• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Evaluation of Mobility Anchor Point with Guard Load Reservation in Hierarchical Mobile IPv6

    2014-03-02 01:10:48YungChungWangLiHsinChiangandHungPinLin

    Yung-Chung Wang, Li-Hsin Chiang, and Hung-Pin Lin

    Performance Evaluation of Mobility Anchor Point with Guard Load Reservation in Hierarchical Mobile IPv6

    Yung-Chung Wang, Li-Hsin Chiang, and Hung-Pin Lin

    —Hierarchical mobile IPv6 (HMIPv6) introduces a mobility anchor point to reduce the signaling overhead and handoff latency. In this paper, we apply the matrix-analytical approach to explore the performance measures of the ongoing mobile nodes (MNs) drop and new MNs block probabilities of mobility anchor point with a guard bandwidth reservation scheme. We apply the Markovian arrival process (MAP) to model ongoing MNs and new MNs. Five related performance measures are derived, including the long-term new MN block and ongoing MN drop probabilities, and the three short-term measures of average length of a block period and a non-block period, as well as the conditional ongoing MN drop probability during a block period. These performance measures greatly assist the guard bandwidth reservation mechanism in determining a proper threshold guard bandwidth. The results presented in this paper can provide guidelines for designing adaptive algorithms to adjust the threshold in the guard bandwidth reservation scheme.

    Index Terms—Hierarchical mobile IPv6, Markovian arrival process, matrix-analytic method, mobility anchor point.

    1. Introduction

    With the increasing number of wireless network infrastructure deployment and the popularity of portable computing devices such as the smart phone, tablet PC, and notebook computer, more and more Internet users are experiencing ubiquitous mobility using both these computing devices and the wireless networks to access the Internet. According to this growth, the applications in the wired Internet, such as web browsing, voice over IP (VoIP), and teleconference, are moving gradually toward the mobile wireless environment. Therefore, it is necessary to develop the mobility support protocol in Internet. Mobile IPv6 (MIPv6)[1]is the mobility support protocol in Internet. In MIPv6, the home agent (HA) not only handles binding update (BU) requests pertaining to intra-domain handoffs, but also performs packet encapsulation originated from the mobile nodes (MNs), which would cause the traffic to place a burden on the entire network. To reduce above problem in MIPv6 when MNs perform frequent handoffs, hierarchical mobile IPv6 (HMIPv6)[2]introduces the concept of a mobility anchor point. The mobility anchor point handles BU requests pertaining to intra-domain handoffs in a localized manner. Therefore, the mobility anchor point not only handles binding updates, but also performs packet encapsulation originated from the MNs. As the number of MNs serviced by a mobility anchor point increases, the mobility anchor point suffers from traffic overload, which results in providing lower quality of service for applications. Therefore, the performance evaluation of traffic load control at the mobility anchor point is one of the most crucial issues.

    Handoff basically involves the change of resources from one mobility anchor point to an adjacent mobility anchor point. It is well known that if a new MN is blocked, it is not as disastrous as a handoff MN being dropped. Therefore, it is important to provide a higher priority to handoff MNs so that ongoing MNs can be maintained. One way of assigning the priority to handoff requests is to assign the guard bandwidth to be used exclusively for handoff MNs from among the resources in a mobility anchor point. This guard bandwidth reservation handoff scheme has a tunable threshold for guard bandwidth configuration. With a selected threshold, a block period is defined as the interval of time during which the MNs in a mobility anchor point is at or above the threshold value, and a non-block period is the complementary interval of time. The available capacities at or below the threshold is shared by new MNs and handoff MNs. Arriving new MNs are blocked by the control scheme during a block period. Handoff MNs are dropped only when the capacity is full.

    Choosing an appropriate threshold for the guard bandwidth for handoff MNs is the most significant design issue for HMIPv6. If a relatively low threshold is chosen, new MNs will be excessively blocked, causing a low utilization of the capacity in a mobility anchor point. On the other hand, if a fairly high threshold is chosen, handoff MNs will be dropped more than expected because of theoccupancy of the capacity by new MNs. This phenomenon prevents the system from being able to meet the required drop probability for handoff MNs. Hence, the threshold setting is a trade-off between the system utilization and the guaranteed drop probability for handoff MNs. The performance analysis of a threshold policy is therefore necessary and desirable in order to assist the system in choosing a proper threshold.

    The guard load reservation handoff scheme has increasingly been receiving attention in HMIPv6 design due to its simplicity in the implementation. Several performance evaluations have been conducted by examining the new MN block and handoff MN drop behavior of a mobility anchor point with a guard load reservation scheme[3]. This paper considers only the Poisson new and handoff MN arrival process case. However, there is significant evidence that the new and handoff MN traffic cannot always be modeled as a Poisson process. In this paper, we use a Markovian arrival process (MAP) to model handoff MN arrival processes due to the following conditions: 1) it is simple but good enough to fit field data, and 2) the resulting queueing system model is tractable. A main advantage of using Markovian models for traffic description of queues is that there are efficient numerical analysis methods, commonly referred to as matrix analytic methods, for the evaluation of a Markovian queue. However, although the MAP requires the estimation of a large number of parameters to describe the network traffic[4], much research has focused on parameter estimation and applications of MAP to model network traffic. Buchholz[5]presented an algorithm to fit the parameters of MAP according to measured data. In [6], Heyman and Lucantoni provided the evidence that the Markov-modulated Poisson process (MMPP) which is a special case of MAP is a good model for Internet traffic at the packet/byte level. In [7], Kanget al. provided the evidence that MAP yielded a very good estimation of the cell loss ratio for common super positions of voice and VBR video sources. In [8], Salvadoret al. proposed a parameter fitting procedure using superposed two-state MMPP that leads to accurate estimates of queueing behavior for network traffic exhibiting long-range dependent behavior. Telek[9]derived the minimal presentation of MAP and developed effective fitting models. Based on those studies, we can state that the MAP process is able to model a wide variety of new and handoff MN arrival.

    In addition to the evaluation of the new MN block and handoff MN drop probabilities, we examine the conditional handoff MN drop during the block period. The threshold used to determine the block period splits the state space in two, allowing the use of two hypothesized Markov chains to describe the alternating renewal process. The distributions of various absorbing times in the two hypothesized Markov chains are derived to compute the average durations of the block period and the conditional handoff MN drop probability during a block period. These performance measures will significantly assist the guard bandwidth reservation handoff mechanism for determining a proper threshold. The overall analysis in this paper is based on the matrix-analytic approach[10],[11]. It is simple and efficient to compute the numerical results by any efficient mathematical tool.

    This paper is organized as follows. In Section 2, the HMIPv6 network is briefly introduced. In Section 3, the MAP as the new and handoff MN model is introduced in brief. In Section 4, the new MN block probability and handoff MN drop probability are analyzed. Numerical results are computed and discussed in Section5 to reveal the computational tractability of our analysis and to gain insight into the design of a guard load reservation handoff scheme in HMIPv6 networks. Some concluding remarks are given in Section 6.

    2. Hierarchical Mobile IPv6

    Hierarchical mobile IPv6 (HMIPv6) is a localized mobility management proposal that aims to reduce the signaling load due to user mobility. The mobility management inside the local domain is handled by a mobility anchor point. Mobility between separate mobility anchor point domains is handled by MIPv6.

    The mobility anchor point basically acts as a local home agent. When a mobile node enters into a new mobility anchor point domain, it registers with it obtaining a regional care-of address (RCoA). The RCoA is the address that the mobile node will use to inform its home agent and correspondent nodes about its current location. Then, the packets will be sent to and intercepted by the mobility anchor point, acting as a proxy, and routed inside the domain to the on-link care-of address (LCoA). Once the MN has successfully registered with the mobility anchor point, a bi-directional tunnel is established between them. All packets sent by the MN are tunneled to the mobility anchor point. All packets addressed to the MN’s RCoA are intercepted by the mobility anchor point and tunneled to the MN’s LCoA. If the MN changes its current address within the same mobility anchor point domain, it only needs to register the new LCoA with the mobility anchor point. The RCoA does not change as long as the MN moves within the same mobility anchor point domain. This makes the MN’s mobility transparent to the CNs.

    In this paper, we focus on the guard load reservation at the mobility anchor point and consider that there is only one mobility anchor point available to each MN. The mobility anchor point capacityCis represented by the maximum number of MNs that it can service. First, an MN sends a local BU message to the mobility anchor point. If the BU message is accepted by the mobility anchor point, the MN will receive a successful back message and then send a BU message with its RCoA to the HA. On the other hand, the MN’s BU message is rejected by the mobility anchor point, the rejected MN registers its LCoA with the HA and then the packets destined for the MN will bypassthe mobility anchor point. Regarding route optimization, if the local BU message is accepted, the MN’s RCoA is notified to the CNs. Otherwise, the MN’s LCoA is sent to the CNs.

    When a BU message arrives at a mobility anchor point, the mobility anchor point triggers the threshold-based admission control algorithm. LetCthbe a pre-defined threshold. When the number of MNs serviced by the mobility anchor point is less thanCth, both new MNs and ongoing MNs are admitted. On the other hand, to give a higher priority to ongoing MNs, when the current mobility anchor point load is equal to or greater thanCth, only ongoing MNs are accepted. This threshold-based admission control algorithm reduces the ongoing MN dropping probability at the cost of increasing the new MN blocking probability.

    3. Traffic Model

    Many analytically tractable models have been proposed to describe new MNs and handoff MN arrivals in the literature. In this paper, the arrival process of new and handoff MNs is modeled by a MAP. A brief exposition of MAP is given in the rest of this section.

    The MAP is a generalization of the Poisson arrival process by allowing for non-exponential inter-arrival times, while still preserving an underlying Markovian structure[12]. It is a marked point process with arrivals generated at the transition epochs of a particular type ofm-state Markov renewal process[13]. A MAP can be more easily described by a two-dimensional continuous-time Markov chain {(N(t),J(t)),t≥0} on the state space {(n,j)|n≥0, 1≤j≤m}, with a infinitesimal generatorQMAP, having the structure:

    whereN(t) stands for a counting variable,J(t) represents an auxiliary phase variable, andDkarem×mmatrices, called parameter matrices. The Markov chain then defines an arrival process where the transition from state (n,i) to state (n+1,j), n≥0, and 1≤,i j≤m, corresponds to an arrival and a phase change from phaseito phasej. The matrixD1with elements (D1)i,j, 1≤,i j≤m, governs the state transitions which correspond to an arrival, and the matrixD0governs the state transitions which correspond to no arrivals. The sum of both parameter matrices is

    which is the infinitesimal generator of the underlying Markovian structure {J(t),t>0} with respect to the MAP. We assume that the underlying Markovian structure is stable and irreducible. Thus the Markov chain {J(t),t> 0} has a unique stationary probability vector π, and

    whereeis assumed in this paper to be an all-1 column vector with a compatible dimension. We also assume thatD0is nonsingular such that the sojourn time at any state of the state space {(n,j)|n≥ 0, 1≤j≤m} is finite with probability 1, for guaranteeing that the process never terminates. The fundamental arrival rate λ of this MAP is defined as

    In this paper, we propose to model both new and handoff MN by a MAP. We assume that the new MN is characterized by a sequenceof parameter matrices and the handoff MN by a sequenceof parameter matrices.aremn×mnandmh×mhmatrices, respectively. The sequenceof the defining parameter matrices for the superposed new and handoff MN can be obtained by

    where ⊕ is the Kronecker sum[14],[15]. Note that eachDihas the dimensions of (mnmh)×(mnmh)[13].

    4. Performance Analysis

    The new arrival MN will be modeled by using a MAP with a sequenceand the handoff MN will be modeled by using a MAP with a sequenceas described in Section 3. We assume that the ongoing MN (new or handoff) connection times are exponentially distributed with parameter μc. The time spent in a given mobility anchor point, before handing off, is also exponentially distributed with parameter μd. Note that new MNs which find allCthcapacity will leave the system and handoff the MNs which find allCcapacity busy will leave the system.

    4.1 Queueing Model

    Consider the embedded continuous-time Markov chain {(L(t),J(t)),t≥0} of the queuing system on the twodimensional state space ({0, 1, …,C}×{(1, 1), (1, 2), …, (mn,mh)}), whereL(t), andJ(t) denote the capacity occupancy, and the phase of the underlying MAP of superposition of handoff MN and new MN at timet, respectively. For convenience, the queuing system is said to be at a leveljif its capacity occupancy is equal toj. The embedded Markov chain now has an infinitesimal generatorQof the following block form:

    4.2 New MN Block and Handoff MN Drop

    Probabilities

    Letx=(x0,x1, …,xC) be the stationary probability vector of the Markov chainQ, i.e.,

    Consequently, the new MN blocking probability, denoted bycan be calculated by

    Consequently, the handoff MN dropping probability, denoted bycan be calculated by

    4.3 Distribution of Block and Non-Block Periods

    The queueing system passes through alternating block and non-block periods. The patterns of block and non-block periods are then studied by decomposing the state spaceSinto two subsets, i.e.,according to the block thresholdCth. With this partition of the state space, the infinitesimal generatorQof the embedded Markov chain of the queuing system can be partitioned as

    where

    where matricesTnb,Unb,b,Tb, andDb,nbare transition rate sub-matrices governing transitions fromSnbinto itself, fromSnbintoSb, fromSbinto itself, and fromSbintoSnb, respectively. The sojourn time in each non-block period and block period is characterized by a transient Markov chain, with respect toTnbandTbfor transitions onSnbandSb.

    Next, non-block and block periods are characterized by deriving the steady state probabilities for the initial state of each transient Markov chain, as denoted by vector αnbfor non-block periodes and vector αbfor block periods, defined byLetLnbandLbbe the lengths of non-block and block periods, respectively. Obviously,LnbandLbare the life times of the two transient Markov chains, with respect toTnbandTbfor transitions onSnbandSb. Thus,fnb(t) andfb(t) represents the probability density functions of all absorbing times of the transient Markov chains, with respect toTnbandTbfor transitions onSnbandSb. According to the transient Markov chain theory, the Laplace transforms offnbandfbare

    The average lengths of non-block and block periods are

    4.4 Handoff MN Drop Probability during a Block Period

    To investigate the drop behavior during a block period, the sub-matrixTbis written as

    where

    where the matrixTb(h)(0) comprises the probabilities that make state transitions withinSbwithout any handoff MN drops. However, the matrixTb(h)(1), comprises the probabilities that make state transitions withinSbwith a handoff MN drop.

    Notably, the behavior of the queuing system during a block period can be described by the transient Markov chain,Tbfor transitions onSb. For a state (i, (jn,jh)) inSb, letbe the probability that the state of transient Markov process enters (i, (jn,jh)) with a total oflhandoff MNs dropped during [0,t). Letbe an |Sb|-vector whose (i, (jn,jh))-th element isThe vectort>0,l≥0, can be obtained by the differential equation:

    Now the average total number of MN drops during a block period, denotedcan be calculated as

    where E[Lb] is the average length of a block period in (11) and()h

    λ is the fundamental arrival rate of the handoff MN and can be calculated by (3).

    5. Numerical Results and Discussion

    In this section, we will investigate the numerical results under the MAP new MN and handoff MN. In our experiments, the numerical values of the MAP parameters of the handoff MN are

    and the numerical values of the MAP parameters of the new MN are

    [1] D. Johnson, C. Perkins, and J. Arkko. (June 2003). Mobility support inIPv6. IETF RFC 3775. [Online]. Available: http://www.ietf.org/rfc/rfc3775.txt

    [2] H. Soliman, C. Castelluccia, K. E. Malki, and L. Bellier. (August 2005). Hierarchical mobile IPv6 mobility management (HMIPv6). IETFRFC 4140. [Online]. Available: http://tools.ietf.org/html/rfc4140

    [3] S. Pack, T. Kwon, and Y. Choi, “A mobility-based load control scheme in hierarchical mobile IPv6 networks,”Wireless Networks, vol. 16, no. 2, pp. 545-558, 2010.

    [4] M. Iftikhar, T. Singh, B. Landfeldt, and M. Caglar,“Multiclass G/M/1queueing system with self-similar input and non-preemptive priority,” Computer Communications, vol. 31, no. 5, pp. 1012-1027, 2008.

    [5] P. Buchholz, “An EM-algorithm for MAP fitting from real traffic data,” Computer Performance Evaluation Modelling Techniques and Tools, LNCS, vol. 2794, pp. 218-236, 2003.

    [6] D. P. Heyman and D. Lucantoni, “Modeling multiple IP traffic streams with rate limits,” IEEE/ACM Trans. on Networking, vol. 11, no. 6, pp. 948-958, 2003.

    [7] S. H. Kang, Y. H. Kim, D. K. Sung, and B. D. Choi, “An application of Markovian arrival process (MAP) to modeling superposed ATM cell streams,” IEEE Trans. on Commun., vol. 50, no. 4, pp. 633-642, 2002.

    [8] P. Salvador, R. Valadas, and A. Pacheco, “Multiscale fitting procedure using Markov modulated Poisson processes,”Telecommunication Systems, vol. 23, no.1-2, pp. 123-148, 2003.

    [9] M. Telek and G. Horvath, “A minimal representation of Markov arrival processes and a moments matching method,”Performance Evaluation, vol. 64, pp. 1153-1168, Oct. 2007.

    [10] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models—An Algorithmic Approach, London: The Johns Hopkins University Press, 1981.

    [11] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, New York: Marcel Dekker, 1989.

    [12] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process,” Commun. Statist. Stochastic Models, vol. 7, no. 1, pp. 1-46, 1991.

    [13] M. F. Neuts, “Models based on the Markovian arrival process,” IEICE Trans. Commun., vol. E75-B, no. 12, pp. 1255-1265, 1992.

    [14] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York: McGraw-Hill, 1970.

    [15] A. Graham, Kronecker Products and Matrix Calculus with Applications, New York: Horwood Halsted Press, 1981.

    [16] M. Schwartz, Mobile Wireless Communications. Cambridge: Cambridge University Press, 2005.

    Yung-Chung Wangwas born in Taiwan in 1963. He received the M.S. and Ph.D. degrees in electrical engineering from National Tsing Hua University, Hsinchu in 1990 and 2000, respectively. From 1990 to 2001, he was a research engineer with the Chung-Hwa Tele-Communication Lab.,

    where he was engaged in research on the development of ATM switching systems and IP switch router systems. Since 2001, he has been with the Department of Electrical Engineering, National Taipei University of Technology (TaipeiTech), Taipei, where he is a full professor. His research interests include wireless networks, optical networks, software defined networks, and queuing theory and performance evaluation of communication networks.

    Li-Hsin Chiangwas born in Taiwan in 1965. He received the M.S. degree in computer science and information engineering from TaipeiTech, Taipei in 2004. He is currently pursuing the Ph.D. degree with the Department of Electrical Engineering, TaipeiTech. His research interests include computer network, admission control, and Internet applications.

    Hung-Pin Linreceived his M.S. degree in electrical engineering from TaipeiTech in 2008. He is currently a Ph.D. student with the Department of Electrical Engineering, TaipeiTech. His research interests include media streaming, web, and mobile application architectures.

    Manuscript received December 12, 2013; revised March 10, 2014.

    Y.-C. Wang is with the Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608 (Corresponding author e-mail: ycwang@ntut.edu.tw).

    L.-H. Chiang and H.-P. Lin are with the Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608 (e-mail: romeo@ntut.edu.tw; t7319014@ntut.edu.tw).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.012

    日韩精品免费视频一区二区三区 | 欧美精品一区二区免费开放| 男人舔女人的私密视频| 91精品三级在线观看| 久久青草综合色| 日本与韩国留学比较| 亚洲国产看品久久| 秋霞在线观看毛片| 男的添女的下面高潮视频| 亚洲av电影在线进入| 在线精品无人区一区二区三| 国产不卡av网站在线观看| 如何舔出高潮| 久久ye,这里只有精品| 五月玫瑰六月丁香| av在线观看视频网站免费| 一级,二级,三级黄色视频| 精品酒店卫生间| av国产精品久久久久影院| 26uuu在线亚洲综合色| videosex国产| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲 | 99九九在线精品视频| av又黄又爽大尺度在线免费看| 日本av免费视频播放| 最黄视频免费看| 欧美精品一区二区免费开放| 人人妻人人澡人人看| 在线观看免费日韩欧美大片| 日韩av在线免费看完整版不卡| 成年人免费黄色播放视频| 另类精品久久| 性色avwww在线观看| 久久精品国产综合久久久 | 热99久久久久精品小说推荐| 成人二区视频| 久久99热这里只频精品6学生| 亚洲欧美日韩卡通动漫| 中文字幕最新亚洲高清| 最黄视频免费看| 亚洲经典国产精华液单| 国产精品久久久久久精品古装| videossex国产| 最近最新中文字幕免费大全7| 精品国产乱码久久久久久小说| 久久99精品国语久久久| 国产白丝娇喘喷水9色精品| 人人妻人人爽人人添夜夜欢视频| 国产伦理片在线播放av一区| 青春草视频在线免费观看| 日日摸夜夜添夜夜爱| 午夜91福利影院| 国产成人精品婷婷| 最黄视频免费看| 香蕉国产在线看| 久久久国产精品麻豆| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 国产成人一区二区在线| 国产精品久久久av美女十八| 黑人巨大精品欧美一区二区蜜桃 | av天堂久久9| 交换朋友夫妻互换小说| 久久鲁丝午夜福利片| 国产免费现黄频在线看| 夫妻性生交免费视频一级片| 两性夫妻黄色片 | 狂野欧美激情性bbbbbb| 精品人妻一区二区三区麻豆| 建设人人有责人人尽责人人享有的| 在现免费观看毛片| 成人免费观看视频高清| 宅男免费午夜| 久久狼人影院| 色94色欧美一区二区| 亚洲精品,欧美精品| av播播在线观看一区| 国产免费福利视频在线观看| 久久99蜜桃精品久久| 亚洲一级一片aⅴ在线观看| 校园人妻丝袜中文字幕| 国产在视频线精品| 妹子高潮喷水视频| 内地一区二区视频在线| 三上悠亚av全集在线观看| 久久精品aⅴ一区二区三区四区 | 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀 | 日本wwww免费看| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 国产男女超爽视频在线观看| 国产高清三级在线| a级毛色黄片| 亚洲成国产人片在线观看| 国产av国产精品国产| 丰满少妇做爰视频| 性色avwww在线观看| 高清欧美精品videossex| 亚洲精品av麻豆狂野| 97精品久久久久久久久久精品| 欧美成人精品欧美一级黄| 国产片内射在线| 秋霞伦理黄片| 久久久a久久爽久久v久久| 国产亚洲一区二区精品| 国产成人aa在线观看| 亚洲五月色婷婷综合| 热re99久久精品国产66热6| 麻豆精品久久久久久蜜桃| 欧美日韩亚洲高清精品| 日韩制服丝袜自拍偷拍| 美女中出高潮动态图| 国产伦理片在线播放av一区| 91精品三级在线观看| 女人久久www免费人成看片| 日韩成人伦理影院| 午夜福利乱码中文字幕| tube8黄色片| 99热这里只有是精品在线观看| 国产69精品久久久久777片| 青春草国产在线视频| 晚上一个人看的免费电影| 久久久久国产精品人妻一区二区| 韩国av在线不卡| 最近2019中文字幕mv第一页| 黄网站色视频无遮挡免费观看| 日韩 亚洲 欧美在线| 亚洲精品国产av成人精品| 一级毛片我不卡| 亚洲四区av| 91精品伊人久久大香线蕉| 欧美 亚洲 国产 日韩一| 国产精品国产三级国产专区5o| 免费黄网站久久成人精品| 日韩电影二区| 伦精品一区二区三区| 亚洲成色77777| 国产探花极品一区二区| 国产欧美亚洲国产| 久久av网站| 亚洲,欧美精品.| 久久精品国产a三级三级三级| 夜夜爽夜夜爽视频| 新久久久久国产一级毛片| 青春草视频在线免费观看| 欧美激情 高清一区二区三区| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| 成人亚洲欧美一区二区av| 免费女性裸体啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 街头女战士在线观看网站| 99精国产麻豆久久婷婷| 亚洲欧美成人精品一区二区| 精品一品国产午夜福利视频| 51国产日韩欧美| 久久99热6这里只有精品| 日韩一区二区三区影片| 亚洲精品456在线播放app| 少妇精品久久久久久久| 亚洲三级黄色毛片| 日韩视频在线欧美| 宅男免费午夜| 寂寞人妻少妇视频99o| 美女大奶头黄色视频| 亚洲av男天堂| 免费观看性生交大片5| 五月天丁香电影| 黄色 视频免费看| 美女中出高潮动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 蜜臀久久99精品久久宅男| 亚洲av成人精品一二三区| 亚洲国产精品一区三区| 精品卡一卡二卡四卡免费| 日韩 亚洲 欧美在线| 丝瓜视频免费看黄片| 久热这里只有精品99| 赤兔流量卡办理| 成年人免费黄色播放视频| 久久精品国产亚洲av涩爱| 制服丝袜香蕉在线| 免费在线观看黄色视频的| 777米奇影视久久| 黄色怎么调成土黄色| 曰老女人黄片| 亚洲国产成人一精品久久久| 国产xxxxx性猛交| 日韩,欧美,国产一区二区三区| 最近最新中文字幕大全免费视频 | 国产精品人妻久久久影院| 欧美性感艳星| 9色porny在线观看| 一级毛片 在线播放| av免费在线看不卡| 美女内射精品一级片tv| 久久久久国产精品人妻一区二区| 97超碰精品成人国产| 日本与韩国留学比较| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院 | 国产黄色免费在线视频| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 熟女av电影| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 免费黄网站久久成人精品| 久久久久久人人人人人| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美日韩在线播放| 国产成人一区二区在线| 香蕉国产在线看| 亚洲av电影在线观看一区二区三区| 三级国产精品片| 18+在线观看网站| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 少妇熟女欧美另类| 少妇的逼水好多| 精品福利永久在线观看| 成人国语在线视频| 精品久久久精品久久久| av在线老鸭窝| 九九在线视频观看精品| 日韩制服骚丝袜av| 一级毛片电影观看| 免费黄色在线免费观看| 人妻 亚洲 视频| 一级,二级,三级黄色视频| 国国产精品蜜臀av免费| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 欧美精品一区二区免费开放| 久久影院123| 国产黄色视频一区二区在线观看| 涩涩av久久男人的天堂| 大香蕉久久网| 哪个播放器可以免费观看大片| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃 | 99久久中文字幕三级久久日本| av不卡在线播放| 午夜影院在线不卡| 国产免费一级a男人的天堂| 欧美精品av麻豆av| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 亚洲精品色激情综合| 狂野欧美激情性bbbbbb| 亚洲精品美女久久久久99蜜臀 | 亚洲欧洲国产日韩| 美女内射精品一级片tv| 亚洲欧美色中文字幕在线| 亚洲激情五月婷婷啪啪| 免费av中文字幕在线| 一本大道久久a久久精品| 午夜福利乱码中文字幕| 亚洲精品日韩在线中文字幕| 有码 亚洲区| 欧美xxxx性猛交bbbb| 久久久a久久爽久久v久久| 美女大奶头黄色视频| 日日摸夜夜添夜夜爱| 国产色婷婷99| 国产永久视频网站| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 日韩伦理黄色片| www日本在线高清视频| 97超碰精品成人国产| 久久久久久伊人网av| 曰老女人黄片| 久久精品国产亚洲av涩爱| 美女国产视频在线观看| 久久人人爽人人片av| 久久精品人人爽人人爽视色| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| h视频一区二区三区| 亚洲成色77777| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 人妻一区二区av| 成人国语在线视频| 青春草国产在线视频| videosex国产| 国产亚洲欧美精品永久| 国产69精品久久久久777片| 久久精品人人爽人人爽视色| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 久久女婷五月综合色啪小说| 一边亲一边摸免费视频| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| 各种免费的搞黄视频| 国产日韩欧美视频二区| 日本黄色日本黄色录像| 免费不卡的大黄色大毛片视频在线观看| 少妇人妻精品综合一区二区| 午夜福利,免费看| 精品久久久久久电影网| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 十分钟在线观看高清视频www| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 亚洲综合色惰| 狂野欧美激情性bbbbbb| 国产一区二区激情短视频 | 日韩在线高清观看一区二区三区| 国产精品无大码| 美女内射精品一级片tv| 赤兔流量卡办理| 国产麻豆69| 国产精品99久久99久久久不卡 | 日韩 亚洲 欧美在线| 在线天堂中文资源库| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性bbbbbb| 女人久久www免费人成看片| 国产欧美另类精品又又久久亚洲欧美| 午夜91福利影院| 日韩一区二区视频免费看| 制服诱惑二区| www日本在线高清视频| 国产毛片在线视频| 国产精品国产三级专区第一集| 美女内射精品一级片tv| 97在线人人人人妻| 在线看a的网站| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 最近最新中文字幕大全免费视频 | 曰老女人黄片| 91精品三级在线观看| 国产成人免费观看mmmm| 一二三四在线观看免费中文在 | 亚洲天堂av无毛| 国产在视频线精品| 亚洲三级黄色毛片| 成人手机av| 久久久久精品性色| 在线天堂中文资源库| 欧美国产精品一级二级三级| 新久久久久国产一级毛片| 日本与韩国留学比较| 成人无遮挡网站| 亚洲三级黄色毛片| 精品国产乱码久久久久久小说| 免费日韩欧美在线观看| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 久久精品久久精品一区二区三区| 一级爰片在线观看| 国产精品偷伦视频观看了| 精品久久久精品久久久| 尾随美女入室| 99热网站在线观看| 亚洲欧美日韩另类电影网站| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 久久精品国产综合久久久 | 男人操女人黄网站| 男人爽女人下面视频在线观看| 免费高清在线观看日韩| 久久久久久久精品精品| 日韩电影二区| 色吧在线观看| 亚洲精品国产av蜜桃| 天天操日日干夜夜撸| 视频中文字幕在线观看| 亚洲欧美色中文字幕在线| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 日韩av免费高清视频| 老熟女久久久| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 永久网站在线| av国产久精品久网站免费入址| 国产伦理片在线播放av一区| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 色94色欧美一区二区| 久久99热这里只频精品6学生| 尾随美女入室| 亚洲欧洲精品一区二区精品久久久 | 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 国产精品免费大片| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| 亚洲欧美清纯卡通| 看免费成人av毛片| www.熟女人妻精品国产 | av片东京热男人的天堂| 久久久精品区二区三区| 精品国产一区二区三区久久久樱花| 成人漫画全彩无遮挡| 免费少妇av软件| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 日本黄大片高清| 亚洲国产精品一区三区| 国产又爽黄色视频| 两性夫妻黄色片 | 午夜福利乱码中文字幕| 欧美成人精品欧美一级黄| 男女下面插进去视频免费观看 | 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 国产色婷婷99| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品古装| 伊人亚洲综合成人网| av女优亚洲男人天堂| 捣出白浆h1v1| 制服人妻中文乱码| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| a 毛片基地| 日本-黄色视频高清免费观看| 国精品久久久久久国模美| 亚洲,欧美精品.| 夫妻午夜视频| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 国产免费福利视频在线观看| 国精品久久久久久国模美| 高清视频免费观看一区二区| 91久久精品国产一区二区三区| 欧美老熟妇乱子伦牲交| 国产深夜福利视频在线观看| 制服诱惑二区| 热re99久久精品国产66热6| av播播在线观看一区| 狂野欧美激情性bbbbbb| 一级片免费观看大全| 国产 精品1| 视频在线观看一区二区三区| 99热6这里只有精品| 18在线观看网站| 国产精品国产三级国产专区5o| 这个男人来自地球电影免费观看 | 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 伦精品一区二区三区| 亚洲情色 制服丝袜| 午夜影院在线不卡| 成人国产av品久久久| 日本爱情动作片www.在线观看| 精品视频人人做人人爽| 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美| 日韩精品有码人妻一区| 欧美 日韩 精品 国产| freevideosex欧美| 最近的中文字幕免费完整| 美女大奶头黄色视频| 国产国拍精品亚洲av在线观看| 激情视频va一区二区三区| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 色94色欧美一区二区| 午夜福利视频精品| 国产欧美亚洲国产| 日日爽夜夜爽网站| 伦理电影大哥的女人| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 高清不卡的av网站| 久久久久国产网址| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 9色porny在线观看| 欧美+日韩+精品| 两个人看的免费小视频| 免费在线观看完整版高清| 久久综合国产亚洲精品| 97超碰精品成人国产| 久久久久人妻精品一区果冻| 亚洲国产精品999| 黄片播放在线免费| 99国产精品免费福利视频| 日韩成人av中文字幕在线观看| 熟女av电影| 视频中文字幕在线观看| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 国产精品久久久久久av不卡| 中文字幕人妻丝袜制服| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 赤兔流量卡办理| 热re99久久国产66热| a级毛片在线看网站| 三上悠亚av全集在线观看| 高清av免费在线| 九草在线视频观看| 下体分泌物呈黄色| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 亚洲内射少妇av| 国产一区二区激情短视频 | 99热这里只有是精品在线观看| 国产精品成人在线| 天天躁夜夜躁狠狠躁躁| 多毛熟女@视频| 国产成人精品在线电影| 少妇人妻精品综合一区二区| www.色视频.com| 宅男免费午夜| 欧美人与性动交α欧美软件 | 精品人妻一区二区三区麻豆| 久久影院123| 在线天堂最新版资源| 欧美3d第一页| 欧美精品国产亚洲| 伦理电影大哥的女人| 最近2019中文字幕mv第一页| 精品一区二区免费观看| 尾随美女入室| 免费日韩欧美在线观看| 久久精品国产自在天天线| 秋霞伦理黄片| 嫩草影院入口| 丝袜人妻中文字幕| tube8黄色片| 久久99热这里只频精品6学生| 男女下面插进去视频免费观看 | 大片电影免费在线观看免费| 五月开心婷婷网| 在线免费观看不下载黄p国产| 色婷婷av一区二区三区视频| 国产伦理片在线播放av一区| 国产精品熟女久久久久浪| 最黄视频免费看| 80岁老熟妇乱子伦牲交| av国产久精品久网站免费入址| 亚洲精品,欧美精品| 国产日韩欧美在线精品| 久久久久人妻精品一区果冻| 精品熟女少妇av免费看| 亚洲国产成人一精品久久久| 欧美另类一区| 香蕉丝袜av| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 久久99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片| 国产探花极品一区二区| 国产精品99久久99久久久不卡 | 欧美 日韩 精品 国产| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 黄网站色视频无遮挡免费观看| 精品久久蜜臀av无| 性高湖久久久久久久久免费观看| 国产乱来视频区| 国产男人的电影天堂91| 久久久久国产网址| 在线免费观看不下载黄p国产| 成人国语在线视频| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看| 中文字幕人妻熟女乱码| 久久精品aⅴ一区二区三区四区 | 欧美人与性动交α欧美软件 | 男女无遮挡免费网站观看| 大片免费播放器 马上看| 街头女战士在线观看网站| 精品一品国产午夜福利视频| 18禁在线无遮挡免费观看视频| 婷婷色麻豆天堂久久| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 久久久亚洲精品成人影院| 免费黄频网站在线观看国产| 免费观看无遮挡的男女| 一区二区三区精品91| 成年动漫av网址| 丰满少妇做爰视频|