• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Weighted Learning for Feedforward Neural Networks

    2014-03-02 01:10:46RongFangXuThaoTsenChenandShieJueLee

    Rong-Fang Xu, Thao-Tsen Chen, and Shie-Jue Lee

    Weighted Learning for Feedforward Neural Networks

    Rong-Fang Xu, Thao-Tsen Chen, and Shie-Jue Lee

    —In this paper, we propose two weighted learning methods for the construction of single hidden layer feedforward neural networks. Both methods incorporate weighted least squares. Our idea is to allow the training instances nearer to the query to offer bigger contributions to the estimated output. By minimizing the weighted mean square error function, optimal networks can be obtained. The results of a number of experiments demonstrate the effectiveness of our proposed methods.

    Index Terms—Extreme learning machine, hybrid learning, instance-based learning, weighted least squares.

    1. Introduction

    Neural networks have been becoming a powerful tool in many fields and disciplines. For example, in medical science, they can be used to recognize whether a person is suffering from cancer and help doctors to undertake subsequent diagnoses. In the financial field, they can be used to do stock forecasting or market analysis. In computer science, they can be used in speech recognition or image processing for identifying special objects or events.

    There are many learning algorithms for training a multilayer perceptrons. In 1980s, a well-known algorithm called back propagation was proposed by Rumelhartet al.[1]. Since then, many methods have been proposed subsequently to accelerate the speed of convergence, such as the Levenberg-Marquardt back propagation[2], conjugate gradient[3], momentum term[1],[4], and adaptive step sizes[5].

    Choet al. proposed a hybrid learning method[6]which combines gradient descent optimization and least squares for multilayer perceptrons. The weights connecting from the input layer to the hidden layer are optimized by gradient descent, while the weights connecting from the hidden layer to the output layer are optimized by least squares. Huanget al. proposed a very fast learning algorithm, called extreme learning machine (ELM)[7], for single hidden layer feedforward networks. The difference between Cho’s method and Huang's method is that the weights connecting from the input layer to the hidden layer are assigned random values in Huang’s method. Leeet al. proposed a neuro-fuzzy system with self-constructing rule generation and developed a hybrid learning algorithm consisting of a recursive singular value decomposition based least squares estimator and the gradient descent method[8].

    For most aforementioned learning methods, training patterns are considered to be independent of the query which is the unknown input to be recognized. In other words, all training instances are of equal importance to the derivation of the weights involved in the neural networks. In 1990s, Ahaet al. proposed instance-based algorithms[9]. Its concept is that different training instances are of different degrees of importance to the query. If a training pattern is close to the query, it offers a large contribution. Otherwise, a small contribution is offered. Atkesonet al. surveyed some methods about locally weighted learning for regression problems and recognized positively the value of different contributions provided by different training instances to regression problems[10].

    In this paper, we propose two weighted learning methods for the construction of single hidden layer feedforward neural networks. Both methods allow different contributions to be offered by different training instances. The first method, called weighted ELM (WELM), is an improvement on the extreme learning machine proposed by Huanget al.[7].The weights between the hidden layer and the output layer are optimized by weighted least squares. The second method, called weighted hybrid learning (WHL), applies back propagation to WELM and optimizes the weights between the input layer and the hidden layer. Our idea for both methods is to allow the training instances nearer to the query to offer bigger contributions to the estimated output. By minimizing the weighted mean square error function, optimal networks can be obtained. The results of a number of experiments demonstrate the effectiveness of our proposed methods.

    The rest of this paper is organized as follows. Section 2 briefly introduces ELM. Section 3 presents WELM. In Section 4, we describe WHL which is another version of WELM. In Section 5, results of experiments are presented. Finally, concluding remarks are given in Section 6.

    Fig. 1. Single hidden layer feedforward network.

    2. ELM

    ELM was introduced in [7]. Suppose a set ofNdistinct training instances (xi,ti),i=1, 2, …,N, are given, wherexiandtidenote the input and the desired output, respectively, of instancei, andsingle hidden layer feedforward network to do regression for this case is shown in Fig. 1, in which the first layer is the input layer, the second layer is the hidden layer, and the third layer is the output layer. The input layer hasnneurons, the hidden layer hasJneurons whereJis a number specified by the user, and the output layer has one neuron. Note thatnis the dimensionality of the input.

    For any inputxi, the predicted output?iyis modeled as

    The weightswjand biasesbj,1jJ≤ ≤ , are set to randomly selected values. However, the weightsβj, 1jJ≤ ≤ , are learned from the training instances by minimizing the following summation:

    which can be written as

    where

    The least squares solution of (3) is

    3. WELM

    WELM is an improvement on ELM. As in ELM, the weights between the input layer and the hidden layer are set to randomly selected values. So are the biases of the hidden neurons. For ELM, the weights between the hidden layer and the output layer are optimized by least squares. For WELM, they are optimized by weighted least squares. Assume that we are givenq, called a query,q=[q1,q2, …,qn]T∈Rn, and we expect to derive the estimated output for the query. We compute the instance weightγifor theith training instance,i= 1, 2, …,N, by

    wherediis the distance between theith training instance and the query:

    andhis a user-defined parameter, 0<h≤1. Fig. 2 shows the relationship betweendiandγi. As it can be seen from this figure, when the training instance is closer to the query, the corresponding instance weight is bigger. On the contrary, when the training instance is farther away from the query, the corresponding instance weight is smaller.

    Now we take the instance weights into account and (2) becomes

    which can be written as

    Fig. 2. Instance weight distribution.

    whereΓis the following diagonal matrix

    The weighted least square solution of (11) is

    4. WHL

    Weighted hybrid learning consists of gradient descent optimization and weighted least squares. The weights between the input layer and the hidden layer as well as the biases of the hidden neurons are updated by gradient descent[8]as follows:

    where

    andαis the learning rate. Note that

    The whole process of weighted hybrid learning proceeds as follows. Random values are assigned to the weights between the input layer and the hidden layer. The biases of the hidden neurons are also assigned random values. First, the weights between the input layer and the hidden layer are kept constant. The biases of the hidden neurons are also kept constant. Then optimal values for the weights between the hidden layer and the output layer are obtained by weighted least squares. Next, the weights between the hidden layer and the output layer are kept constant. Then the weights between the input layer and the hidden layer, together with the biases of the hidden neurons, are updated by gradient descent. This process is iterated until the training error is acceptably small.

    5. Experimental Results

    We show the effectiveness of WELM and WHL in this section by presenting the results of experiments on some data sets. Comparisons with other methods, including ELM[11]and BP (Levenberg-Marquardt)[12], are also presented. In the following experiments, the features of all data sets are normalized to within the range of [0, 1] and the targets are normalized to within the range of [-1, 1]. The performance index adopted is the root mean square error (RMSE) defined as

    whereNtis the total number of instances involved, andtiand ?iyare the desired output and estimated output, respectively, of instancei. Note that for training RMSE,Ntis the number of training instances, and for testing RMSE,Ntis the number of testing instances. For each data set, ten-fold cross validation is used.

    5.1 sinc

    The sinc data used which is generated by the MATLAB function “sinc” can be represented as

    The range of the input is from -10 to 10. The number of training data is three hundred and one and the number of testing data is one hundred. The training error and testing error are shown in Table 1 and Table 2, respectively. Note that in these tables, “E-07” indicates “10-07”. Fig. 3 shows the estimated results obtained by ELM and BP, while Fig. 4 shows the estimated results obtained by WELM and WHL. It can be seen easily that WELM and WHL perform much better than the other two methods. For example, the training error is 0.1811 for ELM and 0.0179 for BP, while it is only 6.71E-07 for WHL. By using weighted least squares, the training error can be much reduced. Therefore, a nearly perfect match to the testing data is provided by either WELM or WHL. For example, the testing error is 0.1909 for ELM and 0.0182 for BP, while it is only 1.72E-05 for WHL.with different values ofh. Apparently, testing error decreases whenhis greater than 0.2. However, training time increases along withhclose to 1. From the above two figures, it can be seen that our methods perform well withhin the range of [0.2, 0.6].

    Table 1: Training error for the sinc data set

    Table 2: Testing error for the sinc data set

    We have found that the approximation accuracy is considerably relevant to the relationship between training data and the query. Also, if there is a stronger relationship between a feature and the output, the weighted least squares method is more effective. Therefore, it is a good idea to use some preprocessing like feature selection or feature weighting to select highly relevant features before applying our weighted least squares methods.

    Fig. 5. Results for the housing data set with different numbers of hidden neurons.

    Fig. 6. Testing error for the housing data set with different h values.

    Fig. 7. Training time (sec) for the housing data set with different h values.

    6. Conclusions

    We have presented two methods, weighted extreme learning machine (WELM) and weighted hybrid learning (WHL), for single-hidden layer feedforward neural networks. Both methods allow different contributions to be offered by different training instances. WELM is an improvement on the extreme learning machine proposed by Huanget al.[7]. The weights between the hidden layer and the output layer are optimized by weighted least squares. On the other hand, WHL applies back propagation to optimize the weights between the input layer and the hidden layer of WELM. Our idea for both methods is to allow the training instances closer to the query to offer bigger contributions to the estimated output. By minimizing the weighted square error function, optimal networks can be obtained. The performance of both methods is shown to be better than ELM and BP by demonstrating the results of experiments on function approximation of several mathematical and real-world data sets.

    [1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,“Learning representations by back-propagating errors,”Nature, vol. 323, pp. 533-536, Oct. 1986.

    [2] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Tran. on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

    [3] C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial neural networks,” IEE Proc. G, vol. 139, no. 3, pp. 301-310, 1992.

    [4] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Accelerating the convergence of the backpropagation method,” Biological Cybernetic, vol. 59, no. 4-5, pp. 257-263, 1988.

    [5] R. A. Jacobs, “Increased rates of convergence through learning rateadaptation,” Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.

    [6] S.-Y. Cho and T. W. S. Chow, “Training multilayer neural networks using fast global learning algorithm—least-squares and penalized optimization methods,” Neurocomputing, vol. 25, no. 1-3, pp. 115-131, 1999.

    [7] Q.-Y. Zhu, G.-B. Huang, and C.-K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.

    [8] S.-J. Lee and C.-S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 3, pp. 341-353, 2003.

    [9] D. Kibler, D. W. Aha, and M. K. Albert, “Instance-based learning algorithms,” Machine Learning, vol. 6, no. 1, pp. 37-66, 1991.

    [10] A. W. Moore, C. G. Atkeson, and S. Schaal, Lazy Learning, Norwell: Kluwer Academic Publishers, 1997.

    [11] Source codes of ELM. [Online]. Available: http://www.ntu.edu.sg/home/egbhuang

    [12] BP source codes in the MATLAB toolbox. [Online]. Available: http://www.mathworks.com/help/nnet/ug/trainand-apply- multilayer-neural-networks.html.

    [13] UCI dataset. [Online]. Available: http://archive.ics.uci.edu/ml/

    [14] Regression Datasets. [Online]. Available: http://www.dcc.fc. up.pt/ltorgo/Regression/DataSets.html

    Rong-Fang Xuwas born in Tainan in 1990. He received the B.Sc. degree from National Kaohsiung University of Applied Sciences, Kaohsiung in 2012. He is currently pursuing the master degree with the Department of Electrical Engineering, National Sun Yat-Sen University. His current research interests include data mining and machine learning.

    Thao-Tsen Chenwas born in Penghu in 1989. He received the B.Sc. degree in electrical engineering from Tamkang University, Taipei in 2011 and the M.Sc. degree in electrical engineering from National Sun Yat-Sen University, Kaohsiung in 2013. His research interests include data mining and machine learning.

    Shie-Jue Leewas born in Kin-Men in 1955. He received the B.Sc. and M.Sc. degrees in electrical engineering from National Taiwan University, Taipei in 1977 and 1979, respectively, and the Ph.D. degree in computer science from the University of North Carolina, Chapel Hill in 1990. Dr. Lee joined the Faculty of the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung in 1983, and has been a professor in the department since 1994. His current research interests include artificial intelligence, machine learning, data mining, information retrieval, and soft computing.

    Prof. Lee was the recipient of the best paper award in several international conferences. The other awards won by him are the Distinguished Teachers Award of the Ministry of Education in 1993, the Distinguished Research Award in 1998, the Distinguished Teaching Award in 1993 and 2008, and the Distinguished Mentor Award in 2008, all from National Sun Yat-Sen University. He served as the program chair for several international conferences. He was the Director of the Southern Telecommunications Research Center, National Science Council, from 1998 to 1999, the Chair of the Department of Electrical Engineering, National Sun Yat-Sen University from 2000 to 2003, and the Deputy Dean of the Academic Affairs, National Sun Yat-Sen University from 2008 to 2011. He is now the Director of the NSYSU-III Research Center and the Vice President for Library and Information Services, National Sun Yat-Sen University.

    Manuscript received December 7, 2013; revised March 10, 2014. This work was supported by the NSC under Grant No. NSC-100-2221-E-110-083-MY3 and NSC-101-2622-E-110-011-CC3, and also by “Aim for the Top University Plan” of the National Sun-Yat-Sen University and Ministry of Education.

    R.-F. Xu and T.-T. Chen are with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (e-mail: rfxu@water.ee.nsysu.edu.tw; ttchen@water.ee.nsysu.edu.tw).

    S.-J. Lee is with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (Corresponding author e-mail: leesj@mail.ee.nsysu.edu.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.011

    日韩大片免费观看网站| 久久韩国三级中文字幕| 男女啪啪激烈高潮av片| 91成人精品电影| 高清不卡的av网站| 久久久久久伊人网av| 男的添女的下面高潮视频| 国产一区二区三区综合在线观看 | 黄色一级大片看看| 极品少妇高潮喷水抽搐| a级毛片黄视频| av国产久精品久网站免费入址| 日日摸夜夜添夜夜爱| 国产男人的电影天堂91| av福利片在线| 国产探花极品一区二区| 新久久久久国产一级毛片| 国产精品一二三区在线看| 麻豆精品久久久久久蜜桃| 在线观看www视频免费| 国产成人欧美| 亚洲美女搞黄在线观看| 老女人水多毛片| 美女中出高潮动态图| 人妻 亚洲 视频| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 久久精品久久久久久噜噜老黄| 美女脱内裤让男人舔精品视频| 国产av一区二区精品久久| 深夜精品福利| 国产在线免费精品| 男女免费视频国产| av网站免费在线观看视频| 男人爽女人下面视频在线观看| 免费观看a级毛片全部| 欧美日韩综合久久久久久| 80岁老熟妇乱子伦牲交| 婷婷成人精品国产| 咕卡用的链子| 伦理电影免费视频| 日韩制服骚丝袜av| 18在线观看网站| 精品人妻偷拍中文字幕| 纵有疾风起免费观看全集完整版| 欧美人与善性xxx| 青春草视频在线免费观看| 精品视频人人做人人爽| 亚洲精品久久成人aⅴ小说| 久久精品aⅴ一区二区三区四区 | 2022亚洲国产成人精品| 人体艺术视频欧美日本| 成年美女黄网站色视频大全免费| 大陆偷拍与自拍| 久久久久精品人妻al黑| 久久精品国产鲁丝片午夜精品| 人妻少妇偷人精品九色| 精品久久久精品久久久| av不卡在线播放| 国产精品嫩草影院av在线观看| 我要看黄色一级片免费的| 成人漫画全彩无遮挡| 9色porny在线观看| 大码成人一级视频| 一区二区av电影网| 我的女老师完整版在线观看| 国产精品国产三级国产av玫瑰| 五月玫瑰六月丁香| 人人妻人人澡人人看| 亚洲欧美一区二区三区黑人 | 高清毛片免费看| 侵犯人妻中文字幕一二三四区| 久久99热这里只频精品6学生| 日韩大片免费观看网站| 制服诱惑二区| 高清黄色对白视频在线免费看| 亚洲国产日韩一区二区| 精品一区二区三卡| 欧美成人午夜免费资源| 亚洲五月色婷婷综合| 夜夜骑夜夜射夜夜干| 亚洲精品久久午夜乱码| 精品久久国产蜜桃| 一级毛片 在线播放| 免费在线观看黄色视频的| 亚洲激情五月婷婷啪啪| 看免费成人av毛片| 90打野战视频偷拍视频| 全区人妻精品视频| 女性生殖器流出的白浆| 巨乳人妻的诱惑在线观看| 伊人久久国产一区二区| 亚洲精品一区蜜桃| 久久国产精品男人的天堂亚洲 | av网站免费在线观看视频| 亚洲经典国产精华液单| 久久av网站| 美女中出高潮动态图| 伊人久久国产一区二区| 99久久人妻综合| 国产日韩欧美视频二区| 热re99久久精品国产66热6| 精品99又大又爽又粗少妇毛片| 久久精品国产鲁丝片午夜精品| 国产av国产精品国产| 欧美日韩精品成人综合77777| 全区人妻精品视频| 久久久久久久久久人人人人人人| 成人亚洲精品一区在线观看| 成人毛片a级毛片在线播放| 中文天堂在线官网| 大陆偷拍与自拍| 在线天堂中文资源库| 蜜桃在线观看..| 免费人成在线观看视频色| 乱码一卡2卡4卡精品| 欧美 日韩 精品 国产| 97精品久久久久久久久久精品| 国产精品嫩草影院av在线观看| 国产免费一区二区三区四区乱码| 观看美女的网站| 精品一区在线观看国产| 亚洲精品色激情综合| 国产精品秋霞免费鲁丝片| 亚洲熟女精品中文字幕| 一级片免费观看大全| 精品熟女少妇av免费看| 亚洲人成77777在线视频| 欧美日本中文国产一区发布| 欧美精品高潮呻吟av久久| 亚洲国产精品成人久久小说| 9191精品国产免费久久| 狂野欧美激情性xxxx在线观看| 免费观看a级毛片全部| 日韩,欧美,国产一区二区三区| 国产精品久久久av美女十八| 日韩精品免费视频一区二区三区 | av有码第一页| av视频免费观看在线观看| 国产免费又黄又爽又色| 在线观看免费视频网站a站| 在线精品无人区一区二区三| 久久久久国产网址| 欧美97在线视频| 涩涩av久久男人的天堂| 久久久久久人妻| 少妇熟女欧美另类| a 毛片基地| 国产亚洲精品久久久com| 王馨瑶露胸无遮挡在线观看| 男男h啪啪无遮挡| 亚洲精品av麻豆狂野| 人人澡人人妻人| 亚洲国产精品一区三区| 男女边吃奶边做爰视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人免费观看mmmm| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 69精品国产乱码久久久| av免费观看日本| 国产熟女午夜一区二区三区| 国产一区二区三区av在线| 黄片无遮挡物在线观看| 黄片无遮挡物在线观看| 亚洲天堂av无毛| av在线观看视频网站免费| 精品国产乱码久久久久久小说| 777米奇影视久久| 久久精品久久精品一区二区三区| 欧美日韩国产mv在线观看视频| 制服人妻中文乱码| 多毛熟女@视频| 搡老乐熟女国产| 亚洲四区av| 老司机影院成人| 国语对白做爰xxxⅹ性视频网站| 大片免费播放器 马上看| 好男人视频免费观看在线| 99九九在线精品视频| 最后的刺客免费高清国语| 毛片一级片免费看久久久久| 国产成人91sexporn| 精品酒店卫生间| 久久婷婷青草| 久久久精品免费免费高清| 自线自在国产av| 99热全是精品| 国产片内射在线| 日产精品乱码卡一卡2卡三| 人人妻人人爽人人添夜夜欢视频| 飞空精品影院首页| 最近中文字幕高清免费大全6| 亚洲美女视频黄频| 成人毛片a级毛片在线播放| 色网站视频免费| 日韩电影二区| 欧美成人午夜精品| 丰满少妇做爰视频| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 宅男免费午夜| 日本黄大片高清| 欧美日韩成人在线一区二区| 亚洲第一区二区三区不卡| 女性生殖器流出的白浆| 亚洲欧美精品自产自拍| av福利片在线| 久久这里只有精品19| 亚洲欧洲精品一区二区精品久久久 | 91国产中文字幕| 久久99精品国语久久久| 观看av在线不卡| 69精品国产乱码久久久| 精品国产乱码久久久久久小说| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| www日本在线高清视频| 久久人人爽人人片av| 国产精品嫩草影院av在线观看| 人妻人人澡人人爽人人| www日本在线高清视频| 三上悠亚av全集在线观看| 极品少妇高潮喷水抽搐| 夜夜爽夜夜爽视频| 国产成人精品一,二区| 秋霞伦理黄片| 五月开心婷婷网| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久影院| 久久综合国产亚洲精品| 国产综合精华液| 国产精品久久久久久av不卡| 欧美精品亚洲一区二区| a 毛片基地| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 大香蕉久久网| 国产熟女午夜一区二区三区| www.熟女人妻精品国产 | 黄色 视频免费看| 18禁观看日本| 国产日韩欧美在线精品| kizo精华| 伦理电影大哥的女人| 国产精品久久久久久久电影| 天堂中文最新版在线下载| 一级片免费观看大全| 哪个播放器可以免费观看大片| 免费观看av网站的网址| 中国美白少妇内射xxxbb| 少妇熟女欧美另类| 亚洲四区av| www日本在线高清视频| 欧美国产精品va在线观看不卡| 国产在视频线精品| 久久97久久精品| 久久这里只有精品19| 伊人亚洲综合成人网| 女性生殖器流出的白浆| 久久精品人人爽人人爽视色| 欧美最新免费一区二区三区| 老女人水多毛片| 国产 精品1| 大片免费播放器 马上看| 美女xxoo啪啪120秒动态图| 精品久久久久久电影网| 亚洲欧美成人综合另类久久久| 国产亚洲欧美精品永久| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天操日日干夜夜撸| 亚洲熟女精品中文字幕| xxx大片免费视频| 国产成人免费观看mmmm| 精品久久蜜臀av无| 欧美另类一区| 人人妻人人添人人爽欧美一区卜| 久久97久久精品| 最后的刺客免费高清国语| 美女国产高潮福利片在线看| 妹子高潮喷水视频| 亚洲国产成人一精品久久久| 一个人免费看片子| 18禁国产床啪视频网站| 国产免费现黄频在线看| 午夜福利在线观看免费完整高清在| 国产免费一级a男人的天堂| freevideosex欧美| 一区二区av电影网| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线不卡| 国产精品久久久久久av不卡| 99久久精品国产国产毛片| 精品久久国产蜜桃| 国产成人免费观看mmmm| 精品久久国产蜜桃| 9191精品国产免费久久| 欧美亚洲日本最大视频资源| 深夜精品福利| 美女脱内裤让男人舔精品视频| 成人亚洲欧美一区二区av| 大香蕉久久成人网| 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 国产高清三级在线| 精品酒店卫生间| 免费高清在线观看视频在线观看| 各种免费的搞黄视频| 一二三四中文在线观看免费高清| 国产 精品1| 国产精品国产三级国产专区5o| videos熟女内射| 在线天堂最新版资源| 国产成人精品婷婷| 侵犯人妻中文字幕一二三四区| 丝袜在线中文字幕| 乱码一卡2卡4卡精品| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站| 在线观看三级黄色| 国产片特级美女逼逼视频| 亚洲色图综合在线观看| 欧美 亚洲 国产 日韩一| 中文字幕免费在线视频6| 宅男免费午夜| 男的添女的下面高潮视频| 最近最新中文字幕免费大全7| 久久久久久久精品精品| 一级毛片我不卡| 老熟女久久久| 大陆偷拍与自拍| 精品午夜福利在线看| 少妇 在线观看| 日韩成人伦理影院| 久久99蜜桃精品久久| 又大又黄又爽视频免费| 精品午夜福利在线看| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 夫妻性生交免费视频一级片| 亚洲精品日韩在线中文字幕| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 少妇的逼水好多| 高清黄色对白视频在线免费看| 观看av在线不卡| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 国产日韩欧美视频二区| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄| www.熟女人妻精品国产 | 日日啪夜夜爽| 性高湖久久久久久久久免费观看| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 亚洲精品第二区| 少妇精品久久久久久久| 老司机影院毛片| 亚洲国产av影院在线观看| 国产成人免费无遮挡视频| 久热久热在线精品观看| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 男女国产视频网站| 日韩 亚洲 欧美在线| 97在线人人人人妻| 日韩欧美一区视频在线观看| 久久99一区二区三区| 国产成人精品婷婷| www日本在线高清视频| 国产色婷婷99| 亚洲国产精品一区二区三区在线| 精品午夜福利在线看| 国产精品熟女久久久久浪| 亚洲第一av免费看| 国产成人精品无人区| 高清av免费在线| 国产精品一区www在线观看| 美女中出高潮动态图| 国产永久视频网站| av一本久久久久| 黄网站色视频无遮挡免费观看| 中国美白少妇内射xxxbb| av播播在线观看一区| 天美传媒精品一区二区| 欧美丝袜亚洲另类| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 亚洲精品aⅴ在线观看| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 22中文网久久字幕| 色哟哟·www| 亚洲精品av麻豆狂野| 国产精品一区www在线观看| 久久这里有精品视频免费| 久久99蜜桃精品久久| 丝袜美足系列| 在线亚洲精品国产二区图片欧美| 午夜福利,免费看| 欧美日韩综合久久久久久| 亚洲国产av影院在线观看| 我要看黄色一级片免费的| 亚洲精华国产精华液的使用体验| 国产国语露脸激情在线看| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 欧美人与性动交α欧美精品济南到 | 99久久人妻综合| 精品人妻偷拍中文字幕| 精品久久国产蜜桃| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 这个男人来自地球电影免费观看 | 欧美最新免费一区二区三区| 亚洲国产精品一区三区| 男女午夜视频在线观看 | 亚洲国产色片| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 亚洲精品中文字幕在线视频| 成人免费观看视频高清| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 国产亚洲精品久久久com| 久久毛片免费看一区二区三区| 男人操女人黄网站| 99九九在线精品视频| 男女无遮挡免费网站观看| 日本与韩国留学比较| 丝袜美足系列| 亚洲三级黄色毛片| 成人手机av| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区免费开放| 亚洲高清免费不卡视频| 日本欧美视频一区| 亚洲天堂av无毛| 人妻人人澡人人爽人人| av在线老鸭窝| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 欧美变态另类bdsm刘玥| 男女免费视频国产| 久久热在线av| 精品人妻一区二区三区麻豆| 久久免费观看电影| 免费观看无遮挡的男女| 国产成人精品一,二区| 街头女战士在线观看网站| 日韩免费高清中文字幕av| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 18禁动态无遮挡网站| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| www.av在线官网国产| 精品一区在线观看国产| 午夜精品国产一区二区电影| 久久99一区二区三区| 精品少妇久久久久久888优播| 精品亚洲成国产av| 久久99蜜桃精品久久| 国产黄色视频一区二区在线观看| 国产av精品麻豆| 久久99热这里只频精品6学生| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 精品人妻在线不人妻| 搡女人真爽免费视频火全软件| 狂野欧美激情性bbbbbb| 国产成人精品福利久久| 有码 亚洲区| 久久人人97超碰香蕉20202| 精品人妻偷拍中文字幕| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| 精品久久国产蜜桃| 日韩制服丝袜自拍偷拍| 亚洲精品视频女| 性色avwww在线观看| 亚洲成av片中文字幕在线观看 | 国产av一区二区精品久久| 又大又黄又爽视频免费| 精品少妇内射三级| 久热这里只有精品99| 中国三级夫妇交换| 天天躁夜夜躁狠狠躁躁| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 国产爽快片一区二区三区| 国产精品一区二区在线观看99| 精品一区二区免费观看| 国产无遮挡羞羞视频在线观看| 国产成人精品久久久久久| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 免费大片18禁| 精品视频人人做人人爽| 久久久久久伊人网av| 国产无遮挡羞羞视频在线观看| 在线看a的网站| av卡一久久| 中国美白少妇内射xxxbb| 在线观看三级黄色| 自线自在国产av| 只有这里有精品99| 老司机影院成人| 波野结衣二区三区在线| 免费大片18禁| 午夜免费观看性视频| 七月丁香在线播放| 晚上一个人看的免费电影| 久久久久久久久久久久大奶| 亚洲国产最新在线播放| 久久久久久久久久成人| 色哟哟·www| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 人妻系列 视频| 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 久久久a久久爽久久v久久| 免费在线观看黄色视频的| a级毛色黄片| 国产永久视频网站| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 国产精品免费大片| 成年动漫av网址| 色哟哟·www| 少妇的逼水好多| 国产片内射在线| 尾随美女入室| 中国国产av一级| 亚洲人成网站在线观看播放| xxx大片免费视频| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 久久精品久久久久久久性| 亚洲精品自拍成人| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 日韩免费高清中文字幕av| 大陆偷拍与自拍| 美女内射精品一级片tv| 国产精品.久久久| 久久久久久久精品精品| 国产毛片在线视频| 国产高清国产精品国产三级| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 成人综合一区亚洲| 亚洲国产欧美在线一区| 精品亚洲成国产av| 亚洲av.av天堂| 精品亚洲乱码少妇综合久久| 日韩不卡一区二区三区视频在线| 18禁动态无遮挡网站| 日本色播在线视频| 婷婷成人精品国产| 国产一区二区三区av在线| 在线观看www视频免费| 大香蕉久久成人网| 国产精品一二三区在线看| 汤姆久久久久久久影院中文字幕| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 午夜激情av网站| 男女边摸边吃奶| 一级黄片播放器| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 最新中文字幕久久久久| 91成人精品电影| 国产成人精品婷婷| 日韩欧美一区视频在线观看| 国产激情久久老熟女| 精品一品国产午夜福利视频| 一级a做视频免费观看| 少妇的逼水好多| 久久热在线av| 亚洲国产日韩一区二区| av卡一久久| 香蕉丝袜av| 久久久久精品性色| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的| 91aial.com中文字幕在线观看| 在线亚洲精品国产二区图片欧美|