• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Solution for Fractional Partial Differential Equation with Bernstein Polynomials

    2014-03-02 01:10:54JinShengWangLiQingLiuYiMingChenandXiaoHongKe

    Jin-Sheng Wang, Li-Qing Liu, Yi-Ming Chen, and Xiao-Hong Ke

    Numerical Solution for Fractional Partial Differential Equation with Bernstein Polynomials

    Jin-Sheng Wang, Li-Qing Liu, Yi-Ming Chen, and Xiao-Hong Ke

    —A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational matrix of Bernstein polynomials is derived. With the operational matrix, the equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear equations after dispersing the variable. By solving the linear equations, the numerical solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples are provided to show that the method is computationally efficient.

    Index Terms—Absolute error, Bernstein polynomials, fractional partial differential equation, numerical solution, operational matrix.

    1. Introduction

    Fractional calculus is an old mathematical topic, which is generalized from integer order ones and achieved by replacing integer order derivatives by fractional ones. Fractional differential equations are used widely to model natural physical process and dynamic systems, and they are more accurate than integer differential equations[1]. In recent years, both mathematicians and physicists have devoted considerable efforts to seek the numerical and analytical methods of fractional differential equations. The most commonly used methods are Adomian decomposition method (ADM)[2],[3], Variational iteration method (VIM)[4], generalized differential transform method (GDTM)[5]-[7], dinite difference method (FDM)[8], and wavelet method[9],[10]and so on.

    In this paper, our study focuses on a class of fractional partial differential equation as follows:

    subject to the initial conditions

    There have been several methods for solving the fractional partial differential equation. For example, by using generalized differential transform method, Odibat successfully obtained the numerical solution of linear partial differential equations of fractional order[7]; with the Laplace Transform method, Podlubny solved the fractional partial differential equations with constant coefficients[11].

    In this paper, we introduce the Bernstein polynomials to seek the numerical solution of fractional partial differential equations. With the simple structure and perfect properties[12]-[15], Bernstein polynomials play an important role in various areas of mathematics and engineering. Those polynomials have been widely used in the solution of integral equations and differential equations[12]-[17].

    The reminder of the paper is organized as follows. In Section 2, the basic fractional derivatives and integrals definitions are briefly reviewed. The basic definitions of Bernstein polynomials, function approximation, and convergence analysis in Bernstein polynomials are given in Section 3. In Section 4, the fractional operational matrices of Bernstein polynomials are derived and used to solve the equation at beginning. In Section 5, we present numerical examples to illustrative the method and to demonstrate the efficiency of the method. We end the paper with a few concluding remarks in Section 6.

    2. Definitions of Fractional Derivatives and Integrals

    In this section, we give some basic definitions and some properties of fractional calculus. With the development of theories of fractional derivatives and integrals, there are many definitions appeared, such as theRiemann-Liouville and Caputo fractional differential integral definitions[11].

    1) Riemann-Liouville fractional integral of order

    The properties of the Riemann-Liouville fractional integral can expressed as

    2) Riemann-Liouville fractional derivative of order

    The Riemann-Liouville fractional derivative has certain disadvantages when trying to model real-world phenomena using fractional differential equations. So, we will introduce a modified fractional differential operator by Caputo’s work.

    3) Caputo’s fractional derivative of order

    Particularly, for the Caputo derivative we have (cis a constant)

    The relation between the Riemann-Liouville operator and Caputo operator is given by the following expressions.

    3. Bernstein Polynomials and Properties

    3.1 Definition of Bernstein Polynomials Basis

    The Bernstein polynomials of degreenare defined by

    By using the binomial expansion of, (10) can be expressed as

    Now, we define

    where

    and

    It is obvious that

    3.2 Function Approximation

    whereHis a Hilbert matrix:

    where

    Ucan be obtained as follows:

    3.3 Convergence Analysis

    Suppose that the functionfism+1 times continuously differentiable, that is to sayandis the best approximation offout of Y, then the mean error bound is presented as follows:

    Proof.We consider the Taylor polynomials

    which we know

    and taking square roots we have the above bound.

    3.4 Proposed Method for the Numerical Solution of the Fractional Partial Differential Equation

    Now, consider the fractional partial differential equation given by (1) and (2).

    If we approximate the functionwith Bernstein polynomials, it can be written as (20), then we have

    We define

    whereMis called the fractional order operational matrix of Bernstein polynomials. Similarly, we can get

    and we define

    whereNis also called the fractional order operational matrix of Bernstein polynomials.

    Substituting (24) and (26) into (1), we have

    Dispersing (28) by the pointswe can obtainUwhich is unknown.

    4. Numerical Examples

    To demonstrate the efficiency and the practicability of the proposed method based on Bernstein polynomials method, we consider the following examples.

    Example 1:

    where

    The exact solution of the above equation is

    We solve the problem by adopting of the technique described in Section 3 and by making use of Mathematica. When 2n= , dispersing

    the matrixUis displayed as follows:

    When 3n= , dispersing

    the matrixUis displayed as follows:

    when 4n= , dispersing

    the matrixUis displayed as follows:

    Table 1: Absolute error for t=1/4 for different values of n

    Table 2: Absolute error for t=1/2 for different values of n

    Table 3: Absolute error for t=3/4 for different values of n

    From Table 1 to Table 3, we can see that the absolute error is very tiny and only a small number of Bernstein polynomials are needed when 3n≥ . When 2n= , it is not surprising that the absolute error is very big. With the polynomials of degree 2th to approximate the polynomials of degree 3th, we cannot obtain satisfactory results.

    Also whennis definite, the more points we take, the more accurate solution we get. Fig. 1 to Fig. 3 explain the fact. (we taken=3,,xtnis the number of thexi,tj).

    Example 2:

    where

    The exact solution is

    Fig. 1. Numerical solution of

    Fig. 2. Numerical solution

    Fig. 3. Exact solution.

    When 4n= , dispersing

    and the matrixUis displayed as follows:

    The absolute error is displayed Fig. 4.

    Fig. 4. Absolute error when n=4.

    When 5n= , dispersing

    the matrixUis displayed as follows:

    The absolute error is displayed Fig. 5.

    Fig. 5. Absolute error when n=5.

    Example 3:

    where

    the matrixUis displayed as follows:

    The absolute error is displayed in Fig. 6.

    Fig. 6. Absolute error when n=3.

    The absolute error is displayed in Fig. 7.

    Fig. 7. Absolute error when n=4.

    From Example 1 to Example 3, we can find that the method in this article can be effectively used in the numerical solution of the fractional partial differential equation. At the same time the feasibility of the method is also proved. From the above results, the numerical solutions are in good agreement with the exact solution. We draw a conclusion that the method is not only effective to get the numerical solution with good coincidence, but also more accurate than other methods.

    5. Conclusions

    This article solves a class of fractional partial differential equations by combining Bernstein polynomials with the properties of fractional differentiation. We translate the initial equation into the product of some relevant matrixes which can also be viewed as the system of linear equations after dispersing the variable. With the least square method, we can solve the equations easily.

    There are quite a lot of methods to solve fractional partial differential equations such as the block pulse operational matrix method, and wavelet method. With the Bernstein polynomials method, the absolute error is 10-15, so it is more perfect than other methods. What is more, the method in this paper is easy implementation.

    Acknowledgements

    This work was supported by Qinhuangdao Research and Development Program of Science and Technology under Grant No. 201201B019, and Qinhuangdao Technology Bureau 2013 Research and Development Projects of Science and Technology under Grant No. 201302A023.

    The authors are very grateful to both referees for their comments and suggestions. Also authors are very thankful to the associate editor for the comments which have improved the paper.

    [1] L. Galue, S. L. Kalla, and B. N. Al-Saqabi, “Fractional extensions of the temperature field problems in oil strata,”Appl. Math. Comput, vol. 186, pp. 35-44, March 2007.

    [2] A. EI-Sayed, “Nonlinear functional differential equations of arbitrary orders,” Nonliear Analysis, vol. 33, no. 2, pp. 181-186, Jul. 1998.

    [3] I. L. EI-Kalla, “Error estimate of the series solution to a class of nonlinear fractional differential equations,”Commun. Nonlinear Sci. Numer. Simulat, vol. 16, pp. 1408-1403, Mar. 2011.

    [4] Z. M. Odibat, “A study on the convergence of variational iteration method,” Mathematical and Computer Modeling, vol. 51, pp. 1181-1192, May. 2010.

    [5] S. Momani and Z. Odibat, “Generalized differential transform method for solving a space and time-fractional diffusion-wave equation,” Physics Letters A, vol. 370, pp. 379-387, Oct. 2007.

    [6] Z. Odibat and S. Momani, “Generalized differential transform method: Application to differential equations of fractional order,” Applied Mathematics and Computation, vol. 197, pp. 467-477, Apr. 2008.

    [7] Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,” Applied Mathematics Letters, vol. 21, pp. 194-199, Feb. 2008.

    [8] Y. Zhang, “A finite difference method for fractional partial differential equation,” Applied Mathematics and Computation. vol. 215, pp. 524-529, Sep. 2009.

    [9] Y.-X. Wang and Q.-B. Fan, “The second kind Chebyshev wavelet method for solving fractional differential equations,” Applied Mathematics and Computation, vol. 218, pp. 8592-8601, May 2012.

    [10] M.-X. Yi and Y.-M. Chen, “Haar wavelet operational matrix method for solving fractional partial differential equations,”Computer Modeling in Engineering & Sciences, vol. 88, no. 3, pp. 229-244, Dec. 2012.

    [11] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999.

    [12] Y.-M. Chen, M.-X. Yi, C. Chen, and C.-X. Yu, “Bernstein polynomials method for fractional convection-diffusion equation with variable coefficients,” Computer Modeling in Engineering & Sciences, vol. 83, no. 6, pp. 639-653, Apr. 2012.

    [13] K. Maleknejad, E. Hashemizadeh, and B. Basirat,“Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations,” Commun. Nonlinear Sci. Numer. Simul. vol. 17, no. 1, pp. 52-61, Jan. 2012.

    [14] S. A. Yousefi and M. Behroozifar, “Operational matrices of Bernstein polynomials and their applications,” Int. J. Systems Sci. vol. 41, no. 6, pp. 709-716, Mar. 2010.

    [15] S. A. Yousefi, M. Behroozifar, and M. Dehghan, “The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass,”Journal of Computational and Applied Mathematics, vol. 235, pp. 5272-5283, Jul. 2011.

    [16] E. H. Doha, A. H. Bhrawy, and M. A. Saker, “Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations,” Appl. Math. Lett., 24, vol. 24, pp. 559-565, Apr. 2011.

    [17] K. Maleknejad, E. Hashemizadeh, and R. Ezzati, “A new approach to the numerical solution of Volterra integral equations by using Bernsteins approximation,” Commun Nonlinear Sci. Numer. Simula.t, vol. 16, pp. 647-655, Feb. 2011.

    [18] T. J. Rivlin, An Introduction to the Approximation of Functions, New York: Dover Publications, 1969.

    Jin-Sheng Wangwas born in Jilin, China in 1967. He received his B.S. degree in Jilin Polytechnical University in 1990, and the M.S. degree in Yanshan University in 1999. He is now a lecturer with the School of Continuing Education, Yanshan University. His research interests include measurement and application.

    Li-Qing Liuwas born in Hebei, China in 1988. She received the B.S. degree from Hebei Normal University of Science and Technology in 2102. She is currently pursuing the M.S. with Yanshan University. Her research interests include numerical solution of differential equation and so on.

    Yi-Ming Chenwas born in Heilongjiang, China in 1957. He obtained his Ph.D. degree from Yanshan University, Qinhuangdao in 2002. He was a post-doctor from 2005 to 2007 in Glamorgan University, UK. He is now a professor with the College of Science, Yanshan University,China. His research interests include boundary element method in contact problem, boundary element solution for the variation inequality, and numerical solution of differential equation.

    Xiao-Hong Kewas born in Liaoning, China in 1989. She received the B.S. degree from Shenyang Normal University in 2102. She is currently pursuing the M.S. in Yanshan University. Her research interests include numerical solution of differential equation and so on.

    Manuscript received January 10, 2014; revised February 12, 2014. This work was supported by the Natural Science Foundation of Hebei Province under Grant No. A2012203407.

    L.-Q. Liu is with the Institute of College of Science, Yanshan University, Qinhuangdao 066000, China (Corresponding author e-mail: liuliqing_yanyan@163.com).

    J.-S. Wang and Y.-M. Chen are with the Institute of School of Continuing Education Yanshan University, Qinhuangdao 066000, China (e-mail:wjinsheng2010@163.com; chenym@ysu.edu.cn).

    X.-H. Ke is with the Institute of College of Science, Yanshan University, Qinhuangdao 066000, China (e-mail:kexiaohong1989@163.com)

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.017

    97超视频在线观看视频| 久久人人爽人人爽人人片va| 免费看美女性在线毛片视频| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻aⅴ院| 少妇熟女aⅴ在线视频| 久久久久久久久久成人| 一级毛片aaaaaa免费看小| 国产aⅴ精品一区二区三区波| 久久久久久久久久久丰满| 老女人水多毛片| av黄色大香蕉| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久免费视频| 欧美一级a爱片免费观看看| 高清毛片免费看| 国产在视频线在精品| 尤物成人国产欧美一区二区三区| 久久久久久久亚洲中文字幕| 尤物成人国产欧美一区二区三区| 国产色爽女视频免费观看| 国产高清三级在线| 级片在线观看| 精品久久久久久久久久久久久| 别揉我奶头 嗯啊视频| 久久精品国产99精品国产亚洲性色| 简卡轻食公司| 欧美色欧美亚洲另类二区| 欧美丝袜亚洲另类| 一级黄片播放器| 亚洲成a人片在线一区二区| 亚洲一区高清亚洲精品| 亚洲欧美精品综合久久99| 人妻久久中文字幕网| 成年女人毛片免费观看观看9| 久久久久性生活片| 国产亚洲欧美98| 亚洲av电影不卡..在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久成人av| 国产精品久久电影中文字幕| 尤物成人国产欧美一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲图色成人| 亚洲国产精品久久男人天堂| 亚洲国产精品久久男人天堂| 一卡2卡三卡四卡精品乱码亚洲| 干丝袜人妻中文字幕| 成人无遮挡网站| 亚洲最大成人av| av天堂在线播放| 久久久午夜欧美精品| 97碰自拍视频| 日本黄大片高清| 久久热精品热| 深夜a级毛片| www.色视频.com| 国产精品免费一区二区三区在线| 有码 亚洲区| 日本爱情动作片www.在线观看 | 蜜桃久久精品国产亚洲av| 中文在线观看免费www的网站| 久久精品国产亚洲av天美| 一本精品99久久精品77| 国产av一区在线观看免费| 精品久久久噜噜| 小蜜桃在线观看免费完整版高清| 精品一区二区三区av网在线观看| 欧美潮喷喷水| 日韩欧美在线乱码| 日日摸夜夜添夜夜添av毛片| 免费看光身美女| 在线a可以看的网站| 两个人的视频大全免费| 我的老师免费观看完整版| av中文乱码字幕在线| 久久精品国产自在天天线| 亚洲av美国av| 亚洲图色成人| 欧美3d第一页| 别揉我奶头 嗯啊视频| 成人欧美大片| 搡老熟女国产l中国老女人| 国语自产精品视频在线第100页| 亚洲专区国产一区二区| 欧美+亚洲+日韩+国产| 亚洲国产精品sss在线观看| 国产私拍福利视频在线观看| 人人妻,人人澡人人爽秒播| 色在线成人网| 色综合亚洲欧美另类图片| 久久久久久久午夜电影| av视频在线观看入口| 一本一本综合久久| 久久人人爽人人片av| 免费看av在线观看网站| 亚洲久久久久久中文字幕| 国产aⅴ精品一区二区三区波| 97超碰精品成人国产| 亚洲精品一卡2卡三卡4卡5卡| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 91久久精品电影网| 亚洲av中文字字幕乱码综合| 欧美高清性xxxxhd video| 可以在线观看毛片的网站| 伊人久久精品亚洲午夜| 欧美三级亚洲精品| 夜夜看夜夜爽夜夜摸| 少妇丰满av| 精品国产三级普通话版| 欧美性感艳星| 亚洲欧美清纯卡通| 晚上一个人看的免费电影| 中文字幕av在线有码专区| 免费观看在线日韩| 国产一区二区三区av在线 | 黑人高潮一二区| 天天躁日日操中文字幕| aaaaa片日本免费| 国产激情偷乱视频一区二区| 亚洲成人av在线免费| ponron亚洲| 精品一区二区免费观看| 男女之事视频高清在线观看| 嫩草影院新地址| 麻豆国产av国片精品| 一级av片app| 欧美一级a爱片免费观看看| 伊人久久精品亚洲午夜| 老熟妇仑乱视频hdxx| 国产 一区精品| 亚洲精品粉嫩美女一区| 国产亚洲av嫩草精品影院| 久久草成人影院| 久久久久久久久中文| 国产熟女欧美一区二区| 国产精品无大码| 亚洲av.av天堂| 18禁在线播放成人免费| 午夜激情欧美在线| 啦啦啦观看免费观看视频高清| 老熟妇乱子伦视频在线观看| av在线观看视频网站免费| 亚洲18禁久久av| 毛片一级片免费看久久久久| 国产视频内射| 直男gayav资源| 国产在线男女| 久久久久国产网址| 日韩欧美 国产精品| 亚洲综合色惰| 国产高清有码在线观看视频| 亚洲精品国产av成人精品 | 美女免费视频网站| a级毛片a级免费在线| 亚洲五月天丁香| 女的被弄到高潮叫床怎么办| 亚洲精华国产精华液的使用体验 | 神马国产精品三级电影在线观看| 日日撸夜夜添| 亚洲av熟女| 麻豆av噜噜一区二区三区| 欧美国产日韩亚洲一区| 久久久久久久久久成人| 久久热精品热| 日日撸夜夜添| 欧美在线一区亚洲| 午夜精品在线福利| 日韩欧美国产在线观看| 国产精品99久久久久久久久| 一区二区三区高清视频在线| 一a级毛片在线观看| 综合色av麻豆| 久久精品夜色国产| 久久久久久久亚洲中文字幕| 亚洲av五月六月丁香网| 最好的美女福利视频网| a级毛片免费高清观看在线播放| 免费观看的影片在线观看| 亚洲av电影不卡..在线观看| 日韩在线高清观看一区二区三区| 在线观看免费视频日本深夜| av在线观看视频网站免费| 变态另类丝袜制服| 日本一二三区视频观看| 亚洲精品乱码久久久v下载方式| 国产亚洲精品综合一区在线观看| 精品熟女少妇av免费看| 九九久久精品国产亚洲av麻豆| 国产综合懂色| 啦啦啦观看免费观看视频高清| 永久网站在线| 哪里可以看免费的av片| 日本a在线网址| 国产人妻一区二区三区在| 欧美另类亚洲清纯唯美| 久久久久久久久久成人| 国产极品精品免费视频能看的| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 国产成人a∨麻豆精品| 最近2019中文字幕mv第一页| 一卡2卡三卡四卡精品乱码亚洲| 中文资源天堂在线| 全区人妻精品视频| 黄片wwwwww| 69av精品久久久久久| 晚上一个人看的免费电影| 大香蕉久久网| 在线观看一区二区三区| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 国产精品嫩草影院av在线观看| 搞女人的毛片| 国产一区二区在线av高清观看| 成年av动漫网址| 精品人妻偷拍中文字幕| 午夜福利视频1000在线观看| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 12—13女人毛片做爰片一| av在线播放精品| 天堂网av新在线| 美女大奶头视频| 免费观看的影片在线观看| 熟妇人妻久久中文字幕3abv| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 12—13女人毛片做爰片一| 卡戴珊不雅视频在线播放| 啦啦啦韩国在线观看视频| 精品国产三级普通话版| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 国产伦在线观看视频一区| 国产男人的电影天堂91| 级片在线观看| 精品国产三级普通话版| 蜜桃亚洲精品一区二区三区| 老熟妇仑乱视频hdxx| 国产精品久久视频播放| 少妇高潮的动态图| 日本爱情动作片www.在线观看 | 欧美日韩乱码在线| 成人一区二区视频在线观看| 日韩三级伦理在线观看| 性欧美人与动物交配| 国产高清视频在线播放一区| 日本一二三区视频观看| 婷婷亚洲欧美| 日本a在线网址| 国产激情偷乱视频一区二区| 免费高清视频大片| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 成人高潮视频无遮挡免费网站| 成年女人永久免费观看视频| 直男gayav资源| 亚洲欧美日韩无卡精品| 国产日本99.免费观看| 不卡一级毛片| 六月丁香七月| 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 国产色婷婷99| 99久久中文字幕三级久久日本| 特大巨黑吊av在线直播| 久久国产乱子免费精品| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 国产高清视频在线观看网站| 中文在线观看免费www的网站| 18禁黄网站禁片免费观看直播| 午夜爱爱视频在线播放| 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| 亚洲欧美精品综合久久99| 亚洲精品日韩在线中文字幕 | 青春草视频在线免费观看| 精品一区二区免费观看| 久久精品国产亚洲av天美| 国产 一区精品| 99热6这里只有精品| 国产一级毛片七仙女欲春2| 久久午夜福利片| 内射极品少妇av片p| 亚洲国产欧美人成| 免费观看精品视频网站| 国产成年人精品一区二区| 精品99又大又爽又粗少妇毛片| 国产av在哪里看| 成人性生交大片免费视频hd| 国产高清视频在线播放一区| 国产真实乱freesex| 99久久九九国产精品国产免费| 最近视频中文字幕2019在线8| 成人一区二区视频在线观看| 少妇的逼好多水| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 麻豆乱淫一区二区| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| av.在线天堂| 嫩草影院入口| 网址你懂的国产日韩在线| 免费观看人在逋| 亚洲中文日韩欧美视频| 亚洲最大成人av| 国产精品野战在线观看| 国产一区二区在线av高清观看| 99热这里只有是精品50| 99热只有精品国产| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 国产不卡一卡二| 欧美丝袜亚洲另类| 国产av在哪里看| 少妇人妻精品综合一区二区 | 精品人妻视频免费看| aaaaa片日本免费| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 免费在线观看影片大全网站| 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 在线天堂最新版资源| videossex国产| h日本视频在线播放| 91久久精品国产一区二区成人| 亚洲欧美日韩东京热| 男女之事视频高清在线观看| 看免费成人av毛片| 狠狠狠狠99中文字幕| 久久亚洲国产成人精品v| 日韩强制内射视频| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 成人精品一区二区免费| a级毛片a级免费在线| 成人精品一区二区免费| 黄色视频,在线免费观看| 亚洲成av人片在线播放无| 亚洲精品国产成人久久av| 亚洲人成网站在线观看播放| 国产一区二区亚洲精品在线观看| 99久久精品一区二区三区| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 成人欧美大片| 噜噜噜噜噜久久久久久91| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 国产亚洲精品av在线| 亚洲无线在线观看| 国产成人一区二区在线| 成人午夜高清在线视频| 成年版毛片免费区| 国产成人影院久久av| 熟女电影av网| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 一本一本综合久久| ponron亚洲| 国产真实乱freesex| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 久久久久九九精品影院| 12—13女人毛片做爰片一| 简卡轻食公司| av中文乱码字幕在线| 美女高潮的动态| 村上凉子中文字幕在线| 亚洲av不卡在线观看| 日韩精品有码人妻一区| 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| 亚洲av成人精品一区久久| 在线免费观看的www视频| 淫妇啪啪啪对白视频| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 我要搜黄色片| 白带黄色成豆腐渣| 亚洲精品久久国产高清桃花| av在线蜜桃| 国产精品美女特级片免费视频播放器| 神马国产精品三级电影在线观看| 一级av片app| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品一区二区| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| 色播亚洲综合网| 日本成人三级电影网站| 欧美色视频一区免费| 日韩av不卡免费在线播放| 欧美色欧美亚洲另类二区| 亚洲自拍偷在线| 中文字幕免费在线视频6| 精品一区二区免费观看| 免费观看精品视频网站| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 国产成人a∨麻豆精品| 亚洲人成网站在线播放欧美日韩| 亚洲欧美中文字幕日韩二区| 国产av在哪里看| 欧美成人精品欧美一级黄| 男女下面进入的视频免费午夜| 又爽又黄a免费视频| 亚洲国产欧洲综合997久久,| 国产亚洲精品综合一区在线观看| av视频在线观看入口| 在线a可以看的网站| 午夜免费激情av| 老熟妇仑乱视频hdxx| 在线看三级毛片| 搡老岳熟女国产| 色尼玛亚洲综合影院| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 久久久精品94久久精品| 久久久久久久久久成人| 中国美女看黄片| 亚洲国产高清在线一区二区三| 久久久色成人| 欧美日本亚洲视频在线播放| 久久精品国产亚洲av天美| 久久久久久久久久黄片| 真人做人爱边吃奶动态| 两个人视频免费观看高清| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 长腿黑丝高跟| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 美女高潮的动态| 热99在线观看视频| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 天天一区二区日本电影三级| 男人的好看免费观看在线视频| 日本黄大片高清| aaaaa片日本免费| 少妇被粗大猛烈的视频| 亚洲精品乱码久久久v下载方式| 深夜精品福利| 色5月婷婷丁香| 性插视频无遮挡在线免费观看| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| 最新中文字幕久久久久| 亚洲欧美日韩高清在线视频| 超碰av人人做人人爽久久| 亚洲av二区三区四区| 99久久精品国产国产毛片| 亚洲av中文av极速乱| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区久久| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 一级a爱片免费观看的视频| 老师上课跳d突然被开到最大视频| 国产国拍精品亚洲av在线观看| 国产亚洲精品综合一区在线观看| 欧美成人a在线观看| 成人av一区二区三区在线看| 中出人妻视频一区二区| 五月玫瑰六月丁香| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 亚洲精品一区av在线观看| 久久精品国产亚洲av天美| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 给我免费播放毛片高清在线观看| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 变态另类丝袜制服| 久久久久国产网址| 久久国内精品自在自线图片| 村上凉子中文字幕在线| 丝袜喷水一区| 嫩草影院精品99| 免费av不卡在线播放| 在线免费十八禁| 亚洲欧美日韩无卡精品| av在线老鸭窝| 亚洲av一区综合| 亚洲人成网站在线播放欧美日韩| 少妇熟女欧美另类| 男女做爰动态图高潮gif福利片| 99热精品在线国产| 女人十人毛片免费观看3o分钟| 国内精品美女久久久久久| 国产精品一二三区在线看| 一a级毛片在线观看| 大又大粗又爽又黄少妇毛片口| 搡老妇女老女人老熟妇| 精品一区二区三区人妻视频| 国产v大片淫在线免费观看| 精品午夜福利在线看| 色5月婷婷丁香| 插阴视频在线观看视频| 自拍偷自拍亚洲精品老妇| 亚洲天堂国产精品一区在线| 亚洲性夜色夜夜综合| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 麻豆一二三区av精品| 69av精品久久久久久| 久久久久久九九精品二区国产| 成熟少妇高潮喷水视频| 色哟哟·www| 日韩精品中文字幕看吧| 国产精品美女特级片免费视频播放器| 搡女人真爽免费视频火全软件 | 99热只有精品国产| 久久久久久久久久成人| 久久久色成人| 一a级毛片在线观看| 99久久精品一区二区三区| 久久韩国三级中文字幕| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 久久久久久国产a免费观看| 婷婷精品国产亚洲av| 秋霞在线观看毛片| 亚洲综合色惰| 国产伦在线观看视频一区| 99久国产av精品国产电影| 亚洲精品日韩av片在线观看| 中文字幕久久专区| 免费搜索国产男女视频| 日韩精品青青久久久久久| 99久久成人亚洲精品观看| 露出奶头的视频| 熟女电影av网| 久久草成人影院| 九色成人免费人妻av| 亚洲国产精品合色在线| 乱系列少妇在线播放| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜爱| 久久精品人妻少妇| 国产av一区在线观看免费| 18禁在线播放成人免费| 亚洲一区二区三区色噜噜| 亚洲av电影不卡..在线观看| 久久久精品94久久精品| 亚洲人成网站在线播放欧美日韩| 久久精品国产99精品国产亚洲性色| 波多野结衣高清作品| 白带黄色成豆腐渣| 久久久久性生活片| 国产精品人妻久久久影院| 欧美激情久久久久久爽电影| 久久九九热精品免费| 五月伊人婷婷丁香| 赤兔流量卡办理| 俺也久久电影网| 无遮挡黄片免费观看| 青春草视频在线免费观看| 性插视频无遮挡在线免费观看| 亚洲真实伦在线观看| 国内精品久久久久精免费| 亚洲av熟女| 欧美又色又爽又黄视频| 国产成人a区在线观看| 综合色丁香网| 悠悠久久av| 欧洲精品卡2卡3卡4卡5卡区| 18禁在线播放成人免费| 12—13女人毛片做爰片一| 亚洲第一电影网av| 欧美性感艳星| 国产成人精品久久久久久| 精品日产1卡2卡| 噜噜噜噜噜久久久久久91| 国产一级毛片七仙女欲春2| 亚洲久久久久久中文字幕| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 精品99又大又爽又粗少妇毛片| 久久久精品欧美日韩精品| av.在线天堂| 国产v大片淫在线免费观看| 成人特级av手机在线观看| 插逼视频在线观看| 色av中文字幕| 舔av片在线| 成人av一区二区三区在线看| 级片在线观看| 一区二区三区四区激情视频 |