• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Weighted Learning for Feedforward Neural Networks

    2014-03-02 01:10:46RongFangXuThaoTsenChenandShieJueLee

    Rong-Fang Xu, Thao-Tsen Chen, and Shie-Jue Lee

    Weighted Learning for Feedforward Neural Networks

    Rong-Fang Xu, Thao-Tsen Chen, and Shie-Jue Lee

    —In this paper, we propose two weighted learning methods for the construction of single hidden layer feedforward neural networks. Both methods incorporate weighted least squares. Our idea is to allow the training instances nearer to the query to offer bigger contributions to the estimated output. By minimizing the weighted mean square error function, optimal networks can be obtained. The results of a number of experiments demonstrate the effectiveness of our proposed methods.

    Index Terms—Extreme learning machine, hybrid learning, instance-based learning, weighted least squares.

    1. Introduction

    Neural networks have been becoming a powerful tool in many fields and disciplines. For example, in medical science, they can be used to recognize whether a person is suffering from cancer and help doctors to undertake subsequent diagnoses. In the financial field, they can be used to do stock forecasting or market analysis. In computer science, they can be used in speech recognition or image processing for identifying special objects or events.

    There are many learning algorithms for training a multilayer perceptrons. In 1980s, a well-known algorithm called back propagation was proposed by Rumelhartet al.[1]. Since then, many methods have been proposed subsequently to accelerate the speed of convergence, such as the Levenberg-Marquardt back propagation[2], conjugate gradient[3], momentum term[1],[4], and adaptive step sizes[5].

    Choet al. proposed a hybrid learning method[6]which combines gradient descent optimization and least squares for multilayer perceptrons. The weights connecting from the input layer to the hidden layer are optimized by gradient descent, while the weights connecting from the hidden layer to the output layer are optimized by least squares. Huanget al. proposed a very fast learning algorithm, called extreme learning machine (ELM)[7], for single hidden layer feedforward networks. The difference between Cho’s method and Huang's method is that the weights connecting from the input layer to the hidden layer are assigned random values in Huang’s method. Leeet al. proposed a neuro-fuzzy system with self-constructing rule generation and developed a hybrid learning algorithm consisting of a recursive singular value decomposition based least squares estimator and the gradient descent method[8].

    For most aforementioned learning methods, training patterns are considered to be independent of the query which is the unknown input to be recognized. In other words, all training instances are of equal importance to the derivation of the weights involved in the neural networks. In 1990s, Ahaet al. proposed instance-based algorithms[9]. Its concept is that different training instances are of different degrees of importance to the query. If a training pattern is close to the query, it offers a large contribution. Otherwise, a small contribution is offered. Atkesonet al. surveyed some methods about locally weighted learning for regression problems and recognized positively the value of different contributions provided by different training instances to regression problems[10].

    In this paper, we propose two weighted learning methods for the construction of single hidden layer feedforward neural networks. Both methods allow different contributions to be offered by different training instances. The first method, called weighted ELM (WELM), is an improvement on the extreme learning machine proposed by Huanget al.[7].The weights between the hidden layer and the output layer are optimized by weighted least squares. The second method, called weighted hybrid learning (WHL), applies back propagation to WELM and optimizes the weights between the input layer and the hidden layer. Our idea for both methods is to allow the training instances nearer to the query to offer bigger contributions to the estimated output. By minimizing the weighted mean square error function, optimal networks can be obtained. The results of a number of experiments demonstrate the effectiveness of our proposed methods.

    The rest of this paper is organized as follows. Section 2 briefly introduces ELM. Section 3 presents WELM. In Section 4, we describe WHL which is another version of WELM. In Section 5, results of experiments are presented. Finally, concluding remarks are given in Section 6.

    Fig. 1. Single hidden layer feedforward network.

    2. ELM

    ELM was introduced in [7]. Suppose a set ofNdistinct training instances (xi,ti),i=1, 2, …,N, are given, wherexiandtidenote the input and the desired output, respectively, of instancei, andsingle hidden layer feedforward network to do regression for this case is shown in Fig. 1, in which the first layer is the input layer, the second layer is the hidden layer, and the third layer is the output layer. The input layer hasnneurons, the hidden layer hasJneurons whereJis a number specified by the user, and the output layer has one neuron. Note thatnis the dimensionality of the input.

    For any inputxi, the predicted output?iyis modeled as

    The weightswjand biasesbj,1jJ≤ ≤ , are set to randomly selected values. However, the weightsβj, 1jJ≤ ≤ , are learned from the training instances by minimizing the following summation:

    which can be written as

    where

    The least squares solution of (3) is

    3. WELM

    WELM is an improvement on ELM. As in ELM, the weights between the input layer and the hidden layer are set to randomly selected values. So are the biases of the hidden neurons. For ELM, the weights between the hidden layer and the output layer are optimized by least squares. For WELM, they are optimized by weighted least squares. Assume that we are givenq, called a query,q=[q1,q2, …,qn]T∈Rn, and we expect to derive the estimated output for the query. We compute the instance weightγifor theith training instance,i= 1, 2, …,N, by

    wherediis the distance between theith training instance and the query:

    andhis a user-defined parameter, 0<h≤1. Fig. 2 shows the relationship betweendiandγi. As it can be seen from this figure, when the training instance is closer to the query, the corresponding instance weight is bigger. On the contrary, when the training instance is farther away from the query, the corresponding instance weight is smaller.

    Now we take the instance weights into account and (2) becomes

    which can be written as

    Fig. 2. Instance weight distribution.

    whereΓis the following diagonal matrix

    The weighted least square solution of (11) is

    4. WHL

    Weighted hybrid learning consists of gradient descent optimization and weighted least squares. The weights between the input layer and the hidden layer as well as the biases of the hidden neurons are updated by gradient descent[8]as follows:

    where

    andαis the learning rate. Note that

    The whole process of weighted hybrid learning proceeds as follows. Random values are assigned to the weights between the input layer and the hidden layer. The biases of the hidden neurons are also assigned random values. First, the weights between the input layer and the hidden layer are kept constant. The biases of the hidden neurons are also kept constant. Then optimal values for the weights between the hidden layer and the output layer are obtained by weighted least squares. Next, the weights between the hidden layer and the output layer are kept constant. Then the weights between the input layer and the hidden layer, together with the biases of the hidden neurons, are updated by gradient descent. This process is iterated until the training error is acceptably small.

    5. Experimental Results

    We show the effectiveness of WELM and WHL in this section by presenting the results of experiments on some data sets. Comparisons with other methods, including ELM[11]and BP (Levenberg-Marquardt)[12], are also presented. In the following experiments, the features of all data sets are normalized to within the range of [0, 1] and the targets are normalized to within the range of [-1, 1]. The performance index adopted is the root mean square error (RMSE) defined as

    whereNtis the total number of instances involved, andtiand ?iyare the desired output and estimated output, respectively, of instancei. Note that for training RMSE,Ntis the number of training instances, and for testing RMSE,Ntis the number of testing instances. For each data set, ten-fold cross validation is used.

    5.1 sinc

    The sinc data used which is generated by the MATLAB function “sinc” can be represented as

    The range of the input is from -10 to 10. The number of training data is three hundred and one and the number of testing data is one hundred. The training error and testing error are shown in Table 1 and Table 2, respectively. Note that in these tables, “E-07” indicates “10-07”. Fig. 3 shows the estimated results obtained by ELM and BP, while Fig. 4 shows the estimated results obtained by WELM and WHL. It can be seen easily that WELM and WHL perform much better than the other two methods. For example, the training error is 0.1811 for ELM and 0.0179 for BP, while it is only 6.71E-07 for WHL. By using weighted least squares, the training error can be much reduced. Therefore, a nearly perfect match to the testing data is provided by either WELM or WHL. For example, the testing error is 0.1909 for ELM and 0.0182 for BP, while it is only 1.72E-05 for WHL.with different values ofh. Apparently, testing error decreases whenhis greater than 0.2. However, training time increases along withhclose to 1. From the above two figures, it can be seen that our methods perform well withhin the range of [0.2, 0.6].

    Table 1: Training error for the sinc data set

    Table 2: Testing error for the sinc data set

    We have found that the approximation accuracy is considerably relevant to the relationship between training data and the query. Also, if there is a stronger relationship between a feature and the output, the weighted least squares method is more effective. Therefore, it is a good idea to use some preprocessing like feature selection or feature weighting to select highly relevant features before applying our weighted least squares methods.

    Fig. 5. Results for the housing data set with different numbers of hidden neurons.

    Fig. 6. Testing error for the housing data set with different h values.

    Fig. 7. Training time (sec) for the housing data set with different h values.

    6. Conclusions

    We have presented two methods, weighted extreme learning machine (WELM) and weighted hybrid learning (WHL), for single-hidden layer feedforward neural networks. Both methods allow different contributions to be offered by different training instances. WELM is an improvement on the extreme learning machine proposed by Huanget al.[7]. The weights between the hidden layer and the output layer are optimized by weighted least squares. On the other hand, WHL applies back propagation to optimize the weights between the input layer and the hidden layer of WELM. Our idea for both methods is to allow the training instances closer to the query to offer bigger contributions to the estimated output. By minimizing the weighted square error function, optimal networks can be obtained. The performance of both methods is shown to be better than ELM and BP by demonstrating the results of experiments on function approximation of several mathematical and real-world data sets.

    [1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,“Learning representations by back-propagating errors,”Nature, vol. 323, pp. 533-536, Oct. 1986.

    [2] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Tran. on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

    [3] C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial neural networks,” IEE Proc. G, vol. 139, no. 3, pp. 301-310, 1992.

    [4] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Accelerating the convergence of the backpropagation method,” Biological Cybernetic, vol. 59, no. 4-5, pp. 257-263, 1988.

    [5] R. A. Jacobs, “Increased rates of convergence through learning rateadaptation,” Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.

    [6] S.-Y. Cho and T. W. S. Chow, “Training multilayer neural networks using fast global learning algorithm—least-squares and penalized optimization methods,” Neurocomputing, vol. 25, no. 1-3, pp. 115-131, 1999.

    [7] Q.-Y. Zhu, G.-B. Huang, and C.-K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.

    [8] S.-J. Lee and C.-S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 3, pp. 341-353, 2003.

    [9] D. Kibler, D. W. Aha, and M. K. Albert, “Instance-based learning algorithms,” Machine Learning, vol. 6, no. 1, pp. 37-66, 1991.

    [10] A. W. Moore, C. G. Atkeson, and S. Schaal, Lazy Learning, Norwell: Kluwer Academic Publishers, 1997.

    [11] Source codes of ELM. [Online]. Available: http://www.ntu.edu.sg/home/egbhuang

    [12] BP source codes in the MATLAB toolbox. [Online]. Available: http://www.mathworks.com/help/nnet/ug/trainand-apply- multilayer-neural-networks.html.

    [13] UCI dataset. [Online]. Available: http://archive.ics.uci.edu/ml/

    [14] Regression Datasets. [Online]. Available: http://www.dcc.fc. up.pt/ltorgo/Regression/DataSets.html

    Rong-Fang Xuwas born in Tainan in 1990. He received the B.Sc. degree from National Kaohsiung University of Applied Sciences, Kaohsiung in 2012. He is currently pursuing the master degree with the Department of Electrical Engineering, National Sun Yat-Sen University. His current research interests include data mining and machine learning.

    Thao-Tsen Chenwas born in Penghu in 1989. He received the B.Sc. degree in electrical engineering from Tamkang University, Taipei in 2011 and the M.Sc. degree in electrical engineering from National Sun Yat-Sen University, Kaohsiung in 2013. His research interests include data mining and machine learning.

    Shie-Jue Leewas born in Kin-Men in 1955. He received the B.Sc. and M.Sc. degrees in electrical engineering from National Taiwan University, Taipei in 1977 and 1979, respectively, and the Ph.D. degree in computer science from the University of North Carolina, Chapel Hill in 1990. Dr. Lee joined the Faculty of the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung in 1983, and has been a professor in the department since 1994. His current research interests include artificial intelligence, machine learning, data mining, information retrieval, and soft computing.

    Prof. Lee was the recipient of the best paper award in several international conferences. The other awards won by him are the Distinguished Teachers Award of the Ministry of Education in 1993, the Distinguished Research Award in 1998, the Distinguished Teaching Award in 1993 and 2008, and the Distinguished Mentor Award in 2008, all from National Sun Yat-Sen University. He served as the program chair for several international conferences. He was the Director of the Southern Telecommunications Research Center, National Science Council, from 1998 to 1999, the Chair of the Department of Electrical Engineering, National Sun Yat-Sen University from 2000 to 2003, and the Deputy Dean of the Academic Affairs, National Sun Yat-Sen University from 2008 to 2011. He is now the Director of the NSYSU-III Research Center and the Vice President for Library and Information Services, National Sun Yat-Sen University.

    Manuscript received December 7, 2013; revised March 10, 2014. This work was supported by the NSC under Grant No. NSC-100-2221-E-110-083-MY3 and NSC-101-2622-E-110-011-CC3, and also by “Aim for the Top University Plan” of the National Sun-Yat-Sen University and Ministry of Education.

    R.-F. Xu and T.-T. Chen are with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (e-mail: rfxu@water.ee.nsysu.edu.tw; ttchen@water.ee.nsysu.edu.tw).

    S.-J. Lee is with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (Corresponding author e-mail: leesj@mail.ee.nsysu.edu.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.011

    国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 亚洲精品成人av观看孕妇| 国产成人精品婷婷| 性高湖久久久久久久久免费观看| 国产又色又爽无遮挡免| 成人影院久久| 汤姆久久久久久久影院中文字幕| tube8黄色片| 少妇人妻久久综合中文| 一级毛片aaaaaa免费看小| 男人狂女人下面高潮的视频| av女优亚洲男人天堂| 校园人妻丝袜中文字幕| 免费av中文字幕在线| 日本av免费视频播放| 亚洲真实伦在线观看| 搡老乐熟女国产| 伊人久久国产一区二区| 夜夜爽夜夜爽视频| 国产色爽女视频免费观看| 国产精品伦人一区二区| 久久久色成人| 三级国产精品欧美在线观看| 色哟哟·www| 国产淫片久久久久久久久| 2018国产大陆天天弄谢| 18+在线观看网站| 成人影院久久| 成人二区视频| 国产高清有码在线观看视频| av福利片在线观看| 国产av国产精品国产| 亚洲熟女精品中文字幕| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 国产伦精品一区二区三区四那| 综合色丁香网| 一级毛片久久久久久久久女| 亚洲欧美精品专区久久| 久久午夜福利片| 欧美精品人与动牲交sv欧美| 99热全是精品| 日本wwww免费看| 久久国产精品大桥未久av | 丰满迷人的少妇在线观看| av在线app专区| 久久韩国三级中文字幕| 99久久精品热视频| 少妇被粗大猛烈的视频| 亚洲成人手机| 在线观看一区二区三区| 亚洲欧美成人精品一区二区| 能在线免费看毛片的网站| 久久午夜福利片| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 亚洲精品日本国产第一区| av国产精品久久久久影院| 欧美另类一区| 夫妻午夜视频| 嫩草影院新地址| 国产黄片视频在线免费观看| 欧美少妇被猛烈插入视频| 97超视频在线观看视频| 久久青草综合色| 免费黄色在线免费观看| 久久久久久人妻| 亚洲美女搞黄在线观看| 国产精品不卡视频一区二区| 欧美精品一区二区大全| 久久久亚洲精品成人影院| 欧美三级亚洲精品| 伦理电影大哥的女人| 丝瓜视频免费看黄片| 国产精品99久久99久久久不卡 | 国产av精品麻豆| 久久久久久久久久久免费av| .国产精品久久| 色5月婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| av线在线观看网站| 亚洲三级黄色毛片| 国产一区二区三区综合在线观看 | 在线播放无遮挡| 国产免费又黄又爽又色| 日本-黄色视频高清免费观看| 亚洲国产高清在线一区二区三| 26uuu在线亚洲综合色| 亚洲伊人久久精品综合| 观看美女的网站| 卡戴珊不雅视频在线播放| 亚洲天堂av无毛| 日本与韩国留学比较| 小蜜桃在线观看免费完整版高清| 91精品伊人久久大香线蕉| 欧美精品一区二区免费开放| 亚洲精品自拍成人| av福利片在线观看| 午夜视频国产福利| 女性生殖器流出的白浆| 亚洲精品自拍成人| 九色成人免费人妻av| 欧美国产精品一级二级三级 | 国产成人a∨麻豆精品| 夫妻性生交免费视频一级片| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 一区二区三区四区激情视频| 久久人人爽av亚洲精品天堂 | 在线观看一区二区三区| 一个人看视频在线观看www免费| 色视频www国产| 少妇 在线观看| 国产精品久久久久久av不卡| 男的添女的下面高潮视频| 精品人妻偷拍中文字幕| 国产精品不卡视频一区二区| 国产欧美日韩精品一区二区| 国产在线男女| 91精品一卡2卡3卡4卡| 欧美激情国产日韩精品一区| 日韩欧美一区视频在线观看 | 精品久久久精品久久久| 欧美zozozo另类| 视频区图区小说| 毛片女人毛片| 免费黄色在线免费观看| 麻豆国产97在线/欧美| 国产成人精品久久久久久| 成人一区二区视频在线观看| av专区在线播放| 亚洲欧美中文字幕日韩二区| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| 黄色欧美视频在线观看| 色婷婷av一区二区三区视频| 午夜免费男女啪啪视频观看| 亚洲精华国产精华液的使用体验| 下体分泌物呈黄色| 国产av码专区亚洲av| 日日摸夜夜添夜夜添av毛片| 青春草国产在线视频| 久久精品久久久久久噜噜老黄| 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区| www.av在线官网国产| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 亚洲欧美精品自产自拍| av在线蜜桃| 哪个播放器可以免费观看大片| 小蜜桃在线观看免费完整版高清| 秋霞在线观看毛片| 在线观看免费高清a一片| 自拍欧美九色日韩亚洲蝌蚪91 | 免费观看a级毛片全部| 国产伦精品一区二区三区视频9| 久久久午夜欧美精品| 青春草亚洲视频在线观看| 黑人猛操日本美女一级片| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 在线 av 中文字幕| 亚洲欧美日韩另类电影网站 | 久久国产乱子免费精品| 97热精品久久久久久| 少妇人妻 视频| 欧美日韩在线观看h| 男女边摸边吃奶| 国产综合精华液| av线在线观看网站| 性高湖久久久久久久久免费观看| 亚洲美女视频黄频| 久久 成人 亚洲| 国产视频内射| 中文字幕制服av| 99热这里只有是精品50| 国产无遮挡羞羞视频在线观看| 国产视频内射| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久| 久久久国产一区二区| 99热这里只有是精品在线观看| 免费大片黄手机在线观看| 亚州av有码| 青春草国产在线视频| 国产在线免费精品| 成人特级av手机在线观看| 久久久久性生活片| 一级毛片黄色毛片免费观看视频| 久久青草综合色| 老师上课跳d突然被开到最大视频| 亚洲精品乱码久久久久久按摩| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 国产精品一区二区三区四区免费观看| 免费看光身美女| h视频一区二区三区| 成人免费观看视频高清| 国产白丝娇喘喷水9色精品| 我的老师免费观看完整版| 哪个播放器可以免费观看大片| 少妇被粗大猛烈的视频| 美女国产视频在线观看| 精品一区在线观看国产| 高清av免费在线| 性色av一级| 美女cb高潮喷水在线观看| 国产视频首页在线观看| 亚洲精品色激情综合| av又黄又爽大尺度在线免费看| 国产欧美另类精品又又久久亚洲欧美| www.色视频.com| 99热网站在线观看| 亚洲av日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 少妇丰满av| 久久ye,这里只有精品| 日本色播在线视频| 国产女主播在线喷水免费视频网站| 在线天堂最新版资源| 成年美女黄网站色视频大全免费 | 久久久久久九九精品二区国产| 日本vs欧美在线观看视频 | 国产 一区精品| 王馨瑶露胸无遮挡在线观看| 青青草视频在线视频观看| 女人十人毛片免费观看3o分钟| 五月天丁香电影| 99久国产av精品国产电影| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜添av毛片| 中文字幕制服av| 国产亚洲一区二区精品| 狠狠精品人妻久久久久久综合| 直男gayav资源| 高清视频免费观看一区二区| av.在线天堂| av网站免费在线观看视频| 日本色播在线视频| 色哟哟·www| 美女国产视频在线观看| 观看美女的网站| 亚洲综合精品二区| 麻豆乱淫一区二区| 最近最新中文字幕大全电影3| 亚洲人成网站在线播| 男女无遮挡免费网站观看| 人妻制服诱惑在线中文字幕| 成年美女黄网站色视频大全免费 | 91狼人影院| 日韩中字成人| 在线观看免费高清a一片| 直男gayav资源| 国产精品一区二区性色av| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 色吧在线观看| 女性被躁到高潮视频| 中文字幕久久专区| 国产男女超爽视频在线观看| 国产成人精品婷婷| 国产69精品久久久久777片| 精品一区二区三卡| 国产精品成人在线| 国产av国产精品国产| 极品教师在线视频| 麻豆成人av视频| 少妇人妻一区二区三区视频| 美女内射精品一级片tv| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 久久精品久久精品一区二区三区| 在线观看人妻少妇| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 精品人妻熟女av久视频| 亚洲久久久国产精品| 看非洲黑人一级黄片| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线 | 日韩伦理黄色片| 成人无遮挡网站| 嘟嘟电影网在线观看| 国产探花极品一区二区| 国产一区二区在线观看日韩| 国产精品免费大片| 99热6这里只有精品| 久久久久久久亚洲中文字幕| 99精国产麻豆久久婷婷| 舔av片在线| 熟妇人妻不卡中文字幕| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 免费看av在线观看网站| 99精国产麻豆久久婷婷| 国产精品三级大全| 欧美 日韩 精品 国产| 久久这里有精品视频免费| 深夜a级毛片| 成人无遮挡网站| 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 日韩人妻高清精品专区| 在线观看免费高清a一片| 欧美97在线视频| 国产亚洲5aaaaa淫片| 欧美zozozo另类| 成人美女网站在线观看视频| 最黄视频免费看| 亚洲综合精品二区| 国产精品人妻久久久久久| 久久精品国产自在天天线| 啦啦啦在线观看免费高清www| 99久久精品国产国产毛片| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 麻豆成人午夜福利视频| 99国产精品免费福利视频| 自拍偷自拍亚洲精品老妇| videossex国产| 免费看日本二区| 久久久久久久久久久免费av| 国产男人的电影天堂91| 久久午夜福利片| 精品亚洲成a人片在线观看 | 18禁裸乳无遮挡免费网站照片| av专区在线播放| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 国产精品嫩草影院av在线观看| 亚洲av中文字字幕乱码综合| 午夜激情久久久久久久| 成人一区二区视频在线观看| 2018国产大陆天天弄谢| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 日韩一区二区三区影片| 亚洲精品自拍成人| 99热全是精品| 国产极品天堂在线| 亚洲精品第二区| 国产精品久久久久久久电影| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 天天躁日日操中文字幕| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 联通29元200g的流量卡| 五月玫瑰六月丁香| 国产成人aa在线观看| 国产熟女欧美一区二区| 99热网站在线观看| 激情 狠狠 欧美| 亚洲欧美成人综合另类久久久| 大码成人一级视频| 日本欧美国产在线视频| 人人妻人人爽人人添夜夜欢视频 | 日韩欧美精品免费久久| 免费av不卡在线播放| 嫩草影院新地址| 一个人看视频在线观看www免费| 久久久久人妻精品一区果冻| 日本欧美视频一区| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 亚洲av欧美aⅴ国产| 欧美一区二区亚洲| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品| 日韩视频在线欧美| 国产成人91sexporn| 日韩一区二区三区影片| 老司机影院毛片| 高清日韩中文字幕在线| 欧美3d第一页| 国产高清不卡午夜福利| 舔av片在线| 乱码一卡2卡4卡精品| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久末码| 国产高清三级在线| 最黄视频免费看| 日韩一区二区三区影片| 在线观看av片永久免费下载| 深夜a级毛片| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 亚洲精品久久午夜乱码| 国产色婷婷99| 久久精品久久久久久噜噜老黄| 国产69精品久久久久777片| 我的老师免费观看完整版| 搡老乐熟女国产| 男人添女人高潮全过程视频| 亚洲综合色惰| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 亚洲av男天堂| 大片免费播放器 马上看| 久久这里有精品视频免费| 婷婷色综合大香蕉| 国产亚洲精品久久久com| 国产在线视频一区二区| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 国产高潮美女av| 久久 成人 亚洲| 亚洲精华国产精华液的使用体验| 久久影院123| 人人妻人人爽人人添夜夜欢视频 | 国产精品国产三级国产av玫瑰| 久久久a久久爽久久v久久| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 久久av网站| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 一区在线观看完整版| 熟女人妻精品中文字幕| 国产成人一区二区在线| 啦啦啦在线观看免费高清www| 内地一区二区视频在线| 汤姆久久久久久久影院中文字幕| 久久久色成人| 久久女婷五月综合色啪小说| 欧美性感艳星| 亚洲丝袜综合中文字幕| 观看av在线不卡| 免费看日本二区| 欧美bdsm另类| 新久久久久国产一级毛片| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 在线播放无遮挡| 国产亚洲5aaaaa淫片| 大香蕉97超碰在线| 尾随美女入室| 搡女人真爽免费视频火全软件| 97精品久久久久久久久久精品| 黄色日韩在线| av国产精品久久久久影院| 免费av不卡在线播放| 亚洲欧美清纯卡通| 国内少妇人妻偷人精品xxx网站| 久久精品夜色国产| 一区在线观看完整版| 国产在线一区二区三区精| 精品国产三级普通话版| 日日啪夜夜爽| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 国产高清有码在线观看视频| 免费观看在线日韩| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 久久精品国产a三级三级三级| 一本色道久久久久久精品综合| 蜜桃久久精品国产亚洲av| 日韩中文字幕视频在线看片 | 99九九线精品视频在线观看视频| 大香蕉久久网| 2021少妇久久久久久久久久久| 久久久久久九九精品二区国产| 超碰97精品在线观看| 插逼视频在线观看| 狂野欧美激情性bbbbbb| 久久国产乱子免费精品| 高清在线视频一区二区三区| 在线观看三级黄色| 99re6热这里在线精品视频| 欧美成人一区二区免费高清观看| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 久久久成人免费电影| 夜夜爽夜夜爽视频| 一级毛片久久久久久久久女| 欧美最新免费一区二区三区| 国产成人aa在线观看| 国产一区二区三区av在线| 久久精品国产a三级三级三级| 亚洲av福利一区| 亚洲欧美成人精品一区二区| 亚洲高清免费不卡视频| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 日韩在线高清观看一区二区三区| 一二三四中文在线观看免费高清| 国产免费一级a男人的天堂| 99热6这里只有精品| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 日韩强制内射视频| 三级经典国产精品| 亚洲va在线va天堂va国产| 亚洲av中文av极速乱| 午夜精品国产一区二区电影| 亚洲自偷自拍三级| 99国产精品免费福利视频| 亚洲色图综合在线观看| 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 精品久久久久久电影网| 秋霞伦理黄片| 免费大片18禁| 天堂中文最新版在线下载| 人妻系列 视频| 男人舔奶头视频| 国产91av在线免费观看| 亚洲欧洲日产国产| 色综合色国产| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 中文字幕久久专区| 国精品久久久久久国模美| 在线天堂最新版资源| 韩国高清视频一区二区三区| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 一区二区三区免费毛片| 男女边摸边吃奶| av线在线观看网站| 成人特级av手机在线观看| 成人亚洲精品一区在线观看 | 国产成人精品福利久久| 老司机影院成人| 欧美精品一区二区免费开放| 国产成人精品一,二区| 超碰av人人做人人爽久久| av福利片在线观看| 麻豆精品久久久久久蜜桃| 十分钟在线观看高清视频www | 十八禁网站网址无遮挡 | 在线观看一区二区三区激情| 久久久久人妻精品一区果冻| 国产高清不卡午夜福利| 三级国产精品片| 一区二区av电影网| 欧美高清成人免费视频www| 国产高清有码在线观看视频| 男的添女的下面高潮视频| 91精品国产九色| 日韩av免费高清视频| 成人免费观看视频高清| 国产美女午夜福利| 色婷婷av一区二区三区视频| 蜜桃在线观看..| 精品久久久精品久久久| 国产真实伦视频高清在线观看| 国产色爽女视频免费观看| 少妇裸体淫交视频免费看高清| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩在线观看h| 国产精品麻豆人妻色哟哟久久| 久久99热这里只频精品6学生| 男女免费视频国产| 99热这里只有精品一区| 亚洲内射少妇av| 久久女婷五月综合色啪小说| 亚洲欧美日韩另类电影网站 | 男人爽女人下面视频在线观看| 一区在线观看完整版| 秋霞伦理黄片| 丰满少妇做爰视频| 国产色婷婷99| 91精品伊人久久大香线蕉| 91午夜精品亚洲一区二区三区| 日日啪夜夜爽| 观看美女的网站| 人妻夜夜爽99麻豆av| 高清毛片免费看| 久久久久人妻精品一区果冻| 久久久久久久久久人人人人人人| 天天躁日日操中文字幕| 自拍偷自拍亚洲精品老妇| 中文字幕制服av| 狂野欧美激情性xxxx在线观看| 九九在线视频观看精品| 久久人人爽人人片av| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 人妻少妇偷人精品九色| 亚洲成人中文字幕在线播放| 国产色爽女视频免费观看| 亚洲欧美日韩卡通动漫| 中文字幕av成人在线电影| 中文在线观看免费www的网站| 观看美女的网站| 国产永久视频网站| 亚洲国产精品国产精品| 视频中文字幕在线观看| 三级国产精品欧美在线观看| 欧美日韩亚洲高清精品| 成人影院久久| 全区人妻精品视频| 欧美极品一区二区三区四区|