• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Gate in Triode-Structure for Carbon Nanotube Cold Cathode

    2014-03-02 01:10:53YongQingGuoWeiMinZhengandXiaoJuanZhang

    Yong-Qing Guo, Wei-Min Zheng, and Xiao-Juan Zhang

    Role of Gate in Triode-Structure for Carbon Nanotube Cold Cathode

    Yong-Qing Guo, Wei-Min Zheng, and Xiao-Juan Zhang

    —Field emission properties of carbon nanotube cold cathode (CNT-CC) of triode- and diode-structure have been investigated by using the finite element method of numerical simulation. Specially, the effects of gate voltage and hole radiusRon the emission properties have been analyzed based on the finite element method. Results indicate that the gate can make the excitation electric fieldEincrease, turn-on voltage decrease, and the emission current densityJrise. The result shows that theEreaches its maximum value at the top of carbon nanotube (CNT), and the optimum field emission performance can be obtained whenRis equal to 10 times the diameter of the carbon nanotube.

    Index Terms—Carbon nanotube, field emission, triode-structure.

    1. Introduction

    Since the excellent field emission properties of carbon nanotube film firstly was reported by W. A. De Heeret al.in 1995[1], a series of the research results on the field emission of single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were published[2],[3]. These results have laid good theoretical and experimental fundament for the further study. Field emission is an effective method to get electron emission with high density under low turn-on voltage[4]. Carbon nanotube (CNT) can make electrons easily penetrate the surface of cathode to form field emission electrons due to its very large aspect ratio, smaller work function, lower turn-on voltage, and larger surface electric field at lower anode voltage. Therefore, CNT is an ideal material of field emission and of quasi one-dimensional cathode[5]-[10].

    The quality of nano-cathode device, to some extent, depends on technical parameters, such as the sizes of electrodes and the distances between them; the turn-on voltage, gate voltage, and anode voltage; etc. Thus, it is important for optimizing design and preparation of the device to study the field emission properties of CNT associated with these parameters. In recent years, the research reports on field emission properties of CNT mainly focused on the diode-structure[11]-[14], however, it is difficult for a diode-structure to work with an integrated circuit because of higher control voltage. At present, a kind of triode-structure, i.e., a carbon nanotube cold cathode (CNT-CC) with a gate, has been suggested by some researchers[15],[16]. But, in these far-reaching researches, the role of the gate has not yet been demonstrated because of complexity of electric field distribution near the top of CNT-CC. In this paper, we study the electric field distribution and field emission properties based on the finite element method, analyze the differences in field emission properties between two structures, and reveal the role of the gate.

    2. Two Kinds of Structural Models

    Fig. 1 shows the structural models of triode- and diode-structure. The CNT has grown vertically on the cathode plate and passed through the gate hole in the triode-structure; the lengthLand radiusroof the CNT in the two models are equal to 60 μm and 10 nm, respectively.The planes of cathode, anode, and gate can be treated as infinite parallel planes (ignored the thickness) compared with the nano-size tip of the cathode; the gate is close to the cathode plate;VaandVgrepresent the voltage of anode and gate, respectively, and the cathode is grounded.

    Fig. 1. Two kinds of structural models: (a) triode-structure, the distances d1= 30 μm, d2= 100 μm, and the gate hole radius is expressed by R and (b) diode-structure, the distance between cathode and anode d = 130 μm.

    3. Numerical Simulation and Results Analysis

    3.1 Potential Distribution

    Fig. 2 shows the potential distributions simulated by using the finite element method (ignored the edge effect), near the top of the CNT in the two structures.

    The significant difference in the distributions can be found: the equipotential lines in the path of electron beam in the triode-structure are parallel as shown in the dotted box of Fig. 2 (a), so the electric field in the path is uniform electric field, the electron beam is columnar as shown in Fig. 2 (c), the electrons reach vertically the anode, and its luminous efficiency then is increased. But the equipotential lines in the path of electron beam in the diodestructure are not parallel and change steeply near the top of the CNT, as shown in the dotted box of Fig. 2 (b), so the electric field is not uniform one, consequently, it is not in a vertical path for the electrons to reach the anode, so its luminous efficiency is lower naturally.

    Fig. 2. Potential distribution and shape of electron beam: (a) the potential distribution in the triode-structure under anode voltage of 2000 V and gate voltage of 100 V, (b) the potential distribution in the diode-structure under the same anode voltage, and (c) shape of electron beam.

    Fig. 3. Emission current density J, as a function of anode Va.

    3.2 Emission Current Density

    The emission current densityJof a CNT can be expressed by the Fowler-Nordheim equation as follows:

    whereφ=5 eV is the work function of the CNT,Eis excitation electric field,andThe emission current densities of the two structures derived from this formula, as a function of anode voltage, are shown in Fig. 3. We can see from this figure that the turn-on voltage of the triode-structure is only 125 V, which has been decreased by 100 V compared with the diode-structure, and after turning on, the variance ratio of theJof triode-structure is much larger than that of the diode-structure. Therefore, the emission current density and turn-on voltage in the triode-structure can be adjusted by changing the gate voltage.

    3.3 Excitation Electric Field and Field Enhancement Factor

    The effects of the gate voltage on the excitation electric field strengthEand the field enhancement factorβare shown in Fig. 4. For the triode-structure, it can be seen from Fig. 4 (a) that 1)Ereaches its strongest at the top of the CNT, then decreases rapidly, and hereafter slowly tends to a stable value (or zero) with increasing ofr, e.g.,Ewill reduce to one tenth of its value at the top whenris equal to 10 times of the diameter of the CNT; 2) the gate voltageVgdoes not change the law thatEvaries withr, but the curve of the law rises integrally with the increasing ofVg, which means thatEwill strengthen with increasing ofVg; 3) themaximum ofEin the triode-structure is much larger than that of the diode-structure, and the tendency of theEvarying withris more steep than that of the later. So the excitation electric fieldEcan be easily changed by the gate voltageVg.

    The field enhancement factorβin the triode-structure, as a function of gate voltageVg, is shown in Fig. 4 (b). It is evident that the gate voltage has a significant effect onβwhich rises with increasing of the gate voltageVg. This conclusion is consistent with the experimental results of [17] and [18]. This is because that the local electric field near the top is enhanced with increasing of the gate voltage, and more electrons are drawn to the top of the CNT. This gives rise to an enhancement in the excitation electric field further, e.g.,βcan reaches 1 in the triode-structure whenVg= 130 V,Va= 2000 V, but in the diode-structureVa= 5000 V for the identical value ofβ[19]. Soβcan be conveniently changed byVg.

    Fig. 4. Effects of gate voltage on excitation electric field E and field enhancement factor β: (a) the gate voltage dependence of excitation electric field E in the two structures. The distance from the top of the CNT to the field points is denoted by r; the axis of the CNT is defined as Z-axis and the cathode plane is defined as XOY-plane, and (b) field enhancement factor β, as a function of the gate voltage Vg.

    Fig. 5. Field enhancement factor β, as a function of the hole radius.

    3.4 Effect of Hole Radius on Field Enhancement Factorβ

    The field enhancement factorβas a function of gate hole radiusRis shown in Fig. 5. It can be seen that 1)βreaches the maximum value whenRequals 200 nm, this hole radius is 10 times of the diameter of the CNT. This conclusion agrees with the experimental results reported in [19] and [20]; 2) the effect ofRon theβoccurs within the range from 10 nm to 900 nm,βrises rapidly and up to the maximum within the range from 10 nm to 200 nm, then declines and tends to a stable value (R>1000 nm). The reason is that gate exerts a shielding effect on the top of the CNT-CC as the hole radiusRis smaller; the smaller the hole radius is, the greater the shielding effect will be. But, beyond the shielding range, the larger theRis, the larger the distance between the top and the gate will be and the smaller the enhancement will be. A similar conclusion had been reported in [21]. When the hole radius is large enough (R>1000 nm) the triode-structure is equivalent to diodestructure.

    4. Conclusions

    The field emission properties of the triode-structure are obviously better than the diode-structure and its adjustability of field emission properties is clearly improved due to the role of gate. Changing gate voltage properly is an effective way to adjust the field emission properties. The hole radius dependence of the field enhancement factorβcould contribute to the optimizing design of nano-cathode devices, and the recommended optimal hole radius may be 10 times the diameter of the CNT.

    [1] W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179-1180, Nov. 1995.

    [2] H. Suga, H. Abe, M. Tanaka, T. Shimizu, T. Ohno, and Y. Nishioka, “Stable multiwalled carbon nanotube electronemitter operating in low vacuum,” Surf. Interfance Anal., vol. 38, no. 12-13, pp. 1763-1767, 2006.

    [3] L. Zhang, L. Balzano, and D. E. Resasco, “Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties,” J. Phys. Chem. B, vol. 109, no. 30, pp. 14375-14381, 2005.

    [4] Y. Z. Liu, Electron Emission and Photocathode, 1st ed. Beijing: Press of Beijing Institute of Technology, 1995, ch. 2, pp. 48-49.

    [5] L. Song, S. Liu, G.-M. Zhang, et al., “Electron field emission from single-walled carbon nanotube nonwoven,”Chin. Phy., vol. 15, no. 2, pp. 422-427, 2006.

    [6] G. Zhou and W.-H. Duan, “Template assisted synthesis of semiconductor nanowires,” Nano-Science and Nano-Technology, vol. 5, no. 5, pp. 1421-1423, 2005.

    [7] C.-L. Cheng, Y.-F. Chen, R.-S. Chen, and Y.-S. Huang,“Raman scattering and field-emission properties of RuO nanorods,” Appl. Phys. Lett., vol. 86, no. 10, pp. 1407-1409, 2005.

    [8] H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett., vol. 85, no. 8, pp. 1407-1409, 2004.

    [9] J.-C. She, S.-Z. Deng, N.-S. Xu, et al., “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device,” Appl. Phys. Lett., vol. 88, no. 1, pp. 013112-013114, 2006.

    [10] R.-S. Chen, Y.-S. Huang, Y.-M. Liang, et al., “Field emission from vertically aligned conductive IrO2 nanorods,”Appl. Phys. Lett., vol. 84, no. 9, pp. 1552-1554, 2004.

    [11] S. Y. Li, P. Lin, C. Y. Lee, et al., “Effect of Sn dopant on the properties of ZnO nanowires,” Appl. Phys., vol. 37, no. 16, pp. 2274-2277, 2004.

    [12] P. Minh, L. Tuyen, T. Ono, H. Miyashita, Y. Suzuki, H. Mimura, and M. Esashi, “Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters,” J. Vac Sci & Tech. B, vol. 21, no. 4, pp. 1705-1709, 2003.

    [13] V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama,“Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, vol. 89, no. 1-3, pp. 39-49, 2001.

    [14] X.-Q. Wang, M. Wang, H.-L. Ge, Q. Chen, and Y.-B. Xu,“Modeling and simulation for the field emission of carbon nanotubes array,” Physica E, vol. 30, no. 1-2, pp. 101-106, 2005.

    [15] Q.-H. Wang, M. Yan, and R. P. H. Chang, “Flat panel display prototype using gated carbon nanotube field emitters,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1294-1296, 2001.

    [16] Y. Qin, M. Hu, H. Li, et al., “Preparation and field emission properties of carbon nanotubes cold cathode using melting Ag nano-particles as binder,” Appl. Surf. Sci., vol. 253, no. 8, pp. 4021-4024, 2007.

    [17] J. Kim, K. No, and C. J. Lee, “Growth and field emission of carbon nanotubes on electroplated Ni catalyst coated on glass substrates,” J. Appl. Phys., vol. 90, no. 5, pp. 2591-2596, 2001.

    [18] D.-S. Chung, S. H. Park, H. W. Lee, et al., “Carbon nanotube electron emitters with a gated structure using backside exposure processes,” Appl. Phys. Lett.,” vol. 80, no. 21, pp. 1802-1805, 2002.

    [19] J.-M. Bonard, N. Weiss, H. Kind, T. St?ckli, L. Forró, and K. Kern, “Tuning the field emission properties of patterned carbon nanotube films,” Adv. Mater., vol. 13, no. 2, pp. 184-188, 2001.

    [20] S. Fujii, S.-I. Honda, H. Machida, et al., “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, no. 15, pp. 1063-1065, Apr. 2007.

    [21] Y.-K. Li, S.-L. Cheng, X.-H. Liu, et al., “Electrical numerical simulation of field emission for carbon nanotube cathode,” Journal of Liaoning University, no. 2, pp. 168-171, 2006.

    Yong-Qing Guowas born in Gansu, China in 1957. He graduated from Peking University, Beijing in 1979, and received the M.S. degree from the School of Science, Lanzhou University of Technology, Lanzhou in 2008. He is currently a professor of theoretical condensed matter physics with the Institute of Modern Physics, Gansu Normal University for Nationalities. His main areas of research include nano-materials, solid state theory, and quantum field theory.

    Wei-Min Zhengwas born in Gansu, China in 1977. He received the B.S. degree in 2001 and the M.S. degree from the Physics Department, Qinghai Normal University, Xining in 2004. He is now an associate professor with the Institute of Electrical and Electronic Technology, Gansu Normal University for Nationalities. His main areas of research include electrical and electronic technology, and quantum dynamics.

    Xiao-Juan Zhangwas born in Gansu, China in 1979. He received the B.S. degree in 2004 and the M.S. degree from the School of Physics, Northwest Normal University, Lanzhou in 2011. He is now an associate professor with the Institute of Theoretical Physics, Northwest Normal University, Lanzhou. His main areas of research include physics of interacting many particle systems, nano-materials, and quantum dynamics.

    Manuscript received October 2, 2013; revised January 25, 2014.

    Y.-Q. Guo is with the Department of Physics and Hydropower Engineering, Gansu Normal University for Nationalities, Hezuo 747000, China (Corresponding author e-mail: guoyq57@163.com).

    W.-M. Zheng is with the Department of Physics and Hydropower Engineering, Gansu Normal University for Nationalities, Hezuo 747000, China (e-mail: zhengwmlx@sina.cn).

    X.-J. Zhang is with the School of Physics, Northwest Normal University, Lanzhou 730050, China (e-mail: zhangxjtx@163.com).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.016

    桃红色精品国产亚洲av| 中文字幕制服av| 色老头精品视频在线观看| 精品久久久精品久久久| 超碰成人久久| 精品少妇一区二区三区视频日本电影| 午夜福利乱码中文字幕| 久久亚洲真实| 夫妻午夜视频| 国产一区二区 视频在线| 国产精品国产高清国产av | 少妇精品久久久久久久| 巨乳人妻的诱惑在线观看| 免费高清在线观看日韩| 视频在线观看一区二区三区| 午夜激情久久久久久久| 757午夜福利合集在线观看| 天堂俺去俺来也www色官网| 一区福利在线观看| 欧美在线一区亚洲| 精品久久蜜臀av无| 美女国产高潮福利片在线看| 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 国产成人欧美在线观看 | 天天躁夜夜躁狠狠躁躁| 亚洲精品国产精品久久久不卡| 国产黄频视频在线观看| 看免费av毛片| 欧美+亚洲+日韩+国产| 深夜精品福利| 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品古装| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品中文字幕一二三四区 | 欧美变态另类bdsm刘玥| 狠狠狠狠99中文字幕| 久久这里只有精品19| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 视频区图区小说| 国产1区2区3区精品| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| av福利片在线| 色婷婷av一区二区三区视频| 99九九在线精品视频| 精品福利永久在线观看| 一级片'在线观看视频| 亚洲专区字幕在线| 精品视频人人做人人爽| 欧美精品一区二区大全| 国产高清国产精品国产三级| 国产成人欧美| 免费高清在线观看日韩| 亚洲综合色网址| 国产精品久久久久成人av| 日本五十路高清| 国产成人精品在线电影| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 亚洲精品中文字幕在线视频| 久久久水蜜桃国产精品网| 久久精品亚洲av国产电影网| 久久 成人 亚洲| 亚洲 国产 在线| 久久久国产精品麻豆| 99久久国产精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 免费黄频网站在线观看国产| 日韩欧美免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 桃红色精品国产亚洲av| 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久小说| 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕一级| 亚洲欧洲日产国产| 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 69精品国产乱码久久久| 天天躁日日躁夜夜躁夜夜| 丁香六月天网| cao死你这个sao货| 国产成人av激情在线播放| 老司机靠b影院| 国产精品.久久久| 精品一区二区三区四区五区乱码| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产成人一区二区三区免费视频网站| 在线 av 中文字幕| 99re6热这里在线精品视频| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 亚洲 国产 在线| 久久中文字幕人妻熟女| 亚洲avbb在线观看| 女同久久另类99精品国产91| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 97人妻天天添夜夜摸| 欧美午夜高清在线| bbb黄色大片| 亚洲午夜理论影院| 日韩视频在线欧美| 亚洲色图 男人天堂 中文字幕| 精品少妇久久久久久888优播| 亚洲专区中文字幕在线| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 一级片'在线观看视频| www日本在线高清视频| 日韩精品免费视频一区二区三区| 一边摸一边抽搐一进一小说 | 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| a级毛片黄视频| 亚洲成人国产一区在线观看| 精品久久久久久电影网| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区 | xxxhd国产人妻xxx| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 国产成人av激情在线播放| 日韩制服丝袜自拍偷拍| av超薄肉色丝袜交足视频| 精品一区二区三区av网在线观看 | 久久精品成人免费网站| 久久国产亚洲av麻豆专区| 自线自在国产av| 肉色欧美久久久久久久蜜桃| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 男女免费视频国产| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 国产免费福利视频在线观看| 我的亚洲天堂| 91成人精品电影| 人成视频在线观看免费观看| 国产1区2区3区精品| 国产精品久久久av美女十八| 国产av又大| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 高清毛片免费观看视频网站 | 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| 久久精品熟女亚洲av麻豆精品| 亚洲人成电影观看| 亚洲欧美日韩高清在线视频 | 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃| 中国美女看黄片| 精品一区二区三区av网在线观看 | 亚洲天堂av无毛| 精品久久久精品久久久| 亚洲男人天堂网一区| 无人区码免费观看不卡 | 成年人黄色毛片网站| 成人精品一区二区免费| 亚洲精品一二三| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 国产免费现黄频在线看| 高清在线国产一区| 女人高潮潮喷娇喘18禁视频| 18在线观看网站| 午夜福利视频精品| 欧美在线黄色| 麻豆国产av国片精品| 91九色精品人成在线观看| 精品人妻在线不人妻| 久久午夜亚洲精品久久| 老司机亚洲免费影院| 黄片小视频在线播放| 日本撒尿小便嘘嘘汇集6| 国产精品免费视频内射| 精品国产一区二区三区久久久樱花| 国产精品 欧美亚洲| 国产无遮挡羞羞视频在线观看| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 精品亚洲成a人片在线观看| 麻豆av在线久日| 国产1区2区3区精品| 精品视频人人做人人爽| 极品人妻少妇av视频| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密| 久久久国产一区二区| 不卡一级毛片| 母亲3免费完整高清在线观看| 天堂8中文在线网| 97在线人人人人妻| 两性夫妻黄色片| av电影中文网址| 国产91精品成人一区二区三区 | 在线观看免费视频网站a站| 久久香蕉激情| 中文亚洲av片在线观看爽 | 日本撒尿小便嘘嘘汇集6| 亚洲精品成人av观看孕妇| 国产精品.久久久| 夫妻午夜视频| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 亚洲成av片中文字幕在线观看| 十分钟在线观看高清视频www| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 免费在线观看日本一区| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区 | 亚洲av欧美aⅴ国产| 黄色怎么调成土黄色| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区mp4| 国产精品.久久久| 亚洲欧洲日产国产| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 亚洲专区国产一区二区| 高清黄色对白视频在线免费看| 久久青草综合色| 男女无遮挡免费网站观看| 精品熟女少妇八av免费久了| 一区二区三区激情视频| 肉色欧美久久久久久久蜜桃| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| 美国免费a级毛片| 精品亚洲乱码少妇综合久久| 99精国产麻豆久久婷婷| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 狂野欧美激情性xxxx| 黄色 视频免费看| 欧美精品一区二区大全| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| 男女高潮啪啪啪动态图| 99re在线观看精品视频| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 精品久久久久久久毛片微露脸| 国产高清国产精品国产三级| av在线播放免费不卡| bbb黄色大片| 国产精品亚洲一级av第二区| a级毛片在线看网站| 9191精品国产免费久久| 免费在线观看完整版高清| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 91国产中文字幕| 国产精品久久久久久精品电影小说| 老司机影院毛片| 淫妇啪啪啪对白视频| 美女午夜性视频免费| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 99riav亚洲国产免费| 老司机亚洲免费影院| 精品久久久久久久毛片微露脸| 午夜免费鲁丝| 亚洲,欧美精品.| 国产亚洲欧美精品永久| 啦啦啦免费观看视频1| 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| 又大又爽又粗| 国产精品免费视频内射| 狠狠狠狠99中文字幕| 99九九在线精品视频| 亚洲熟妇熟女久久| 丰满迷人的少妇在线观看| h视频一区二区三区| 首页视频小说图片口味搜索| 国产野战对白在线观看| 99热网站在线观看| 国产在线一区二区三区精| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 天天躁日日躁夜夜躁夜夜| 岛国毛片在线播放| 91老司机精品| 91精品三级在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩视频在线欧美| 777米奇影视久久| 男女午夜视频在线观看| 99热网站在线观看| 男女午夜视频在线观看| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 国产色视频综合| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 手机成人av网站| 51午夜福利影视在线观看| 亚洲色图综合在线观看| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区 | 久久精品成人免费网站| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 精品福利观看| 亚洲国产精品一区二区三区在线| 岛国在线观看网站| 天天操日日干夜夜撸| 热99国产精品久久久久久7| 露出奶头的视频| 中文字幕av电影在线播放| 99re6热这里在线精品视频| 最近最新中文字幕大全电影3 | 国产成人欧美在线观看 | 国产免费现黄频在线看| 热re99久久国产66热| 久久久久精品人妻al黑| 一级毛片精品| 露出奶头的视频| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 国产一区二区激情短视频| 高清av免费在线| 欧美日韩黄片免| 天天添夜夜摸| 精品久久久久久电影网| 国产精品免费视频内射| 大香蕉久久网| 十分钟在线观看高清视频www| 黄色视频在线播放观看不卡| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩视频精品一区| 夜夜骑夜夜射夜夜干| 人妻一区二区av| 精品久久蜜臀av无| 国产成人欧美| 99国产精品一区二区蜜桃av | 免费在线观看视频国产中文字幕亚洲| 久久av网站| 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 电影成人av| 丁香六月欧美| 国产精品国产av在线观看| 国产成人免费观看mmmm| 不卡一级毛片| 日韩人妻精品一区2区三区| 午夜91福利影院| 欧美午夜高清在线| 亚洲国产av新网站| 久热爱精品视频在线9| 国产精品av久久久久免费| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 国产成人免费观看mmmm| 每晚都被弄得嗷嗷叫到高潮| 久久免费观看电影| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三| 久久久久视频综合| 国产在线一区二区三区精| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 18在线观看网站| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 又黄又粗又硬又大视频| 久久国产精品大桥未久av| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 黑人欧美特级aaaaaa片| 国产一卡二卡三卡精品| 人妻久久中文字幕网| tube8黄色片| 国产成人av教育| 18禁观看日本| 日韩有码中文字幕| 黑人巨大精品欧美一区二区mp4| av网站免费在线观看视频| 久久国产精品影院| 国产av又大| 久久久久久久国产电影| 极品人妻少妇av视频| 一区二区三区精品91| 久久久精品区二区三区| av福利片在线| 免费黄频网站在线观看国产| 国产激情久久老熟女| 蜜桃在线观看..| 国产一区二区 视频在线| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区久久| 69av精品久久久久久 | 最黄视频免费看| 欧美+亚洲+日韩+国产| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 美女主播在线视频| 丁香六月天网| svipshipincom国产片| 亚洲第一青青草原| 日日摸夜夜添夜夜添小说| 成在线人永久免费视频| 色婷婷久久久亚洲欧美| 国产成人影院久久av| 亚洲精品在线美女| 午夜老司机福利片| 天天影视国产精品| 搡老乐熟女国产| 欧美日本中文国产一区发布| 91九色精品人成在线观看| 久久精品国产亚洲av高清一级| 国产精品一区二区精品视频观看| 久久性视频一级片| 欧美 日韩 精品 国产| 色婷婷av一区二区三区视频| 午夜福利乱码中文字幕| 亚洲欧美日韩高清在线视频 | 一边摸一边抽搐一进一出视频| 久久免费观看电影| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 久久精品国产亚洲av香蕉五月 | 国产日韩欧美视频二区| 国产极品粉嫩免费观看在线| 波多野结衣av一区二区av| 亚洲avbb在线观看| 精品少妇黑人巨大在线播放| 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av | 欧美黄色片欧美黄色片| 午夜日韩欧美国产| av网站免费在线观看视频| 亚洲精品在线美女| 色婷婷av一区二区三区视频| 久热这里只有精品99| 黄色a级毛片大全视频| 性高湖久久久久久久久免费观看| 成人永久免费在线观看视频 | 久久久久久久大尺度免费视频| 亚洲人成伊人成综合网2020| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 黑丝袜美女国产一区| 亚洲色图av天堂| 制服诱惑二区| 日韩成人在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 超碰97精品在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利乱码中文字幕| 啦啦啦在线免费观看视频4| 国产有黄有色有爽视频| 欧美成人午夜精品| 极品人妻少妇av视频| av欧美777| 久久99热这里只频精品6学生| 极品教师在线免费播放| 黑人巨大精品欧美一区二区mp4| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 最近最新中文字幕大全电影3 | 成人免费观看视频高清| 激情在线观看视频在线高清 | 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女 | 亚洲午夜理论影院| 一级,二级,三级黄色视频| 在线亚洲精品国产二区图片欧美| 中文字幕色久视频| 深夜精品福利| 欧美人与性动交α欧美软件| 嫁个100分男人电影在线观看| av线在线观看网站| 多毛熟女@视频| 岛国毛片在线播放| 美女国产高潮福利片在线看| 99精品久久久久人妻精品| 国产又爽黄色视频| 一级毛片女人18水好多| 亚洲av日韩在线播放| 欧美日韩黄片免| 亚洲成国产人片在线观看| 黄片小视频在线播放| 在线观看舔阴道视频| 一级,二级,三级黄色视频| 91字幕亚洲| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 久久久久网色| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美av亚洲av综合av国产av| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 精品国产亚洲在线| 首页视频小说图片口味搜索| 人妻一区二区av| 无限看片的www在线观看| 黄片大片在线免费观看| 丝袜喷水一区| 亚洲欧美日韩高清在线视频 | 天堂俺去俺来也www色官网| 两人在一起打扑克的视频| 久久毛片免费看一区二区三区| 国产1区2区3区精品| 夜夜爽天天搞| 亚洲专区中文字幕在线| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女 | 中文字幕精品免费在线观看视频| 国产成人影院久久av| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品一区二区三区在线| 久久久久久人人人人人| 2018国产大陆天天弄谢| av有码第一页| 一级a爱视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| av视频免费观看在线观看| 午夜福利视频精品| 一边摸一边抽搐一进一小说 | 国产有黄有色有爽视频| 另类精品久久| av网站在线播放免费| 久久久水蜜桃国产精品网| 9热在线视频观看99| 视频区图区小说| 一进一出好大好爽视频| 女人爽到高潮嗷嗷叫在线视频| 免费人妻精品一区二区三区视频| 亚洲成人免费av在线播放| 我的亚洲天堂| 欧美在线一区亚洲| 黑人巨大精品欧美一区二区蜜桃| 欧美大码av| 18禁美女被吸乳视频| 欧美日韩亚洲高清精品| 国产精品免费大片| 午夜福利在线免费观看网站| 亚洲熟女毛片儿| 久久久久视频综合| 黄色视频不卡| 又紧又爽又黄一区二区| 99热网站在线观看| 99国产精品免费福利视频| 国产精品国产高清国产av | 午夜日韩欧美国产| 在线观看免费日韩欧美大片| 日本欧美视频一区| 啦啦啦在线免费观看视频4| 久久精品91无色码中文字幕| 十八禁高潮呻吟视频| 9色porny在线观看| 男女下面插进去视频免费观看| 国产深夜福利视频在线观看| av天堂久久9| 久久精品国产亚洲av高清一级| 亚洲专区中文字幕在线| 搡老乐熟女国产| 亚洲欧美一区二区三区黑人| 大型黄色视频在线免费观看| 最新美女视频免费是黄的| 亚洲av日韩在线播放| 韩国精品一区二区三区| 欧美久久黑人一区二区| 人成视频在线观看免费观看| 日本五十路高清| 精品少妇久久久久久888优播| 一级片免费观看大全| 人人妻,人人澡人人爽秒播| 黄色a级毛片大全视频| 电影成人av| 波多野结衣av一区二区av|