16. IR (KBr, cm-1): four characteristic vibrations resulting from heteropolyanions with the Keggin structure: 809ν(Mo-Oc), 881ν(Mo-Ob), 955ν(Mo=Ot), 1 068ν(P-Oa); some vibrations resulting from L molecules: 3 270ν(O-H), 1 625ν(C=N), 1 245ν(C-O), 1 062ν(C-C).

    1.3 Structure determination

    Intensity data of complex1were collected on a Siemens SMART CCD diffractometer with graphite-monochromated Cu-Kαradiation (λ= 0.071 073 nm) using SMART and SAINT. The structure was solved by direct methods and refined onF2by using full-matrix least-squares method with SHELXTL version 5.1[9]. All non-hydrogen atoms except for solvent molecules were refined anisotropically. Hydrogen atoms of organic molecules were localized in their calculated positions and refined using a riding model. Hydrogen atoms of solvent water molecules were not treated. The crystal parameters, data collection and refinement results for complex1are summarized in Table 1, and the selected hydrogen bond parameters in Table 2 with the lables of atoms shown in Fig.1. CCDC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centreviahttp://www.ccdc.cam.ac.uk/data_request/cif.

    Table 1 Crystallographic data and refinement parameters for the title complex

    Fig.1 Molecular structure unit of complex 1 showing the labeling atoms at 30% probability thermal ellipsoids and hydrogen-bonding interactions(solvent water molecules and hydrogen atoms have been omitted for clarity)

    Table2Hydrogenbondlengths(nm)andbondangles(°)

    D-H…A(D…A)d(D-H)d(H…A)d(D…A)∠D-H…ASymmetryO23-H23A…O250.08200.18440.2663(8)176.60N1-H1A…O240.08600.19650.2802(9)163.96O24-H24A…O70.08500.21930.2954(8)149.11(-x+1,-y+1,-z+1)O23…O170.3050(8)N2…O170.2995(7)

    2 Results and discussion

    2.1 Structure description

    Complex1, [H3(PMo12O40)L2·7H2O·4CH3OH]n, was synthesized by the reaction of phosphomolybdic acid and L molecules at room temperature. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy, TG and elemental analyses. X-ray diffraction analyses at 293 K revealed that complex1crystallized in the triclinic space groupPī and presented a 2D supramolecular framework constructed by L molecules, phosphomolybdic acid and methanol molecules based-on hydrogen-bonding interactions. The molecular structure of1is shown in Fig. 1. The molecular unit contains two L molecules, one phosphomolybdic acid molecule, four methanol molecules and seven water molecules. In the L molecule, the dihedral angle between the benzimidazole ring and the benzene ring of 2-hydroxybenzene is 6.26°. Bond valence sum (BVS) calculations[10]indicate that the N2 atom of the imidazole ring is the possible binding site of a proton from phosphomolybdic acid. Based on hydrogen-bonding interactions, two L molecules, one phosphomolybdic acid molecule and four methanol molecules form a cluster, [(H3PMo12O40)L2(CH3OH)4]. Moreover, the clusters are connected with each other based-on the hydrogen-bonded interactions between the O7 atoms of [PMo12O40]3-anions and the O24 atoms of methanol molecules to form a 2D layer structure with voids (Fig. 2). Solvent water molecules were just embedded in the voids. In addition, the presence of positively species, H+, from phosphomolybdic acid being embedded in the voids of the 2D anionic framework, could not only attract the polyanions to stabilize the 2D supramolecular framework, but also provide potential proton carriers.

    In the [PMo12O40]3-anion, the bond lengths of P-O and Mo-O are 1.480(8)-1.603(9) and 0.163 7(6)-0.248 1(9) nm, respectively. The bond lengths of P-O and Mo-O are respectively comparable to those in the polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests. In addition, the O-P-O angles are in the range of 66.7(5)°-112.2(4)°. All these results indicate that the [PMo12O40]3-units have a normal Keggin structure[1-4].

    Therefore, in complex1, based on electrostatic and hydrogen-bonding interactions, [PMo12O40]3-anions were stabilized in the supramolecular framework and not easily dissociated from the hybrid network. In addition, the protons from Keggin-type heteropolyacids, the protons belong to L molecules and hydrogen bonding networks indicate that complex1can potentially be a good proton-conducting material.

    Fig.2 The 2D hydrogen-bonded network in complex 1 down the b axis

    2.2 TG analysis

    Fig.3 The curve of the Perkin-Elmer thermal analysis of complex 1 in the atmosphere of N2

    Fig. 3 shows the TG result for complex1. Thermal analysis of the powder of the crystalline sample of complex1in an atmosphere of N2reveals that the robustness of the porous network could retain up to 300 ℃ with a weight loss of about 4.91% in the temperature range 20-110 ℃(the weight loss corresponds to the loss of all solvent water molecules). The robustness of the porous network begins to decompose above 300 ℃ due to the loss of methanol molecules and L molecules, indicating that methanol molecules and L molecules in the unit structure are involved in hydrogen-bonding interactions with the supramolecular framework, which is consistent with the result of structural analysis, and could be hold in the supramolecular framework at 300 ℃.

    2.3 Proton conductivity

    The proton conductivity of complex1was measured at 25 ℃ in the RH range 35%-98% by a complex-plane impedance method using a compacted pellet of the powdered crystalline sample, which has the same structure as the single-crystal. At 25 ℃, complex1showed poor proton conductivities of ~10-9S·cm-1under 35% RH conditions, and its proton conductivities reached ~6.5×10-8S·cm-1with RH up to 98%. The proton conductivities of1were also measured at 100 ℃ in the RH range 35%-98% by a complex-plane impedance method. Fig. 4 shows the lg [σ/(S·cm-1)] versus RH plots of complex1at 25 and 100 ℃ under 35%-98% RH. The conductivities of complex1increase with increasing RH at both temperatures. Again, we measured its ionic conductivities up to 100 ℃ under 98% RH conditions. As the temperature increases, the proton conductivities of complex1increase on a logarithmic scale even with almost saturated humidities. Fig. 5 shows the Arrhenius plots of the proton conductivities of complex1in the temperature range of 25-100 ℃ under 98% RH conditions. The ln(σT) increases almost linearly with temperature range from 25 to 100 ℃, and the corresponding activation energy (Ea) of conductivity was estimated to be 1.25 eV. TheEavalue is high in the temperature range of 25-100 ℃. This is probably due to the fact that protons originating from phosphomolybdic acid and those originating from L molecules need a endothermal process for dissociation as hydrated forms such as H+, H3O+or other proton species[1-4]. Therefore, the fact that complex1exhibits good proton conductivities(5.21×10-5-2.21×10-4S·cm-1) in the temperature range of 85-100 ℃ is indicative of a high carrier concentration based on the dissociating processes of proton from L molecules and phosphomolybdic acid. The powder X-ray diffraction data suggest that the powder sample after the proton-conductive measurement has the same supramolecular framework as that of complex1.

    Fig.4 Relative humidity dependence of the proton conductivity of complex 1

    Fig.5 Arrhenius plots of the proton conductivity of complex 1

    3 Conclusion

    In summary, a proton-conductive organic-inorganic complex based on phosphomolybdic acid and 2-(2-hydroxybenzene)benzimidazole molecules has been constructed. The organic-inorganic hybrid matrix changed the environment around phosphomolybdic acid and influenced the formation of self-ordered hydrogen-bonding network within the resultant structure. Thus, complex1provides a route in increasing the stability and proton conductivity of organic-inorganic hybrid materials based on Keggin-type heteropolyacids and 2-(2-hydroxybenzene)benzimidazole molecules up to 100 ℃.

    [1] WEI Meilin, ZHUANG Pengfei, LI Huihua, et al. Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-Keggin-anion chains [J]. Eur J Inorg Chem, 2011(9): 1473-1478.

    [2] WEI Meilin, ZHUANG Pengfei, MIAO Qiuxiang, et al. Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains [J]. Solid State Chem, 2011, 184: 1472-1477.

    [3] WEI Meilin, WANG Xiaoxiang, DUAN Xianying. Crystal structures and proton conductivities of a MOF and two POM-MOF composites based on CuIIions and 2,2′-bipyridyl-3,3′-dicarboxylic acid [J]. Chem Eur J, 2013, 19(5): 1607-1616.

    [4] WEI Meilin, WANG Yuxia, WANG Xinjun. Two proton-conductive hybrids based on 2-(3-pyridyl) benzimidazole molecules and Keggin-type heteropolyacids [J]. Solid State Chem, 2014, 209: 29-36.

    [5] 孫晶晶,魏梅林. 異煙酸氮氧化物/磷鉬酸鎳絡(luò)合物摻雜硅膠復(fù)合物的制備及其質(zhì)子導(dǎo)電性 [J]. 化學(xué)研究, 2014, 25(1): 63-66.

    [6] 王玉霞,魏梅林. 2,2′-聯(lián)咪唑磷鎢酸鹽和氧化石墨復(fù)合物的制備及其質(zhì)子導(dǎo)電性能 [J]. 化學(xué)研究, 2014, 25(1): 53-57.

    [7] MOON D, LAH M S, DELSESTO R E, et al. The effect of ligand charge on the coordination geometry of and Fe(III) ion: five- and six-coordinate Fe(III) complexes of tris(2-benzimidazolylmethyl)amine [J]. Inorg Chem, 2002, 41: 4708-4714.

    [8] CARINAR F, WILLIAMS A F, BERNARDINELLI G. Moleculartricorns: Self-assembly of trinuclear palladium(II) complexes [J]. Inorg Chem, 2001, 40: 1826-1832.

    [9] SHELDRICK G M. SHELXL 97, Version 5.1, Program for crystal structure solution and refinement [CP]. University of G?ttingen, Germany, 1997.

    [10] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database [J]. Acta Cryst B, 1985, 41: 244-247.

    [責(zé)任編輯:吳文鵬]

    基于磷鉬酸和2-(2-羥基苯)苯并咪唑復(fù)合物的晶體結(jié)構(gòu)和質(zhì)子導(dǎo)電性

    陳 林, 魏梅林*

    (河南師范大學(xué) 化學(xué)化工學(xué)院,河南 新鄉(xiāng) 453007)

    以磷鉬酸和2-(2-羥基苯)苯并咪唑(L)為原料制備了具有質(zhì)子導(dǎo)電性的有機(jī)-無機(jī)化合物[H3L2(PMo12O40)·7H2O·4CH3OH]n(1). 單晶X射線衍射分析結(jié)果表明化合物1具有基于磷鉬酸、2-(2-羥基苯)苯并咪唑及溶劑甲醇分子的二維氫鍵網(wǎng)絡(luò)結(jié)構(gòu);質(zhì)子導(dǎo)電性能測試結(jié)果表明該化合物在100 ℃、相對(duì)濕度為98%時(shí)的電導(dǎo)率達(dá)到10-4S·cm-1.

    磷鉬酸;苯并咪唑;有機(jī)-無機(jī)化合物;晶體結(jié)構(gòu);質(zhì)子導(dǎo)電性

    date:2014-03-11.

    National Natural Science Foundation of China(21171050).

    Biography:CHEN Lin(1989-), male, postgraduate, majoring in functional coordination compounds.*

    , E-mail: weimeilinhd@163.com.

    O 611DocumentcodeAArticleID1008-1011(2014)05-0461-05

    10.14002/j.hxya.2014.05.006

    猜你喜歡
    苯并咪唑鉬酸梅林
    專利名稱:一種硫摻雜鉬酸鉍納米片狀可見光催化劑的制備方法
    吃梅子
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    一種鉬酸鋰的制備方法
    芬頓氧化處理苯并咪唑類合成廢水實(shí)驗(yàn)研究
    像媽媽一樣
    搖籃(2016年10期)2016-06-23 07:55:56
    像爸爸一樣
    搖籃(2016年10期)2016-06-23 07:55:31
    1,1-二(苯并咪唑-2-基)-2-(喹喔啉-2-基)乙烯的合成及其性能
    高性能鉬酸鋅/堿式鉬酸鋅微粉合成研究*
    2-氨甲基-1H-苯并咪唑鈷(Ⅱ)和鎳(Ⅱ)配合物的合成、晶體結(jié)構(gòu)和抑菌活性
    毛片一级片免费看久久久久| 91精品国产九色| 99热这里只有是精品在线观看| 妹子高潮喷水视频| 婷婷色综合www| 少妇猛男粗大的猛烈进出视频| 成人无遮挡网站| 中文字幕精品免费在线观看视频 | 天天躁日日操中文字幕| 一区二区三区免费毛片| 黄片无遮挡物在线观看| 中文天堂在线官网| 男人舔奶头视频| 亚洲av国产av综合av卡| 中文字幕av成人在线电影| 免费观看在线日韩| 国产av精品麻豆| 网址你懂的国产日韩在线| 岛国毛片在线播放| 国产真实伦视频高清在线观看| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 国产精品一区www在线观看| 久久久久久人妻| 国产精品不卡视频一区二区| 汤姆久久久久久久影院中文字幕| 各种免费的搞黄视频| 99九九线精品视频在线观看视频| 看免费成人av毛片| 狂野欧美白嫩少妇大欣赏| 人人妻人人添人人爽欧美一区卜 | 91精品国产国语对白视频| 色视频在线一区二区三区| 中国国产av一级| av国产久精品久网站免费入址| 久久国内精品自在自线图片| 亚洲国产最新在线播放| 嫩草影院入口| 亚洲国产精品一区三区| 九色成人免费人妻av| 亚洲av福利一区| 国产成人精品婷婷| 91aial.com中文字幕在线观看| 国产又色又爽无遮挡免| 久久毛片免费看一区二区三区| 日韩一区二区视频免费看| 国产成人aa在线观看| 在线观看免费视频网站a站| 国产免费一级a男人的天堂| 成年人午夜在线观看视频| 日日啪夜夜撸| 在线播放无遮挡| 黄色欧美视频在线观看| 妹子高潮喷水视频| av在线老鸭窝| 最近最新中文字幕大全电影3| 极品少妇高潮喷水抽搐| 久久久a久久爽久久v久久| 欧美97在线视频| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 在线观看国产h片| 黄色视频在线播放观看不卡| 国产在线男女| 亚洲精品自拍成人| 久久影院123| 国产精品一区www在线观看| 日韩电影二区| 国内少妇人妻偷人精品xxx网站| 国产男女内射视频| 精品人妻熟女av久视频| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| 成人特级av手机在线观看| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩东京热| 日本午夜av视频| 成人18禁高潮啪啪吃奶动态图 | 制服丝袜香蕉在线| 男女国产视频网站| 超碰97精品在线观看| 中文资源天堂在线| 国产一区二区在线观看日韩| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 男人狂女人下面高潮的视频| 国产毛片在线视频| 欧美精品一区二区免费开放| 久久 成人 亚洲| 亚洲精品乱码久久久v下载方式| 亚洲丝袜综合中文字幕| 国产乱人视频| 人人妻人人添人人爽欧美一区卜 | 看免费成人av毛片| 亚洲av欧美aⅴ国产| 国产高清有码在线观看视频| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 直男gayav资源| 18禁动态无遮挡网站| 97超碰精品成人国产| 亚洲av二区三区四区| 午夜日本视频在线| 免费人妻精品一区二区三区视频| 久久精品久久久久久噜噜老黄| 国产高清国产精品国产三级 | 亚洲成人手机| 国产精品欧美亚洲77777| 我要看黄色一级片免费的| 国产精品成人在线| 国产成人91sexporn| 欧美国产精品一级二级三级 | 亚洲高清免费不卡视频| 99热全是精品| 久久精品久久久久久久性| 精品久久久噜噜| 老司机影院毛片| 成人毛片60女人毛片免费| 街头女战士在线观看网站| 99热网站在线观看| 又大又黄又爽视频免费| 99热网站在线观看| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 丝袜脚勾引网站| 高清欧美精品videossex| 成人国产麻豆网| 在线观看免费高清a一片| 内地一区二区视频在线| 免费观看av网站的网址| 成人18禁高潮啪啪吃奶动态图 | 国产精品三级大全| 国产一级毛片在线| 99视频精品全部免费 在线| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 老司机影院毛片| 高清午夜精品一区二区三区| 国产免费福利视频在线观看| 免费观看av网站的网址| 中文字幕av成人在线电影| 日韩精品有码人妻一区| 各种免费的搞黄视频| 在线免费十八禁| 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 22中文网久久字幕| 在线观看免费高清a一片| 国产色爽女视频免费观看| 永久免费av网站大全| a级毛片免费高清观看在线播放| 亚洲欧美日韩另类电影网站 | 日韩伦理黄色片| 午夜福利影视在线免费观看| 人人妻人人看人人澡| 亚洲熟女精品中文字幕| 性色avwww在线观看| 成人美女网站在线观看视频| 汤姆久久久久久久影院中文字幕| 国语对白做爰xxxⅹ性视频网站| 精品一品国产午夜福利视频| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 久久久国产一区二区| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 九色成人免费人妻av| 水蜜桃什么品种好| 日本黄色日本黄色录像| 男女下面进入的视频免费午夜| 国产av国产精品国产| 亚洲图色成人| 国产爱豆传媒在线观看| 久久 成人 亚洲| 国产色爽女视频免费观看| 在线观看av片永久免费下载| 18禁在线播放成人免费| 亚洲人成网站高清观看| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 色吧在线观看| 99热6这里只有精品| 亚洲精华国产精华液的使用体验| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 三级经典国产精品| 欧美少妇被猛烈插入视频| 美女高潮的动态| 老司机影院毛片| 欧美国产精品一级二级三级 | 成人免费观看视频高清| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 久久人人爽av亚洲精品天堂 | 精品酒店卫生间| 九草在线视频观看| 妹子高潮喷水视频| 中文字幕制服av| 免费人成在线观看视频色| 美女脱内裤让男人舔精品视频| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 精品久久久久久久末码| 免费观看的影片在线观看| 国产精品蜜桃在线观看| 中国美白少妇内射xxxbb| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 国产成人精品婷婷| 亚洲图色成人| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 成人亚洲精品一区在线观看 | 精品久久久久久久久亚洲| 亚洲熟女精品中文字幕| 九九久久精品国产亚洲av麻豆| 亚洲内射少妇av| 春色校园在线视频观看| 国产爽快片一区二区三区| 亚洲精品一二三| 亚洲成色77777| 久久99精品国语久久久| 欧美另类一区| 日韩亚洲欧美综合| 一级毛片aaaaaa免费看小| 大又大粗又爽又黄少妇毛片口| 我要看黄色一级片免费的| 欧美3d第一页| 老女人水多毛片| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 视频区图区小说| 一级毛片我不卡| 久久精品国产亚洲av天美| 亚洲成色77777| 国产黄频视频在线观看| 国产男人的电影天堂91| 国产精品一区二区性色av| 十分钟在线观看高清视频www | 九九在线视频观看精品| 欧美bdsm另类| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 亚洲性久久影院| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 中文字幕久久专区| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 最近2019中文字幕mv第一页| 91精品一卡2卡3卡4卡| 午夜福利高清视频| 春色校园在线视频观看| av天堂中文字幕网| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 少妇的逼好多水| 久久久久久人妻| 国产亚洲5aaaaa淫片| 亚洲国产最新在线播放| 国产成人freesex在线| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 亚洲国产高清在线一区二区三| 色视频在线一区二区三区| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 日韩成人av中文字幕在线观看| av专区在线播放| 亚洲国产精品专区欧美| 国产91av在线免费观看| 日韩中字成人| 亚洲成人一二三区av| 国产免费一级a男人的天堂| 六月丁香七月| 女性生殖器流出的白浆| 欧美zozozo另类| 亚洲精品一二三| 啦啦啦在线观看免费高清www| 成人二区视频| 亚洲真实伦在线观看| 热99国产精品久久久久久7| 色综合色国产| 国产高清有码在线观看视频| 日韩国内少妇激情av| 亚洲国产欧美人成| av专区在线播放| 久久久久视频综合| av黄色大香蕉| 视频区图区小说| 亚洲成人一二三区av| 亚洲精品自拍成人| 午夜激情福利司机影院| 我的老师免费观看完整版| av卡一久久| 久久精品熟女亚洲av麻豆精品| 日韩电影二区| 亚洲四区av| 中文字幕亚洲精品专区| 亚洲性久久影院| 久久久久久伊人网av| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 欧美日本视频| 国产精品一二三区在线看| 国产精品国产av在线观看| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 99精国产麻豆久久婷婷| 男女下面进入的视频免费午夜| 亚洲高清免费不卡视频| 久久国产精品男人的天堂亚洲 | 男人舔奶头视频| 国产免费视频播放在线视频| 精品亚洲成a人片在线观看 | 成人综合一区亚洲| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美 | 欧美成人一区二区免费高清观看| 卡戴珊不雅视频在线播放| 亚洲欧美中文字幕日韩二区| 精品亚洲乱码少妇综合久久| 国产伦在线观看视频一区| 男女免费视频国产| 亚洲精品乱久久久久久| 天天躁日日操中文字幕| 如何舔出高潮| 国产精品久久久久久久电影| 色视频在线一区二区三区| 老女人水多毛片| 亚洲真实伦在线观看| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 亚洲怡红院男人天堂| 国产美女午夜福利| 老司机影院毛片| 国产精品爽爽va在线观看网站| 伦理电影免费视频| 人妻一区二区av| 日韩制服骚丝袜av| 亚洲图色成人| 中国三级夫妇交换| 国产大屁股一区二区在线视频| 99热网站在线观看| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 你懂的网址亚洲精品在线观看| 久久毛片免费看一区二区三区| 婷婷色综合大香蕉| 一区二区三区四区激情视频| 97在线人人人人妻| 亚洲一区二区三区欧美精品| 亚洲高清免费不卡视频| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 老司机影院毛片| 偷拍熟女少妇极品色| 亚洲国产毛片av蜜桃av| 久久99精品国语久久久| 高清不卡的av网站| 日韩强制内射视频| 内地一区二区视频在线| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 91狼人影院| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美 | 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| 亚洲久久久国产精品| 亚洲色图综合在线观看| 亚洲成人av在线免费| 亚洲欧美清纯卡通| 国内少妇人妻偷人精品xxx网站| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 国产成人aa在线观看| 熟女电影av网| 亚洲av电影在线观看一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲天堂av无毛| 国产精品蜜桃在线观看| 99热网站在线观看| 日本欧美视频一区| 夫妻午夜视频| 久久亚洲国产成人精品v| 久久久久久久精品精品| 免费av不卡在线播放| 97热精品久久久久久| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 日本av免费视频播放| 99热这里只有精品一区| 国产一区亚洲一区在线观看| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 国产在线免费精品| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说 | 久久av网站| 日本猛色少妇xxxxx猛交久久| 日日啪夜夜爽| 日韩三级伦理在线观看| 久久久精品免费免费高清| 噜噜噜噜噜久久久久久91| 国产成人一区二区在线| 在线观看免费高清a一片| 在线天堂最新版资源| 亚洲国产色片| 欧美日韩在线观看h| 特大巨黑吊av在线直播| www.色视频.com| 亚洲人成网站高清观看| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 欧美xxxx黑人xx丫x性爽| 亚洲电影在线观看av| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 中文字幕免费在线视频6| 中国三级夫妇交换| 国产又色又爽无遮挡免| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 成人黄色视频免费在线看| 亚洲精品一区蜜桃| 亚洲自偷自拍三级| 80岁老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜 | 色视频在线一区二区三区| 成人亚洲精品一区在线观看 | 欧美高清成人免费视频www| 日本猛色少妇xxxxx猛交久久| 毛片一级片免费看久久久久| 美女高潮的动态| 寂寞人妻少妇视频99o| 观看美女的网站| 18+在线观看网站| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 丰满人妻一区二区三区视频av| 久久精品国产亚洲av天美| 黄片wwwwww| 亚洲成人一二三区av| 免费人妻精品一区二区三区视频| 少妇熟女欧美另类| 日本色播在线视频| 国产一区有黄有色的免费视频| 亚洲精品国产色婷婷电影| 黄色一级大片看看| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 欧美+日韩+精品| 性色avwww在线观看| 久久精品人妻少妇| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 大码成人一级视频| 日本一二三区视频观看| 伦理电影大哥的女人| 成人18禁高潮啪啪吃奶动态图 | 国产中年淑女户外野战色| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 国产亚洲最大av| 亚洲国产精品999| 大片免费播放器 马上看| 午夜福利高清视频| 成年av动漫网址| 亚洲内射少妇av| 中国美白少妇内射xxxbb| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 一级毛片aaaaaa免费看小| 中国三级夫妇交换| 97在线人人人人妻| 色吧在线观看| av在线app专区| 亚洲美女视频黄频| 欧美成人午夜免费资源| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 一区二区av电影网| 永久网站在线| 亚洲精品久久久久久婷婷小说| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 国产精品熟女久久久久浪| 男女免费视频国产| 国产精品久久久久成人av| 成年美女黄网站色视频大全免费 | 久久av网站| 久久久久人妻精品一区果冻| 精品视频人人做人人爽| 亚洲av福利一区| 日韩一区二区视频免费看| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区| 91狼人影院| 精品少妇久久久久久888优播| 国产成人一区二区在线| 美女内射精品一级片tv| 午夜福利在线在线| 亚洲精品乱码久久久v下载方式| 我的女老师完整版在线观看| 国产淫语在线视频| 欧美一区二区亚洲| 身体一侧抽搐| 亚洲精品国产av蜜桃| 高清av免费在线| 成人免费观看视频高清| 国产中年淑女户外野战色| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 毛片女人毛片| 久久精品国产自在天天线| a级一级毛片免费在线观看| 91久久精品国产一区二区成人| 欧美精品一区二区大全| 国产爽快片一区二区三区| 激情五月婷婷亚洲| av福利片在线观看| 日本黄色片子视频| 国产成人精品婷婷| 成人亚洲精品一区在线观看 | 人妻夜夜爽99麻豆av| 中文字幕免费在线视频6| 一级毛片电影观看| .国产精品久久| 国产 精品1| 久久久成人免费电影| 国产伦理片在线播放av一区| 国产精品熟女久久久久浪| 日韩伦理黄色片| 国产精品人妻久久久久久| 欧美日韩国产mv在线观看视频 | 在线观看人妻少妇| 亚洲精品久久午夜乱码| 午夜福利高清视频| 新久久久久国产一级毛片| 成人漫画全彩无遮挡| 大话2 男鬼变身卡| 内地一区二区视频在线| 国产精品精品国产色婷婷| 欧美日韩一区二区视频在线观看视频在线| 一级av片app| 夫妻午夜视频| 国产熟女欧美一区二区| 欧美 日韩 精品 国产| 欧美少妇被猛烈插入视频| 高清午夜精品一区二区三区| 晚上一个人看的免费电影| av一本久久久久| 免费观看在线日韩| 国产爽快片一区二区三区| 成人18禁高潮啪啪吃奶动态图 | av专区在线播放| 能在线免费看毛片的网站| 成人黄色视频免费在线看| 久久久精品免费免费高清| 日韩免费高清中文字幕av| 3wmmmm亚洲av在线观看| 18+在线观看网站| 男人和女人高潮做爰伦理| 一区二区av电影网| 高清视频免费观看一区二区| 久久久久网色| 国产伦精品一区二区三区视频9| 高清视频免费观看一区二区| 精品人妻熟女av久视频|