• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detecting Circles Using a Two-Stage Approach

    2014-03-02 01:10:52WenYenWu

    Wen-Yen Wu

    Detecting Circles Using a Two-Stage Approach

    Wen-Yen Wu

    —We propose a two-stage method for detecting circular objects in this paper. In the first stage, curves are divided as linear segments or nonlinear segments. A least square estimator is used to find the estimated centers and radii of the nonlinear segments in the second stage. The found centers and radii are then evaluated to see if there exist circles in the nonlinear segments. Both of the broken and occluded circular objects are evaluated for the proposed method. From the experimental results, it is seen that the proposed method is efficient.

    Index Terms—Circle detection, curve segmentation, error estimation, fitting.

    1. Introduction

    Recognizing industrial parts is an important task in many applications. Industrial parts with a round shape are seen everywhere. They need to be measured and inspected during the manufacturing or assembling processes. Many methods have been proposed to detect circles in the past years. Most algorithms of them are based on Hough transform (HT) or its variants[1]-[5]. The HT based methods usually use a 3D accumulator array to map thex-ycoordinates of the pixels to the corresponding parameter space. A circle with center (xc,yc) and radiusrwill be detected if it is a peak in the parameter space. It is known that for an image containing noise, it suffers from some problems, such as 1) An algorithm for peak-finding in the 3D accumulator is implicit and complex; 2) An inappropriate structure of accumulator fails to detect such a circle; 3) The precision of the center is low; 4) Large storage is required for the 3D accumulator; 5) Much operating time is taken. Therefore, many HT algorithms tend to solve the above problems by using different data structures or identifying strategies. However, the HT algorithms are restricted to the pixel accuracy. It is not enough for a machine vision system that requires sub-pixel accuracy.

    Since the drawbacks of the HT methods, some non-HT algorithms have been proposed. Chen and Lin[6]used the orthogonal circular detector to estimate the parameters of circles. It consists of five 9×9 masks based on a truncated basis system set. The coordinates of edge pixels are determined to sub-pixel accuracy, therefore the estimates of circle parameters are also of sub-pixel accuracy. Wojcik[7]used a graph to represent objects as nodes, and then assigned weights to nodes based on the properties of the objects. A template matching technique is used to recognize the circular objects.

    Some other methods use the geometric properties of circles to detect the circular objects[8]-[11]. Chen and Lee[8]proposed a circular object detection and location technique by using the geometric properties of a circle to find some pixels on a circle and then fit these pixels to obtain the center and radius of the detected circular object. Although it is simple, the calculations of this method are still somewhat complex. Ho and Chen[9]used a global geometric symmetry to develop a circle detector. The candidates of centers are first located. All feature points are grouped into several sub-images. The candidate centers were then evaluated to find the centers. The proposed method is useful but the testing image seems too simple. Wu and Yu[10]used the geometric properties of circles to identify the points on a circle. The possible circular points are then applied to a fitting process to find the parameters of the circle. The method is simple and it is effective. However, it is not robust for the partially occluded circles. Yu and Bajaj[11]proposed a method of detecting circles in electron micrographs. The distance transform and the Voronoi diagram are used for the detection of critical features and the accurate location of particles from the images. This method is useful for detecting circles, but it is complex in developing the diagram and transform.

    In this paper, we propose a two-stage method to detect circles. It is a simple and efficient technique. In the first stage, the curves are divided as linear or nonlinear segments. A least square estimator is then applied to the nonlinear segments individually to find the possible pairs of centers and radii in the second stage. The found center and radius are evaluated to see if they are good enough by their fitting error. The experimental results show that the proposed method can detect broken and partially occluded circles effectively. Further, it is robust for noisy images. The proposed method is presented in Section 2. The experimental results are illustrated in Section 3. Discussion and conclusion are made in the final section.

    2. Circle Detection Method

    The proposed circle detection method consists of two stages. In the first stage, the curve is divided into linear segments and nonlinear segments. We use a dominant pointdetection to find the significant points in a curve. The curve is partitioned into several segments. In the second stage, a circle fitting process is used to find the possible circles for the nonlinear segments. A circle is detected for a nonlinear segment with small fitting errors.

    2.1Curve Segmentation Stage

    Dominant points are considered as representative features for the object contours, because they reserve the features of the digitized curve of the images. They are commonly identified as the points with a local maximum curvature[12].

    The set ofnconsecutive points is denoted as a digital curveC. That is,

    wherenis the number of points,Piis theith point with coordinate (xi,yi), and pointsPi-1andPi+1are neighbors of pointPi(modulon).

    The points on straight line cannot be considered as the dominant points. The linear points can be removed by tracking the chain codes. The break points are the candidates of dominant points. It will reduce the computation time both in determination of the support region and curvature estimation, if only the set of break points are considered as the possible dominant points.

    In this paper, we use the adaptive bending value to determine the region of support for each point on the curve[12]. The bending value is defined as (see Fig. 1).

    Suppose that there arembreak points on the curve. The valuekidenotes the length of regions of support for theith break point.It can be determined by the following procedure:

    Algorithm 1. Determination of region of support

    Step 1. Letk=1.

    Step 2. Ifbi,k+1>bi,kthenki=kand stops.

    Step 3. Increasingkby 1 and go to Step 2.

    The region of support of theith break point,Bi, is the set of points defined by

    Fig. 1. Curvature estimation by the bending value.

    Once the region of support for each break point has been determined, the estimated curvature can be obtained by the following smoothing bending value:

    The next step is to identify the dominant points. It is necessary to suppress those break points with bending values less than a preset threshold ε.In addition, a dominant point should have a local maximum bending value. For two neighboring break points, the point with smaller length region of support is removed. Further, if two consecutive points has the same curvature and the same length of support region, the later one is discard.

    Five conditions of suppressing the break points from the set of candidates of dominant points are summarized as follows.

    Condition A.bi<ε

    Condition B.bi< bj, forj=i-1 ori+1

    Condition C.bi=bi-1andki<ki-1

    Condition D.bi=bi+1andki<ki+1

    Condition E.bi=bi+1andki=ki+1

    The survived break points with the local maximum over its region of support are denoted as the dominant points. Therefore, we can locate of the dominant points by the following rule.

    Rule.If one of the conditions A to E is satisfied, then the break point is removed from the set of candidates of dominant points.

    Overall, the method for dominant point detection is summarized as follows.

    Step 1: Extract the break points from Freeman’s chain codes.

    Step 2: Determine the region of support for each break point by Algorithm 1.

    Step 3: Compute the smoothing bending values for all of the break points by (4).

    Step 4: Identify the dominant points by the rule.

    The curve is partitioned into several segments after performing the above dominant point detection procedure. A rule is followed to classify them into linear segments and nonlinear segments. In this paper, the average distance is used as a criterion to assess the distortions caused by the approximated line segment, as seen in Fig. 2. It is defined as

    wherediis the distance fromPito the approximated line segment.

    Fig. 2. Computation of average distance of a segment.

    The smaller the average distance is, the better linearity is. A segment with a small average distance is considered as a linear segment. Otherwise, it will be considered as a nonlinear segment. The nonlinear segments will be the candidates of circles. They will be further processed to see if there are circles in the next circle fitting stage.

    2.2Circle Fitting Stage

    Once the nonlinear segments have been identified, it needs to determine if they are circular curves or not. The Thomas and Chan’s approach[13]is used to estimate the center (xc,yc) and radiusrfor each individual segment. For a set ofnpixels, (xi,yi) fori=1, 2, …,n, the center and radius can be estimated as

    where

    For each nonlinear segment, a set ofcan be found by using (5) to (7). In Fig. 3, suppose thatbe the estimated point of (xi,yi). We can find the distances between original points and their corresponding estimated points.

    Fig. 3. Original points and estimated points for a circle with a set of center and radius.

    where

    is the distance between the original point and the estimated point.

    If the fitting error of a nonlinear segment is less than a preset value, a circle is detected. Overall the proposed circle detection method can be summarized as follows.

    Step 1: Partition a curve into several segments by using a dominant detection method.

    Step 2: Classify the segments into linear segments and nonlinear segments.

    Step 3: Perform the circle fitting procedure for each nonlinear segment.

    Step 4: Detect the circles for the nonlinear segments with small fitting errors.

    3. Experimental Results

    In order to verify the proposed method, it has been tested on 100 images. Fig. 4 shows one example of the testing images. Each of the synthetic images includes several objects that are the perfect, broken, and occluded circular objects with random radius varying from 3 to 50 pixels. It is seen that the proposed method can detect the circles correctly. All the circles can be detected, and there is no false alarm.

    Further, in order to access the ability of the proposed method under a noisy condition, two additional experiments have been conducted. Repeat the first experiment by adding noise the testing images with a signal to noise ratio (S/N) 20 dB and 40 dB, respectively. The experimental results show that the proposed method can correctly detect the circular objects of the images with noise. Again, there is no false alarm in the testing images.

    Fig. 4. Example of testing image with several types of circular objects.

    Fig. 5. One example of BGA image consists of circles.

    Another testing image is shown in Fig. 5. The image consists of circles in BGA’s 2D projection view. The radius of the circles is about 3 pixels. The proposed method can detect all of the circles in this type of images. The mean of estimated radii is 3.04, and the standard deviation is 0.02. The estimation error is small and it has a small standard deviation. It is seen that the proposed circle detection method can detect the circles effectively.

    4. Conclusions

    A two-stage approach for circular object detection and location is proposed. Instead of transforming pixels into its parameter space by the HT approaches, a curve is first partitioned into linear segments and nonlinear segments. The second stage is a circle fitting process to find possible circles. The proposed method has the advantages of high speed and high accuracy, requiring rather small storage. The experimental results also indicate that the proposed is effective in detecting circular objects.

    [1] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981.

    [2] D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough transformation and radius histogramming,” Image and Vision Computing, vol. 17, no. 1, pp. 15-26, 1999.

    [3] L. Jiang, “Efficient randomized Hough transform for circle detection using novel probability sampling and feature points,” Optik-Int. J. Light Electron Opt., vol. 123, no. 20, pp. 1834-1840, 2012.

    [4] S. C. Pei and J. H. Horng, “Circular arc detection based on Hough transform,” Pattern Recognition Letters, vol. 16, no. 6, pp. 615-625, 1995.

    [5] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler,“Comparative study of Hough transformation methods for circle finding,” Image and Vision Computing, vol. 8, no. 1, pp. 71-77, 1990.

    [6] F. L. Chen and S. W. Lin, “Subpixel estimation of circle parameters using orthogonal circular detector,” Computer Vision and Image Understanding, vol. 78, no. 2, pp. 206-221, 2000.

    [7] Z. M. Wojcik, “Quick recognition of circular objects in a black-white picture,” Pattern Recognition Letters, vol. 8, no. 4, pp. 277-288, 1988.

    [8] L. H. Chen and K. L. Lee, “A new method for circular object detection and location,” Pattern Recognition Letters, vol. 11, no. 10, pp. 691-697, 1990.

    [9] C. T. Ho and L. H. Chen, “A fast ellipse/circle detector using geometric symmetry,” Pattern Recognition, vol. 28, no. 1, pp. 117-124, 1995.

    [10] W.-Y. Wu and W.-B. Yu, “Subpixel detection of circular objects using geometric property,” in Proc. of Int. Conf. on Image, Signal and Vision Computing, Singapore, 2009, pp. 236-240.

    [11] Z. Yu and C. Bajaj, “Detecting circular and rectangular particles based on geometric feature detection in electron micro-graphs,” Journal of Structural Biology, vol. 145, no. 1-2, pp. 168-180, 2004.

    [12] W.-Y. Wu, “Dominant point detection using adaptive bending value,” Image and Vision Computing, vol. 21, no. 6, pp. 517-525, 2003.

    [13] S. M. Thomas and Y. T. Chan, “A simple approach for the estimation of circular arc center and its radii,” Computer Vision, Graphics, and Image Processing, vol. 45, no. 3, pp. 362-370, 1989.

    Wen-Yen Wuwas born in Taiwan in 1966. He received his B.S. degree in mathematical sciences from National Chengchi University, Taipei in 1988, and M.S. and Ph.D. degrees both in industrial engineering from National Tsing Hua University, Hsinchu in 1990 and 1993, respectively. He has been a professor in industrial management with I-Shou University, Kaohsiung since 2001. His research interests include automated inspection, machine vision, fuzzy set theory, pattern recognition, and anthropometric applications. Dr. Wu is a member of the Phi Tau Phi, the Chinese IPPR Society, the Chinese Institute of Industrial Engineers, the Ergonomics Society of Taiwan, the Chinese Fuzzy Systems Association, and the Chinese Institute of Automation Engineers.

    Manuscript received December 11, 2013; revised March 12, 2014. This work was supported by the I-Shou University under Grant No. ISU 102-05-01.

    W.-Y. Wu is with the Department of Industrial Management, I-Shou University, Kaohsing 84001 (e-mail: wywu@isu.edu.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.014

    欧美国产精品va在线观看不卡| 亚洲欧美激情综合另类| 国产亚洲精品久久久久5区| 国产欧美日韩一区二区三| 亚洲三区欧美一区| 久久精品亚洲精品国产色婷小说| 精品久久久久久成人av| 亚洲色图 男人天堂 中文字幕| 亚洲av第一区精品v没综合| 亚洲激情在线av| 老熟妇仑乱视频hdxx| 欧美日韩精品网址| 免费不卡黄色视频| ponron亚洲| av电影中文网址| 国产成人啪精品午夜网站| 久久性视频一级片| 成在线人永久免费视频| 亚洲自拍偷在线| 亚洲熟女毛片儿| 国产精品亚洲美女久久久| 国产片内射在线| 99久久精品国产亚洲精品| 又大又爽又粗| 日本免费a在线| 老汉色av国产亚洲站长工具| 午夜福利一区二区在线看| 成人av一区二区三区在线看| 亚洲激情在线av| 亚洲人成77777在线视频| 欧美在线一区亚洲| 91国产中文字幕| 级片在线观看| 天天一区二区日本电影三级 | 国产亚洲欧美在线一区二区| 丝袜人妻中文字幕| 精品国产一区二区久久| 国产片内射在线| 少妇 在线观看| 自线自在国产av| 国产蜜桃级精品一区二区三区| 国内毛片毛片毛片毛片毛片| 黄片大片在线免费观看| 久久草成人影院| 性欧美人与动物交配| 欧美乱码精品一区二区三区| 纯流量卡能插随身wifi吗| 啦啦啦免费观看视频1| 欧美日韩亚洲综合一区二区三区_| 免费看十八禁软件| 午夜老司机福利片| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 女人被躁到高潮嗷嗷叫费观| 久久国产精品男人的天堂亚洲| 亚洲自拍偷在线| 欧美日韩乱码在线| 一进一出抽搐动态| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 在线观看一区二区三区| 91精品三级在线观看| 亚洲aⅴ乱码一区二区在线播放 | 黄片小视频在线播放| 久久久久久大精品| 成人手机av| 两个人看的免费小视频| 久久国产精品影院| 国产亚洲精品第一综合不卡| 亚洲aⅴ乱码一区二区在线播放 | 久久中文字幕一级| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 真人一进一出gif抽搐免费| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 国产成人精品在线电影| 两性夫妻黄色片| 淫妇啪啪啪对白视频| 超碰成人久久| 亚洲少妇的诱惑av| 亚洲国产精品成人综合色| 一进一出抽搐动态| 可以在线观看毛片的网站| 每晚都被弄得嗷嗷叫到高潮| 久久精品aⅴ一区二区三区四区| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 电影成人av| aaaaa片日本免费| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 国产成年人精品一区二区| 69av精品久久久久久| 国产精品永久免费网站| 老司机深夜福利视频在线观看| 老司机靠b影院| 日韩三级视频一区二区三区| 久久精品成人免费网站| 成人三级做爰电影| 日本三级黄在线观看| 一级黄色大片毛片| 91成人精品电影| 啦啦啦 在线观看视频| 亚洲av美国av| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲美女久久久| 人人妻人人澡欧美一区二区 | 国产激情欧美一区二区| 亚洲中文字幕日韩| 日韩成人在线观看一区二区三区| 中国美女看黄片| 欧美丝袜亚洲另类 | 91精品国产国语对白视频| 美女国产高潮福利片在线看| 在线视频色国产色| 国产xxxxx性猛交| av欧美777| 99国产综合亚洲精品| 一级片免费观看大全| 免费不卡黄色视频| 午夜两性在线视频| 久久天堂一区二区三区四区| 国产私拍福利视频在线观看| 制服诱惑二区| 两个人看的免费小视频| 激情视频va一区二区三区| 欧美日本中文国产一区发布| 高清毛片免费观看视频网站| 女人被狂操c到高潮| 亚洲一区中文字幕在线| 亚洲精品久久成人aⅴ小说| 久久久久久国产a免费观看| 老司机午夜十八禁免费视频| 丁香六月欧美| 久久久久久人人人人人| 丝袜美腿诱惑在线| e午夜精品久久久久久久| 中文字幕久久专区| 亚洲欧美激情在线| 色综合站精品国产| 国产精品秋霞免费鲁丝片| xxx96com| 97人妻精品一区二区三区麻豆 | 国产亚洲精品第一综合不卡| 天天添夜夜摸| www.精华液| 中文字幕精品免费在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 亚洲国产精品久久男人天堂| 777久久人妻少妇嫩草av网站| 国产精品,欧美在线| 亚洲黑人精品在线| 日本三级黄在线观看| 国产一级毛片七仙女欲春2 | 精品免费久久久久久久清纯| av福利片在线| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 日韩视频一区二区在线观看| 亚洲情色 制服丝袜| 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 桃色一区二区三区在线观看| 天天一区二区日本电影三级 | 久久精品国产99精品国产亚洲性色 | 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| 91精品三级在线观看| 在线观看免费日韩欧美大片| 精品久久久久久久久久免费视频| 久久香蕉精品热| 露出奶头的视频| 欧美人与性动交α欧美精品济南到| 久久午夜综合久久蜜桃| 亚洲欧美日韩另类电影网站| 在线观看66精品国产| 丰满的人妻完整版| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 国产精品日韩av在线免费观看 | 精品一区二区三区视频在线观看免费| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 亚洲 国产 在线| 女性生殖器流出的白浆| 一本大道久久a久久精品| 此物有八面人人有两片| 成人手机av| 国产精品亚洲美女久久久| 亚洲国产欧美日韩在线播放| 叶爱在线成人免费视频播放| 亚洲第一欧美日韩一区二区三区| 咕卡用的链子| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| videosex国产| 国产国语露脸激情在线看| 欧美国产日韩亚洲一区| 嫩草影视91久久| av欧美777| 国产伦人伦偷精品视频| 久久久精品国产亚洲av高清涩受| 色老头精品视频在线观看| 又黄又爽又免费观看的视频| 日韩欧美一区视频在线观看| 性少妇av在线| 成人国产综合亚洲| 久久香蕉国产精品| 首页视频小说图片口味搜索| 亚洲专区字幕在线| 亚洲熟妇中文字幕五十中出| 精品国产一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人国产一区在线观看| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清 | 一区在线观看完整版| 97超级碰碰碰精品色视频在线观看| 制服诱惑二区| 在线播放国产精品三级| 又紧又爽又黄一区二区| √禁漫天堂资源中文www| 激情在线观看视频在线高清| 悠悠久久av| 最近最新中文字幕大全免费视频| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色 | 美女扒开内裤让男人捅视频| 在线十欧美十亚洲十日本专区| 天堂动漫精品| 精品一区二区三区四区五区乱码| 黄色毛片三级朝国网站| 色综合亚洲欧美另类图片| 午夜福利视频1000在线观看 | 搡老岳熟女国产| 狠狠狠狠99中文字幕| 性欧美人与动物交配| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 男人的好看免费观看在线视频 | 99riav亚洲国产免费| 亚洲天堂国产精品一区在线| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av高清一级| 精品日产1卡2卡| 在线观看66精品国产| 午夜亚洲福利在线播放| www.精华液| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| 怎么达到女性高潮| 韩国精品一区二区三区| 男人操女人黄网站| 精品久久久精品久久久| 亚洲中文av在线| 性少妇av在线| 久久精品亚洲熟妇少妇任你| 国产精品九九99| 亚洲欧美激情综合另类| 两性午夜刺激爽爽歪歪视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 女人被躁到高潮嗷嗷叫费观| 极品教师在线免费播放| 成人三级做爰电影| 男女午夜视频在线观看| 亚洲人成电影观看| 国产精品98久久久久久宅男小说| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 成人国产综合亚洲| 91精品三级在线观看| 久久久精品国产亚洲av高清涩受| 少妇粗大呻吟视频| 啪啪无遮挡十八禁网站| xxx96com| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 女人被狂操c到高潮| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 国产高清videossex| 久久婷婷成人综合色麻豆| videosex国产| 久久伊人香网站| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| av欧美777| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 村上凉子中文字幕在线| 夜夜爽天天搞| 欧美日韩精品网址| 成人亚洲精品一区在线观看| 一级毛片女人18水好多| 美女免费视频网站| 国产精品av久久久久免费| 精品久久久久久久人妻蜜臀av | 99在线人妻在线中文字幕| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 中亚洲国语对白在线视频| 女性被躁到高潮视频| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 黄网站色视频无遮挡免费观看| 一区二区三区高清视频在线| 国产熟女xx| 少妇熟女aⅴ在线视频| 精品国产一区二区三区四区第35| 免费在线观看完整版高清| 亚洲精品久久国产高清桃花| 亚洲天堂国产精品一区在线| 亚洲午夜精品一区,二区,三区| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 9色porny在线观看| 老司机靠b影院| 亚洲美女黄片视频| 亚洲中文av在线| 精品欧美国产一区二区三| 精品国产一区二区久久| 精品欧美国产一区二区三| 91国产中文字幕| 操美女的视频在线观看| 电影成人av| 高清毛片免费观看视频网站| 99久久国产精品久久久| 亚洲免费av在线视频| 亚洲avbb在线观看| 国产成人av教育| 亚洲一区高清亚洲精品| 国产国语露脸激情在线看| 69精品国产乱码久久久| 精品无人区乱码1区二区| 免费在线观看黄色视频的| 国产精品亚洲av一区麻豆| www.精华液| 欧美黄色淫秽网站| 免费久久久久久久精品成人欧美视频| 午夜福利高清视频| 亚洲成人国产一区在线观看| 一级片免费观看大全| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av片天天在线观看| 亚洲 国产 在线| 黄色 视频免费看| 女人高潮潮喷娇喘18禁视频| 女生性感内裤真人,穿戴方法视频| av中文乱码字幕在线| 一a级毛片在线观看| 无遮挡黄片免费观看| 午夜福利,免费看| 极品教师在线免费播放| 在线观看午夜福利视频| 美女 人体艺术 gogo| 法律面前人人平等表现在哪些方面| 可以在线观看毛片的网站| 欧美激情久久久久久爽电影 | 亚洲视频免费观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久这里只有精品19| 欧美丝袜亚洲另类 | 成人国产一区最新在线观看| 人人妻,人人澡人人爽秒播| 亚洲片人在线观看| 亚洲精品国产精品久久久不卡| 亚洲精品中文字幕一二三四区| 青草久久国产| 亚洲av熟女| 如日韩欧美国产精品一区二区三区| 夜夜夜夜夜久久久久| 成人欧美大片| 老司机靠b影院| 色综合站精品国产| 国产精品影院久久| 无遮挡黄片免费观看| 国产不卡一卡二| 少妇裸体淫交视频免费看高清 | 99精品久久久久人妻精品| 超碰成人久久| 90打野战视频偷拍视频| 9色porny在线观看| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 露出奶头的视频| 久久影院123| 美女免费视频网站| 国产亚洲精品久久久久5区| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 免费在线观看黄色视频的| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 国内毛片毛片毛片毛片毛片| 中文字幕av电影在线播放| 美女扒开内裤让男人捅视频| 熟妇人妻久久中文字幕3abv| 精品久久久久久久人妻蜜臀av | 精品久久久久久成人av| 久久人妻av系列| 国产一级毛片七仙女欲春2 | 麻豆久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 久久人妻熟女aⅴ| 操出白浆在线播放| 黑人操中国人逼视频| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 久久伊人香网站| 黑人巨大精品欧美一区二区mp4| 国产一区二区在线av高清观看| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 午夜福利高清视频| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 夜夜躁狠狠躁天天躁| 精品日产1卡2卡| 不卡av一区二区三区| 亚洲成人久久性| 国产精品免费一区二区三区在线| 亚洲中文日韩欧美视频| 熟女少妇亚洲综合色aaa.| 亚洲片人在线观看| 如日韩欧美国产精品一区二区三区| 熟妇人妻久久中文字幕3abv| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 免费av毛片视频| 美女免费视频网站| 大陆偷拍与自拍| 非洲黑人性xxxx精品又粗又长| 99精品在免费线老司机午夜| 久久久久久久久免费视频了| 亚洲少妇的诱惑av| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 中文字幕人妻熟女乱码| 麻豆久久精品国产亚洲av| 如日韩欧美国产精品一区二区三区| 免费无遮挡裸体视频| 91成年电影在线观看| 99国产精品99久久久久| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| 色综合站精品国产| 黄色毛片三级朝国网站| or卡值多少钱| 热re99久久国产66热| 亚洲熟妇中文字幕五十中出| 中文字幕最新亚洲高清| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 两个人看的免费小视频| av欧美777| 亚洲欧美精品综合久久99| 国产精品香港三级国产av潘金莲| 老司机福利观看| 精品人妻1区二区| 欧美丝袜亚洲另类 | 国产麻豆成人av免费视频| 夜夜躁狠狠躁天天躁| 亚洲国产精品999在线| 亚洲精品美女久久av网站| 性欧美人与动物交配| 久久国产精品影院| 亚洲男人天堂网一区| av福利片在线| 男男h啪啪无遮挡| 欧美黑人精品巨大| 精品国产一区二区久久| 成年版毛片免费区| 涩涩av久久男人的天堂| 桃红色精品国产亚洲av| 久久久久久久久中文| 麻豆久久精品国产亚洲av| 日韩视频一区二区在线观看| 亚洲国产精品久久男人天堂| 欧美激情久久久久久爽电影 | 久久性视频一级片| 国产激情欧美一区二区| 欧美日本亚洲视频在线播放| 免费高清视频大片| 久久中文字幕一级| 成熟少妇高潮喷水视频| 侵犯人妻中文字幕一二三四区| av天堂在线播放| 亚洲av日韩精品久久久久久密| 亚洲人成77777在线视频| 此物有八面人人有两片| 男女床上黄色一级片免费看| 亚洲成av人片免费观看| 精品乱码久久久久久99久播| 亚洲五月天丁香| 国产精品 欧美亚洲| 丁香欧美五月| www.精华液| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| netflix在线观看网站| 99国产精品免费福利视频| 亚洲精品av麻豆狂野| 人成视频在线观看免费观看| 午夜激情av网站| 在线天堂中文资源库| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 成年版毛片免费区| 久久亚洲真实| 国产免费男女视频| 久久性视频一级片| 悠悠久久av| 婷婷丁香在线五月| 免费看a级黄色片| 99久久精品国产亚洲精品| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 色在线成人网| 国产av又大| 午夜视频精品福利| 很黄的视频免费| 亚洲av成人不卡在线观看播放网| 99香蕉大伊视频| 自线自在国产av| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线| 亚洲国产欧美网| 精品免费久久久久久久清纯| 9191精品国产免费久久| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 欧美丝袜亚洲另类 | 国产成年人精品一区二区| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 91麻豆精品激情在线观看国产| 久久这里只有精品19| 中文亚洲av片在线观看爽| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 欧美最黄视频在线播放免费| 国产高清激情床上av| 日韩一卡2卡3卡4卡2021年| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 变态另类成人亚洲欧美熟女 | 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 禁无遮挡网站| 精品电影一区二区在线| a在线观看视频网站| 亚洲国产精品合色在线| 色精品久久人妻99蜜桃| 亚洲成人精品中文字幕电影| 一本综合久久免费| 国产亚洲精品久久久久5区| 老司机在亚洲福利影院| 成人手机av| 亚洲一区二区三区色噜噜| 99久久国产精品久久久| 91成人精品电影| 可以在线观看的亚洲视频| 午夜福利一区二区在线看| 久久人妻av系列| 少妇被粗大的猛进出69影院| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久人妻精品电影| 自线自在国产av| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 热re99久久国产66热| 成年人黄色毛片网站| 国产欧美日韩一区二区三区在线| 日韩欧美国产在线观看| 国产精品二区激情视频| 淫妇啪啪啪对白视频| 淫秽高清视频在线观看| 久久精品亚洲精品国产色婷小说| 精品欧美国产一区二区三|