• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Evaluation of Mobility Anchor Point with Guard Load Reservation in Hierarchical Mobile IPv6

    2014-03-02 01:10:48YungChungWangLiHsinChiangandHungPinLin

    Yung-Chung Wang, Li-Hsin Chiang, and Hung-Pin Lin

    Performance Evaluation of Mobility Anchor Point with Guard Load Reservation in Hierarchical Mobile IPv6

    Yung-Chung Wang, Li-Hsin Chiang, and Hung-Pin Lin

    —Hierarchical mobile IPv6 (HMIPv6) introduces a mobility anchor point to reduce the signaling overhead and handoff latency. In this paper, we apply the matrix-analytical approach to explore the performance measures of the ongoing mobile nodes (MNs) drop and new MNs block probabilities of mobility anchor point with a guard bandwidth reservation scheme. We apply the Markovian arrival process (MAP) to model ongoing MNs and new MNs. Five related performance measures are derived, including the long-term new MN block and ongoing MN drop probabilities, and the three short-term measures of average length of a block period and a non-block period, as well as the conditional ongoing MN drop probability during a block period. These performance measures greatly assist the guard bandwidth reservation mechanism in determining a proper threshold guard bandwidth. The results presented in this paper can provide guidelines for designing adaptive algorithms to adjust the threshold in the guard bandwidth reservation scheme.

    Index Terms—Hierarchical mobile IPv6, Markovian arrival process, matrix-analytic method, mobility anchor point.

    1. Introduction

    With the increasing number of wireless network infrastructure deployment and the popularity of portable computing devices such as the smart phone, tablet PC, and notebook computer, more and more Internet users are experiencing ubiquitous mobility using both these computing devices and the wireless networks to access the Internet. According to this growth, the applications in the wired Internet, such as web browsing, voice over IP (VoIP), and teleconference, are moving gradually toward the mobile wireless environment. Therefore, it is necessary to develop the mobility support protocol in Internet. Mobile IPv6 (MIPv6)[1]is the mobility support protocol in Internet. In MIPv6, the home agent (HA) not only handles binding update (BU) requests pertaining to intra-domain handoffs, but also performs packet encapsulation originated from the mobile nodes (MNs), which would cause the traffic to place a burden on the entire network. To reduce above problem in MIPv6 when MNs perform frequent handoffs, hierarchical mobile IPv6 (HMIPv6)[2]introduces the concept of a mobility anchor point. The mobility anchor point handles BU requests pertaining to intra-domain handoffs in a localized manner. Therefore, the mobility anchor point not only handles binding updates, but also performs packet encapsulation originated from the MNs. As the number of MNs serviced by a mobility anchor point increases, the mobility anchor point suffers from traffic overload, which results in providing lower quality of service for applications. Therefore, the performance evaluation of traffic load control at the mobility anchor point is one of the most crucial issues.

    Handoff basically involves the change of resources from one mobility anchor point to an adjacent mobility anchor point. It is well known that if a new MN is blocked, it is not as disastrous as a handoff MN being dropped. Therefore, it is important to provide a higher priority to handoff MNs so that ongoing MNs can be maintained. One way of assigning the priority to handoff requests is to assign the guard bandwidth to be used exclusively for handoff MNs from among the resources in a mobility anchor point. This guard bandwidth reservation handoff scheme has a tunable threshold for guard bandwidth configuration. With a selected threshold, a block period is defined as the interval of time during which the MNs in a mobility anchor point is at or above the threshold value, and a non-block period is the complementary interval of time. The available capacities at or below the threshold is shared by new MNs and handoff MNs. Arriving new MNs are blocked by the control scheme during a block period. Handoff MNs are dropped only when the capacity is full.

    Choosing an appropriate threshold for the guard bandwidth for handoff MNs is the most significant design issue for HMIPv6. If a relatively low threshold is chosen, new MNs will be excessively blocked, causing a low utilization of the capacity in a mobility anchor point. On the other hand, if a fairly high threshold is chosen, handoff MNs will be dropped more than expected because of theoccupancy of the capacity by new MNs. This phenomenon prevents the system from being able to meet the required drop probability for handoff MNs. Hence, the threshold setting is a trade-off between the system utilization and the guaranteed drop probability for handoff MNs. The performance analysis of a threshold policy is therefore necessary and desirable in order to assist the system in choosing a proper threshold.

    The guard load reservation handoff scheme has increasingly been receiving attention in HMIPv6 design due to its simplicity in the implementation. Several performance evaluations have been conducted by examining the new MN block and handoff MN drop behavior of a mobility anchor point with a guard load reservation scheme[3]. This paper considers only the Poisson new and handoff MN arrival process case. However, there is significant evidence that the new and handoff MN traffic cannot always be modeled as a Poisson process. In this paper, we use a Markovian arrival process (MAP) to model handoff MN arrival processes due to the following conditions: 1) it is simple but good enough to fit field data, and 2) the resulting queueing system model is tractable. A main advantage of using Markovian models for traffic description of queues is that there are efficient numerical analysis methods, commonly referred to as matrix analytic methods, for the evaluation of a Markovian queue. However, although the MAP requires the estimation of a large number of parameters to describe the network traffic[4], much research has focused on parameter estimation and applications of MAP to model network traffic. Buchholz[5]presented an algorithm to fit the parameters of MAP according to measured data. In [6], Heyman and Lucantoni provided the evidence that the Markov-modulated Poisson process (MMPP) which is a special case of MAP is a good model for Internet traffic at the packet/byte level. In [7], Kanget al. provided the evidence that MAP yielded a very good estimation of the cell loss ratio for common super positions of voice and VBR video sources. In [8], Salvadoret al. proposed a parameter fitting procedure using superposed two-state MMPP that leads to accurate estimates of queueing behavior for network traffic exhibiting long-range dependent behavior. Telek[9]derived the minimal presentation of MAP and developed effective fitting models. Based on those studies, we can state that the MAP process is able to model a wide variety of new and handoff MN arrival.

    In addition to the evaluation of the new MN block and handoff MN drop probabilities, we examine the conditional handoff MN drop during the block period. The threshold used to determine the block period splits the state space in two, allowing the use of two hypothesized Markov chains to describe the alternating renewal process. The distributions of various absorbing times in the two hypothesized Markov chains are derived to compute the average durations of the block period and the conditional handoff MN drop probability during a block period. These performance measures will significantly assist the guard bandwidth reservation handoff mechanism for determining a proper threshold. The overall analysis in this paper is based on the matrix-analytic approach[10],[11]. It is simple and efficient to compute the numerical results by any efficient mathematical tool.

    This paper is organized as follows. In Section 2, the HMIPv6 network is briefly introduced. In Section 3, the MAP as the new and handoff MN model is introduced in brief. In Section 4, the new MN block probability and handoff MN drop probability are analyzed. Numerical results are computed and discussed in Section5 to reveal the computational tractability of our analysis and to gain insight into the design of a guard load reservation handoff scheme in HMIPv6 networks. Some concluding remarks are given in Section 6.

    2. Hierarchical Mobile IPv6

    Hierarchical mobile IPv6 (HMIPv6) is a localized mobility management proposal that aims to reduce the signaling load due to user mobility. The mobility management inside the local domain is handled by a mobility anchor point. Mobility between separate mobility anchor point domains is handled by MIPv6.

    The mobility anchor point basically acts as a local home agent. When a mobile node enters into a new mobility anchor point domain, it registers with it obtaining a regional care-of address (RCoA). The RCoA is the address that the mobile node will use to inform its home agent and correspondent nodes about its current location. Then, the packets will be sent to and intercepted by the mobility anchor point, acting as a proxy, and routed inside the domain to the on-link care-of address (LCoA). Once the MN has successfully registered with the mobility anchor point, a bi-directional tunnel is established between them. All packets sent by the MN are tunneled to the mobility anchor point. All packets addressed to the MN’s RCoA are intercepted by the mobility anchor point and tunneled to the MN’s LCoA. If the MN changes its current address within the same mobility anchor point domain, it only needs to register the new LCoA with the mobility anchor point. The RCoA does not change as long as the MN moves within the same mobility anchor point domain. This makes the MN’s mobility transparent to the CNs.

    In this paper, we focus on the guard load reservation at the mobility anchor point and consider that there is only one mobility anchor point available to each MN. The mobility anchor point capacityCis represented by the maximum number of MNs that it can service. First, an MN sends a local BU message to the mobility anchor point. If the BU message is accepted by the mobility anchor point, the MN will receive a successful back message and then send a BU message with its RCoA to the HA. On the other hand, the MN’s BU message is rejected by the mobility anchor point, the rejected MN registers its LCoA with the HA and then the packets destined for the MN will bypassthe mobility anchor point. Regarding route optimization, if the local BU message is accepted, the MN’s RCoA is notified to the CNs. Otherwise, the MN’s LCoA is sent to the CNs.

    When a BU message arrives at a mobility anchor point, the mobility anchor point triggers the threshold-based admission control algorithm. LetCthbe a pre-defined threshold. When the number of MNs serviced by the mobility anchor point is less thanCth, both new MNs and ongoing MNs are admitted. On the other hand, to give a higher priority to ongoing MNs, when the current mobility anchor point load is equal to or greater thanCth, only ongoing MNs are accepted. This threshold-based admission control algorithm reduces the ongoing MN dropping probability at the cost of increasing the new MN blocking probability.

    3. Traffic Model

    Many analytically tractable models have been proposed to describe new MNs and handoff MN arrivals in the literature. In this paper, the arrival process of new and handoff MNs is modeled by a MAP. A brief exposition of MAP is given in the rest of this section.

    The MAP is a generalization of the Poisson arrival process by allowing for non-exponential inter-arrival times, while still preserving an underlying Markovian structure[12]. It is a marked point process with arrivals generated at the transition epochs of a particular type ofm-state Markov renewal process[13]. A MAP can be more easily described by a two-dimensional continuous-time Markov chain {(N(t),J(t)),t≥0} on the state space {(n,j)|n≥0, 1≤j≤m}, with a infinitesimal generatorQMAP, having the structure:

    whereN(t) stands for a counting variable,J(t) represents an auxiliary phase variable, andDkarem×mmatrices, called parameter matrices. The Markov chain then defines an arrival process where the transition from state (n,i) to state (n+1,j), n≥0, and 1≤,i j≤m, corresponds to an arrival and a phase change from phaseito phasej. The matrixD1with elements (D1)i,j, 1≤,i j≤m, governs the state transitions which correspond to an arrival, and the matrixD0governs the state transitions which correspond to no arrivals. The sum of both parameter matrices is

    which is the infinitesimal generator of the underlying Markovian structure {J(t),t>0} with respect to the MAP. We assume that the underlying Markovian structure is stable and irreducible. Thus the Markov chain {J(t),t> 0} has a unique stationary probability vector π, and

    whereeis assumed in this paper to be an all-1 column vector with a compatible dimension. We also assume thatD0is nonsingular such that the sojourn time at any state of the state space {(n,j)|n≥ 0, 1≤j≤m} is finite with probability 1, for guaranteeing that the process never terminates. The fundamental arrival rate λ of this MAP is defined as

    In this paper, we propose to model both new and handoff MN by a MAP. We assume that the new MN is characterized by a sequenceof parameter matrices and the handoff MN by a sequenceof parameter matrices.aremn×mnandmh×mhmatrices, respectively. The sequenceof the defining parameter matrices for the superposed new and handoff MN can be obtained by

    where ⊕ is the Kronecker sum[14],[15]. Note that eachDihas the dimensions of (mnmh)×(mnmh)[13].

    4. Performance Analysis

    The new arrival MN will be modeled by using a MAP with a sequenceand the handoff MN will be modeled by using a MAP with a sequenceas described in Section 3. We assume that the ongoing MN (new or handoff) connection times are exponentially distributed with parameter μc. The time spent in a given mobility anchor point, before handing off, is also exponentially distributed with parameter μd. Note that new MNs which find allCthcapacity will leave the system and handoff the MNs which find allCcapacity busy will leave the system.

    4.1 Queueing Model

    Consider the embedded continuous-time Markov chain {(L(t),J(t)),t≥0} of the queuing system on the twodimensional state space ({0, 1, …,C}×{(1, 1), (1, 2), …, (mn,mh)}), whereL(t), andJ(t) denote the capacity occupancy, and the phase of the underlying MAP of superposition of handoff MN and new MN at timet, respectively. For convenience, the queuing system is said to be at a leveljif its capacity occupancy is equal toj. The embedded Markov chain now has an infinitesimal generatorQof the following block form:

    4.2 New MN Block and Handoff MN Drop

    Probabilities

    Letx=(x0,x1, …,xC) be the stationary probability vector of the Markov chainQ, i.e.,

    Consequently, the new MN blocking probability, denoted bycan be calculated by

    Consequently, the handoff MN dropping probability, denoted bycan be calculated by

    4.3 Distribution of Block and Non-Block Periods

    The queueing system passes through alternating block and non-block periods. The patterns of block and non-block periods are then studied by decomposing the state spaceSinto two subsets, i.e.,according to the block thresholdCth. With this partition of the state space, the infinitesimal generatorQof the embedded Markov chain of the queuing system can be partitioned as

    where

    where matricesTnb,Unb,b,Tb, andDb,nbare transition rate sub-matrices governing transitions fromSnbinto itself, fromSnbintoSb, fromSbinto itself, and fromSbintoSnb, respectively. The sojourn time in each non-block period and block period is characterized by a transient Markov chain, with respect toTnbandTbfor transitions onSnbandSb.

    Next, non-block and block periods are characterized by deriving the steady state probabilities for the initial state of each transient Markov chain, as denoted by vector αnbfor non-block periodes and vector αbfor block periods, defined byLetLnbandLbbe the lengths of non-block and block periods, respectively. Obviously,LnbandLbare the life times of the two transient Markov chains, with respect toTnbandTbfor transitions onSnbandSb. Thus,fnb(t) andfb(t) represents the probability density functions of all absorbing times of the transient Markov chains, with respect toTnbandTbfor transitions onSnbandSb. According to the transient Markov chain theory, the Laplace transforms offnbandfbare

    The average lengths of non-block and block periods are

    4.4 Handoff MN Drop Probability during a Block Period

    To investigate the drop behavior during a block period, the sub-matrixTbis written as

    where

    where the matrixTb(h)(0) comprises the probabilities that make state transitions withinSbwithout any handoff MN drops. However, the matrixTb(h)(1), comprises the probabilities that make state transitions withinSbwith a handoff MN drop.

    Notably, the behavior of the queuing system during a block period can be described by the transient Markov chain,Tbfor transitions onSb. For a state (i, (jn,jh)) inSb, letbe the probability that the state of transient Markov process enters (i, (jn,jh)) with a total oflhandoff MNs dropped during [0,t). Letbe an |Sb|-vector whose (i, (jn,jh))-th element isThe vectort>0,l≥0, can be obtained by the differential equation:

    Now the average total number of MN drops during a block period, denotedcan be calculated as

    where E[Lb] is the average length of a block period in (11) and()h

    λ is the fundamental arrival rate of the handoff MN and can be calculated by (3).

    5. Numerical Results and Discussion

    In this section, we will investigate the numerical results under the MAP new MN and handoff MN. In our experiments, the numerical values of the MAP parameters of the handoff MN are

    and the numerical values of the MAP parameters of the new MN are

    [1] D. Johnson, C. Perkins, and J. Arkko. (June 2003). Mobility support inIPv6. IETF RFC 3775. [Online]. Available: http://www.ietf.org/rfc/rfc3775.txt

    [2] H. Soliman, C. Castelluccia, K. E. Malki, and L. Bellier. (August 2005). Hierarchical mobile IPv6 mobility management (HMIPv6). IETFRFC 4140. [Online]. Available: http://tools.ietf.org/html/rfc4140

    [3] S. Pack, T. Kwon, and Y. Choi, “A mobility-based load control scheme in hierarchical mobile IPv6 networks,”Wireless Networks, vol. 16, no. 2, pp. 545-558, 2010.

    [4] M. Iftikhar, T. Singh, B. Landfeldt, and M. Caglar,“Multiclass G/M/1queueing system with self-similar input and non-preemptive priority,” Computer Communications, vol. 31, no. 5, pp. 1012-1027, 2008.

    [5] P. Buchholz, “An EM-algorithm for MAP fitting from real traffic data,” Computer Performance Evaluation Modelling Techniques and Tools, LNCS, vol. 2794, pp. 218-236, 2003.

    [6] D. P. Heyman and D. Lucantoni, “Modeling multiple IP traffic streams with rate limits,” IEEE/ACM Trans. on Networking, vol. 11, no. 6, pp. 948-958, 2003.

    [7] S. H. Kang, Y. H. Kim, D. K. Sung, and B. D. Choi, “An application of Markovian arrival process (MAP) to modeling superposed ATM cell streams,” IEEE Trans. on Commun., vol. 50, no. 4, pp. 633-642, 2002.

    [8] P. Salvador, R. Valadas, and A. Pacheco, “Multiscale fitting procedure using Markov modulated Poisson processes,”Telecommunication Systems, vol. 23, no.1-2, pp. 123-148, 2003.

    [9] M. Telek and G. Horvath, “A minimal representation of Markov arrival processes and a moments matching method,”Performance Evaluation, vol. 64, pp. 1153-1168, Oct. 2007.

    [10] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models—An Algorithmic Approach, London: The Johns Hopkins University Press, 1981.

    [11] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, New York: Marcel Dekker, 1989.

    [12] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process,” Commun. Statist. Stochastic Models, vol. 7, no. 1, pp. 1-46, 1991.

    [13] M. F. Neuts, “Models based on the Markovian arrival process,” IEICE Trans. Commun., vol. E75-B, no. 12, pp. 1255-1265, 1992.

    [14] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York: McGraw-Hill, 1970.

    [15] A. Graham, Kronecker Products and Matrix Calculus with Applications, New York: Horwood Halsted Press, 1981.

    [16] M. Schwartz, Mobile Wireless Communications. Cambridge: Cambridge University Press, 2005.

    Yung-Chung Wangwas born in Taiwan in 1963. He received the M.S. and Ph.D. degrees in electrical engineering from National Tsing Hua University, Hsinchu in 1990 and 2000, respectively. From 1990 to 2001, he was a research engineer with the Chung-Hwa Tele-Communication Lab.,

    where he was engaged in research on the development of ATM switching systems and IP switch router systems. Since 2001, he has been with the Department of Electrical Engineering, National Taipei University of Technology (TaipeiTech), Taipei, where he is a full professor. His research interests include wireless networks, optical networks, software defined networks, and queuing theory and performance evaluation of communication networks.

    Li-Hsin Chiangwas born in Taiwan in 1965. He received the M.S. degree in computer science and information engineering from TaipeiTech, Taipei in 2004. He is currently pursuing the Ph.D. degree with the Department of Electrical Engineering, TaipeiTech. His research interests include computer network, admission control, and Internet applications.

    Hung-Pin Linreceived his M.S. degree in electrical engineering from TaipeiTech in 2008. He is currently a Ph.D. student with the Department of Electrical Engineering, TaipeiTech. His research interests include media streaming, web, and mobile application architectures.

    Manuscript received December 12, 2013; revised March 10, 2014.

    Y.-C. Wang is with the Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608 (Corresponding author e-mail: ycwang@ntut.edu.tw).

    L.-H. Chiang and H.-P. Lin are with the Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608 (e-mail: romeo@ntut.edu.tw; t7319014@ntut.edu.tw).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.012

    国内精品久久久久精免费| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 亚洲性久久影院| 中文字幕制服av| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩无卡精品| 亚洲av中文字字幕乱码综合| 色播亚洲综合网| 波野结衣二区三区在线| 成人av在线播放网站| 婷婷色综合大香蕉| 国内精品久久久久精免费| videossex国产| 国产精品免费一区二区三区在线| 国产精品国产高清国产av| 久久韩国三级中文字幕| 国产精品福利在线免费观看| 久久久a久久爽久久v久久| 欧美色视频一区免费| 中文精品一卡2卡3卡4更新| 变态另类成人亚洲欧美熟女| av在线老鸭窝| 欧美zozozo另类| 国产av在哪里看| 99热精品在线国产| 97热精品久久久久久| 1000部很黄的大片| 免费观看精品视频网站| 青青草视频在线视频观看| 国产三级中文精品| 精品久久久久久久久久免费视频| 好男人在线观看高清免费视频| 国产成人精品婷婷| 中文亚洲av片在线观看爽| 99热这里只有精品一区| 噜噜噜噜噜久久久久久91| 亚洲成人久久性| av在线老鸭窝| 六月丁香七月| 亚洲真实伦在线观看| 午夜精品一区二区三区免费看| 男女边吃奶边做爰视频| 国产极品精品免费视频能看的| 精品无人区乱码1区二区| 免费看美女性在线毛片视频| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩东京热| 别揉我奶头 嗯啊视频| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 久久久久久久久久成人| 给我免费播放毛片高清在线观看| 99热只有精品国产| h日本视频在线播放| 精品日产1卡2卡| 亚洲av第一区精品v没综合| 久久精品影院6| 久久人人精品亚洲av| 看十八女毛片水多多多| 亚洲在线观看片| 国产真实乱freesex| 99在线人妻在线中文字幕| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产鲁丝片午夜精品| 一边亲一边摸免费视频| 在线a可以看的网站| 婷婷色av中文字幕| 毛片女人毛片| 春色校园在线视频观看| 精品一区二区三区视频在线| 最后的刺客免费高清国语| 国产av不卡久久| 精品国产三级普通话版| 夫妻性生交免费视频一级片| 赤兔流量卡办理| 国产91av在线免费观看| 国产精品美女特级片免费视频播放器| 国产精品一及| 国产白丝娇喘喷水9色精品| 久久精品国产鲁丝片午夜精品| 午夜老司机福利剧场| 美女国产视频在线观看| 亚洲电影在线观看av| 午夜久久久久精精品| 国产亚洲欧美98| 久久九九热精品免费| 九九热线精品视视频播放| 男女做爰动态图高潮gif福利片| av在线蜜桃| 国产伦一二天堂av在线观看| 久久精品久久久久久久性| av视频在线观看入口| 我要搜黄色片| 免费观看人在逋| 欧美性感艳星| av免费在线看不卡| 成人毛片a级毛片在线播放| 欧美+日韩+精品| 国产又黄又爽又无遮挡在线| 禁无遮挡网站| 在线观看美女被高潮喷水网站| 26uuu在线亚洲综合色| 人妻夜夜爽99麻豆av| 国语自产精品视频在线第100页| 亚洲无线观看免费| 啦啦啦观看免费观看视频高清| 中出人妻视频一区二区| 亚洲精品国产av成人精品| 哪里可以看免费的av片| 午夜福利在线在线| 国产精品不卡视频一区二区| 欧美极品一区二区三区四区| 嫩草影院入口| av又黄又爽大尺度在线免费看 | 哪个播放器可以免费观看大片| .国产精品久久| 九草在线视频观看| 在线a可以看的网站| 欧美精品一区二区大全| 五月伊人婷婷丁香| av免费在线看不卡| 亚洲七黄色美女视频| 毛片一级片免费看久久久久| 日本一二三区视频观看| 色播亚洲综合网| 国产黄色小视频在线观看| a级毛片免费高清观看在线播放| 国产成人精品婷婷| 草草在线视频免费看| 午夜福利在线在线| 大型黄色视频在线免费观看| 天堂中文最新版在线下载 | 六月丁香七月| 国产黄片视频在线免费观看| 成人特级av手机在线观看| 国产一区二区激情短视频| 丰满的人妻完整版| 美女大奶头视频| 波多野结衣高清无吗| 一进一出抽搐gif免费好疼| 欧美三级亚洲精品| 国产亚洲精品久久久久久毛片| 欧美激情国产日韩精品一区| 免费一级毛片在线播放高清视频| 天堂影院成人在线观看| 亚洲美女搞黄在线观看| 日韩大尺度精品在线看网址| 又黄又爽又刺激的免费视频.| 国产伦理片在线播放av一区 | 不卡一级毛片| 久久欧美精品欧美久久欧美| 久久精品久久久久久噜噜老黄 | 在线观看一区二区三区| 国产成人福利小说| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 99久国产av精品| 男女那种视频在线观看| 午夜免费男女啪啪视频观看| 国产免费男女视频| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 国产三级中文精品| eeuss影院久久| 男女视频在线观看网站免费| 两个人视频免费观看高清| 色播亚洲综合网| 给我免费播放毛片高清在线观看| 久久人人爽人人片av| 中文字幕制服av| 日韩视频在线欧美| 久久久久免费精品人妻一区二区| 三级经典国产精品| 国产精品一区二区性色av| 免费观看a级毛片全部| 亚洲av.av天堂| 成年女人永久免费观看视频| а√天堂www在线а√下载| 美女内射精品一级片tv| 久久久久网色| 美女高潮的动态| 亚洲在线自拍视频| 国产精品人妻久久久久久| 在线天堂最新版资源| 免费看a级黄色片| 国产精品人妻久久久影院| 青春草亚洲视频在线观看| 亚洲欧美日韩高清专用| 精品人妻熟女av久视频| 中文字幕免费在线视频6| 国产成人a区在线观看| 黄色一级大片看看| 91久久精品电影网| 男女做爰动态图高潮gif福利片| 日本av手机在线免费观看| 久久午夜福利片| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看| 国内精品美女久久久久久| eeuss影院久久| 综合色丁香网| 久久午夜亚洲精品久久| 高清在线视频一区二区三区 | av卡一久久| 一进一出抽搐动态| 国产综合懂色| 亚洲国产精品合色在线| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 91在线精品国自产拍蜜月| 乱系列少妇在线播放| 尤物成人国产欧美一区二区三区| 中文字幕久久专区| 伦理电影大哥的女人| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 一本久久中文字幕| 天堂网av新在线| 中文资源天堂在线| 精品一区二区三区人妻视频| 午夜福利在线在线| 国产成人91sexporn| 99九九线精品视频在线观看视频| 日韩亚洲欧美综合| 成人二区视频| 国内精品久久久久精免费| 日韩,欧美,国产一区二区三区 | 国产午夜精品论理片| 国产高清不卡午夜福利| 国产女主播在线喷水免费视频网站 | 成人亚洲欧美一区二区av| 亚洲精品亚洲一区二区| 欧美精品国产亚洲| 亚洲av熟女| 51国产日韩欧美| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 搞女人的毛片| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| 青春草亚洲视频在线观看| 日本欧美国产在线视频| 国产高清三级在线| 少妇熟女aⅴ在线视频| 亚洲精品亚洲一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 精品熟女少妇av免费看| 亚洲美女视频黄频| 国产视频首页在线观看| 国产精品久久久久久精品电影小说 | 久久久久久久久久久丰满| 免费人成在线观看视频色| 亚洲在久久综合| 精品熟女少妇av免费看| 国产精品无大码| 国产成年人精品一区二区| 国产精品爽爽va在线观看网站| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 久久久国产成人精品二区| 赤兔流量卡办理| 特级一级黄色大片| 亚洲国产精品合色在线| 夜夜看夜夜爽夜夜摸| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 国产单亲对白刺激| av黄色大香蕉| 国产精品不卡视频一区二区| 亚洲成人av在线免费| av在线观看视频网站免费| 日日撸夜夜添| 中文字幕熟女人妻在线| 亚洲婷婷狠狠爱综合网| 国产麻豆成人av免费视频| 亚洲国产精品久久男人天堂| 看片在线看免费视频| av福利片在线观看| 日韩人妻高清精品专区| 少妇丰满av| 国产精品三级大全| 国产成人a∨麻豆精品| 能在线免费观看的黄片| 久久人妻av系列| 看免费成人av毛片| 欧美日韩在线观看h| av又黄又爽大尺度在线免费看 | 日本成人三级电影网站| 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 免费无遮挡裸体视频| 黄片无遮挡物在线观看| a级毛片免费高清观看在线播放| 一本一本综合久久| 国产久久久一区二区三区| 久久久久久久久久成人| 三级国产精品欧美在线观看| 97人妻精品一区二区三区麻豆| 久久人人爽人人爽人人片va| 久久人人爽人人片av| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看 | 在现免费观看毛片| 国产精品伦人一区二区| 99精品在免费线老司机午夜| 不卡视频在线观看欧美| 身体一侧抽搐| 国产精品福利在线免费观看| 搡女人真爽免费视频火全软件| 免费电影在线观看免费观看| 18禁在线播放成人免费| 99久国产av精品国产电影| 免费看av在线观看网站| 亚洲在线观看片| 亚洲经典国产精华液单| 欧美bdsm另类| 狂野欧美激情性xxxx在线观看| 亚洲欧美清纯卡通| 欧洲精品卡2卡3卡4卡5卡区| 在线播放无遮挡| 国产成人精品久久久久久| 亚洲欧美精品专区久久| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩卡通动漫| 国产黄色视频一区二区在线观看 | 日韩强制内射视频| 色播亚洲综合网| 久久精品夜色国产| 国产久久久一区二区三区| 18+在线观看网站| 婷婷精品国产亚洲av| ponron亚洲| 少妇丰满av| 成人漫画全彩无遮挡| 国产成人aa在线观看| 国产在线精品亚洲第一网站| 九草在线视频观看| 自拍偷自拍亚洲精品老妇| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 国产精品蜜桃在线观看 | 日韩在线高清观看一区二区三区| 美女脱内裤让男人舔精品视频 | 亚洲欧美日韩无卡精品| 亚洲18禁久久av| 亚洲国产精品成人综合色| 禁无遮挡网站| 国产精品蜜桃在线观看 | 人妻制服诱惑在线中文字幕| 日韩av不卡免费在线播放| АⅤ资源中文在线天堂| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 久久久久久久午夜电影| 久久久久网色| 国产av一区在线观看免费| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 天堂√8在线中文| 岛国在线免费视频观看| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说 | 国产高清三级在线| 国产精品99久久久久久久久| 日日啪夜夜撸| 亚洲无线在线观看| 久99久视频精品免费| 国内精品久久久久精免费| 校园人妻丝袜中文字幕| 美女 人体艺术 gogo| 亚洲精华国产精华液的使用体验 | 麻豆国产97在线/欧美| 一本久久中文字幕| 日本在线视频免费播放| 特级一级黄色大片| 91久久精品电影网| 亚洲av成人av| 久久久久九九精品影院| 国产精品蜜桃在线观看 | 亚洲最大成人中文| 日韩欧美 国产精品| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 十八禁国产超污无遮挡网站| 女同久久另类99精品国产91| 久久99热这里只有精品18| 女人十人毛片免费观看3o分钟| 国产精品久久视频播放| 内地一区二区视频在线| 午夜精品一区二区三区免费看| 亚洲,欧美,日韩| 九九久久精品国产亚洲av麻豆| 日韩av在线大香蕉| 国产综合懂色| 寂寞人妻少妇视频99o| 高清日韩中文字幕在线| 18禁在线无遮挡免费观看视频| 亚洲av电影不卡..在线观看| 日韩,欧美,国产一区二区三区 | 久久久久久久久久成人| 又粗又爽又猛毛片免费看| 日韩三级伦理在线观看| 日本一二三区视频观看| 国产精品麻豆人妻色哟哟久久 | 少妇的逼好多水| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲乱码一区二区免费版| 国产黄片视频在线免费观看| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| a级毛色黄片| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 天堂√8在线中文| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 国产成人91sexporn| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 麻豆久久精品国产亚洲av| 成年女人永久免费观看视频| 青春草国产在线视频 | 美女脱内裤让男人舔精品视频 | 日韩强制内射视频| 精品无人区乱码1区二区| 日韩欧美在线乱码| 国产精品福利在线免费观看| 一级二级三级毛片免费看| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 亚洲欧美日韩卡通动漫| 国产精品永久免费网站| 亚洲第一区二区三区不卡| 99在线人妻在线中文字幕| 少妇人妻精品综合一区二区 | 伊人久久精品亚洲午夜| 日韩中字成人| 成人无遮挡网站| 日韩大尺度精品在线看网址| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品合色在线| 国产不卡一卡二| 午夜免费激情av| 麻豆成人av视频| 久久久精品94久久精品| 天堂影院成人在线观看| 久久精品久久久久久噜噜老黄 | 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 男人舔奶头视频| 欧美激情在线99| 国产成人a区在线观看| 国产av在哪里看| 亚洲五月天丁香| 赤兔流量卡办理| 亚洲成人中文字幕在线播放| 午夜免费激情av| 国产伦在线观看视频一区| 99热网站在线观看| 亚洲成a人片在线一区二区| 99视频精品全部免费 在线| 嫩草影院精品99| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩| 亚洲国产色片| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 日本色播在线视频| 日日摸夜夜添夜夜爱| 国产色婷婷99| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 日韩一本色道免费dvd| 国产淫片久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 一级二级三级毛片免费看| 一本精品99久久精品77| 国产三级在线视频| 久久九九热精品免费| 特级一级黄色大片| 国产一区亚洲一区在线观看| 又爽又黄无遮挡网站| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| av专区在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 高清日韩中文字幕在线| 久久精品久久久久久久性| 精品熟女少妇av免费看| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 婷婷六月久久综合丁香| 欧美成人精品欧美一级黄| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 亚洲成人av在线免费| 综合色丁香网| 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 中文亚洲av片在线观看爽| 日韩成人av中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| av免费观看日本| 熟女人妻精品中文字幕| 三级男女做爰猛烈吃奶摸视频| 偷拍熟女少妇极品色| 午夜精品一区二区三区免费看| 26uuu在线亚洲综合色| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 毛片女人毛片| 免费无遮挡裸体视频| 久久6这里有精品| 色综合色国产| 综合色丁香网| 国产成人一区二区在线| а√天堂www在线а√下载| av在线亚洲专区| 欧美性猛交黑人性爽| 免费人成在线观看视频色| АⅤ资源中文在线天堂| 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久av| 日韩大尺度精品在线看网址| 五月玫瑰六月丁香| 久久久a久久爽久久v久久| 黑人高潮一二区| 男女那种视频在线观看| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 一进一出抽搐gif免费好疼| 成人性生交大片免费视频hd| 12—13女人毛片做爰片一| 久久九九热精品免费| 日本黄大片高清| 亚洲四区av| 亚洲精品乱码久久久久久按摩| 一进一出抽搐动态| 波多野结衣高清无吗| 精品无人区乱码1区二区| 男人舔奶头视频| 国产黄色视频一区二区在线观看 | av在线亚洲专区| a级毛片免费高清观看在线播放| 欧美最黄视频在线播放免费| 国产精品一及| 别揉我奶头 嗯啊视频| 欧美bdsm另类| 久久草成人影院| 村上凉子中文字幕在线| 又爽又黄无遮挡网站| 午夜福利在线在线| 国产黄色视频一区二区在线观看 | 国产精品一区二区在线观看99 | 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 99视频精品全部免费 在线| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜 | 人妻系列 视频| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 欧美精品一区二区大全| 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看| 一级毛片我不卡| 国产亚洲精品久久久久久毛片| 能在线免费看毛片的网站| 国产老妇女一区| 在线观看午夜福利视频| 日本成人三级电影网站| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 一本久久精品| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲网站| 午夜福利在线在线| 中文字幕制服av| 久久婷婷人人爽人人干人人爱| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 成人一区二区视频在线观看| 久久久久久大精品|