• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    2014-03-02 01:10:42KuoFengHuangPoJuChenandEmeryJou

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    —Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average location error.

    Index Terms—Localization, mobile sensor node, received signal strength indicator, wireless sensor networks.

    1. Introduction

    Recently wireless sensor networks (WSNs)[1]-[3]are getting more and more convenient, and both applications and researches are becoming skillful. WSNs will deploy sensor nodes in the target area for monitoring and sensing the environmental information. Awareness of the accurate positions of the sensor nodes could improve the data transmission rate. Meanwhile, the deployment of sensor nodes in WSNs can be categorized into two cases which are random deployment and uniform deployment. In the random distribution case, we usually need other hardware or time costs to estimate the unknown sensor’s position. Furthermore, the costs will affect the accuracy of position estimated and induce the location error to be serious. Hence, the localization mechanism reducing the localization error is an important issue in WSNs[4],[5].

    The localization mechanisms can be classified as range-based and range-free approaches. Range-free approaches do not assume the availability or validity of distance information and only rely on the connectivity measurements of undetermined sensors to a number of seeds[1]. Having lower requirements on hardware, the accuracy and precision of range-free approaches are easily affected by the node densities and network conditions, which are often unacceptable for many WSN applications that demand precise localization. Range-based approaches calculate node distances based on some measured quantity[6], whereas they usually require extra hardware support; thus, they are expensive in terms of manufacturing costs and energy consumption. And how to reduce the extra costs becomes an important task to find out. When the sensor node position is estimated, the data transfer speed and other parameters needed to be optimized will have significant improvements.

    In this paper we proposed a mechanism using a mobile reference node (MRN) with the received signal strength indicator[7](RSSI) and trilateration in WSNs localization to reduce energy consumption and the location error. The rest of this paper is arranged as follows. Section 2 reviews some range-based and range-free approaches. The proposed MRN mechanism is described in Section 3. Section 4 presents the simulation results. Finally, the conclusions are drawn in Section 5.

    2. Related Work

    The mechanisms proposed to estimate sensor node positions in literature fall into two categories: range-free and range-based approaches.

    2.1 Range-Free Approaches

    In an approximate point-in-triangulation test (APIT)[6], some sensor nodes transmit signals with the global position system (GPS) in a high frequency or in other ways to obtain sensor nodes locations, which are called beacon. Each node estimates whether it resides inside or outside several triangular regions bounded by the beacons which are also called seeds, and hears and refines the computed location by overlapping such regions which are usually triangles. As an alternate solution, DV-Hop[8]only makes use of a constant number of seeds. Instead of single-hop broadcasting, seeds flood their locations throughout the network, maintaining a running hop count at each node along the path. Nodes calculate their positions based on the received seed locations, and the hop counts from the corresponding anchors and the average distance per hop through the trilateration method.

    2.2 Range-Based Approaches

    The time of arrival method (TOA) obtains the range information through signal propagation time[9], and the time-difference-of-arrival method (TDOA) estimates the node locations by utilizing the time differences among signals that are received from multiple senders[9]. As an extension of TOA and TDOA, the angle of arrival method (AOA) allows nodes to estimate the relative directions between neighbors by setting an antenna array for each node[10]. However, all those approaches require expensive hardware costs. RSSI is utilized to estimate the distance between two nodes with ordinary hardware[7]. Various theoretical or empirical models of radio signal propagation have been constructed to map absolute RSSI values into estimated distances. Recently, mobile-assisted localization approaches have been proposed to improve the efficiency of range-based approaches. The location of a sensor node can be calculated with the range measurements from the mobile node to itself.

    With the RSSI values from the mobile node to an unknown node in an ideal sense, the distance between other unknown nodes should be calculated according to the log-normal shadowing model in (1), which is widely used in the range-based localization approaches[7]:

    whereTPis the transmission power,is the path loss for a reference distance of0d,dis the actual distance between two nodes, and α is the path-loss exponent. The random variation in RSSI is expressed as a Gaussian random variableXσ=N(0,2σ). All values of power are given in decibels relative to 1 mW, and all distances are given in meters. α is set between 2 and 5. σ is set between 4 and 10, depending on the specific environment[7].

    3. Localization Mechanism with Mobile Reference Node

    The proposed mechanism can be divided into two phases: the node localization phase and mobile reference node moving direction decision phase. We assume that each unknown sensor node (USN) has its unique node ID and mark the upper left corner as the initial position of the mobile reference node. The trilateration[11]is used in this paper to calculate the unknown node location. The sink knows the length (defined asL) and width (defined asM) of the entire environment after the deployment of the sensor nodes. The length of each grid is defined as the transmission radiusRof the mobile reference node (MRN). Moreover, there are two parameters,kandp, which will be used to make the following decisions: 1) divide each virtual grid and tag an grid ID on each virtual grid; 2) determine the mobile reference node’s start position; 3) help MRN to set the first direction needed to turn. Andkandpare

    3.1 Node Localization Algorithm

    In this section, we present a node localization algorithm which contains two phases: a) MRN broadcast algorithm and b) sensor node localization algorithm.

    A. MRN Broadcast Algorithm

    As shown in Fig. 1, at first, MRN broadcasts a Wake_up beacon to wake up the USNs in the virtual grid. After that, MRN broadcasts an Initial_start signal and moves R/2. It will broadcast an Initial_stop signal and a Wake_up beacon again to wake up some USNs who have not woke in the first broadcast. Meanwhile, it will broadcast a Middle_start signal and start to move to the end point of a virtual grid’s length. When MRN moves to the end point, it will broadcast a Middle_stop signal which means that MRN has finished moving the length of the grid side. As shown in Fig. 2, it is a single virtual square broadcast. The Initial_stop signal and Middle_stop signal are used to notify the unknown sensor nodes that have already calculated coordinates to return the location coordinates to MRN. The start signal packet contains two fields: the Start_signal_flag and mobile node coordinate. The Start_signal_flag is used to indicate what kind of the signal type is.

    Fig. 1. MRN broadcast algorithm.

    Fig. 2. Single virtual square broadcast.

    However, USN may locate at the special regionxas shown in Fig. 3. The special region is determined by whether the value ofkis an odd value. The USN, located at the position ofx, can receive the start signal when MRNcome to (1) as shown in Fig. 3. USN makes a count on the number of received signals for executing the localization algorithm after receiving the first signal. Meanwhile, the sleeping control strategy is triggered when the USN does not receive any signal more than the threshold of time duration. When MRN moves to (2), it broadcasts the Wake_up beacon to ensure the USN can receive the Middle_start signal. Otherwise, if MRN moves to (3) and (4), it will broadcast an Exception_start signal for USN located at the special region, which can receive the third signal.

    Fig. 3. Special regions: (a) one edge situation (1), (b) one edge situation (2), (c) two edges situation, and (d) no edge situation

    B. Sensor Node Localization Algorithm

    As shown in Fig. 4, we give USNs a threshold time period to wait, defined as R_time which is greater than the moving time. We will make USNs wait for R_time before the USNs get into the sleep state until the Wake_up beacon is accepted in the next action. USNs will estimate its own location through the trilateration after it receives three signals and one end signal. When USN receives three signals, it will keep in the awaking state for receiving the end signal.

    Fig. 4. Sensor node localization algorithm.

    3.2 MRN Moving Direction Scheme

    We propose an MRN moving direction algorithm to determine the moving direction of MRN as shown in Fig. 5, which is divided into two cases: i)kis even and ii)kis odd. There are several variables is used to determine the moving direction here.Sis the special grid number which is equal to the biggest grid number of the next-to-last row. MD_cnt is the number of the rotation. N_cnt is the number of straight moving times.Nis used to determine whether MRN has to change the direction or not. Andtis used to set the direction of rotating (true: left turn, false: right turn).

    Fig. 5. MRN moving direction algorithm.

    A. When k Is Even

    Whenkis even, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 6.

    Fig. 6. MRN moving direction procedure when k is even.

    B. When k Is Odd

    Whenkis odd, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 7.

    Fig. 7. MRN moving direction procedure when k is odd.

    4. Simulation and Analysis

    In this section, we use NS2 vision 2.29 as the simulator to analyze the proposed localization mechanism. The simulation parameters are shown in Table 1[12]. We discuss the result in two aspects: i) average location error and ii) energy consumption. Four other RSSI-based localization approaches are compared, which are a range-based approach of trilateration (TRL)[7]and three mobile-assisted localization approaches that are PI[12](perpendicular intersection: locating wireless sensors with mobile beacon), BI[12](localization of WSNs with a mobile beacon), and MBBGC[13](localization with a mobile beacon based on geometric constraints in WSNs).

    Table 1: Parameter setting

    4.1 Average Location Error Analysis

    Six different environment sizes and the corresponding sensor nodes number are shown in Table 2.

    As shown in Fig. 8, PI has the similar performance with the proposed MRN method by continuously finding the strongest signal strength and using the triangulation method to achieve the lowest error rate. For the MBBGC, the error rate will increase when the environment size is increasing. The accuracy of MBBGC decreases due to the USNs located at the boundary of intersection or the random move of the mobile node.

    Table 2: Sensor nodes number

    Fig. 8. Average location error.

    4.2 Energy Consumption Analysis

    As shown in Fig. 9, the proposed MRN method has lower energy consumption than the others. PI needs to continuously broadcast to find the strongest signal strength for increasing the localization accuracy. The proposed method just needs to broadcast three signals for each edge of the reference node’s route. The proposed method can save significant energy consumption for signaling in this strategy than PI. Otherwise, the energy consumption is increasing due to the random moves of the mobile node when the environment size is increasing. The difference in energy consumption between MBBGC and MRN is 130000 mW when the environment size is 600 m2.

    As shown in Fig. 10, The proposed MRN method could save more energy consumption than the others when the environment size increases. The sleeping control mechanism of MRN could avoid the USNs wasting energy with a setting waiting threshold. Sensor nodes have to keep awaking before the mobile node receiving the coordinate information in both PI and MBBGC. The difference in energy consumption between MRN and PI is approximately 43000 mW and the difference between MRN and MBBGC is approximately 59000 mW when the size is 600 m2.

    Fig. 9. Mobile node energy consumption.

    Fig. 10. Unknown sensor nodes energy consumption.

    5. Conclusions and Future Work

    In WSNs, the throughput will be high when we can handle all sensor nodes’ locations in the whole environment. Nowadays, there are a lot of localization technologies restricted by the cost or the natural environment. Therefore, in some cases the location error can not be avoided. To reduce the location error we need to find other paths to make the breakthrough.

    In this paper, we propose a localization mechanism by using MRN with the RSSI method to estimate distances. Then we use the trilateration method to ensure the location more accuracy. The simulation results show that the mechanism we propose have smaller location errors compared with other methods. And in the energy consumption comparison, the proposed mechanism has a very significant reduction, whether in the mobile node or unknown nodes.

    In the future, we will improve our mechanism in the three-dimensional size of the environment, and overcome the obstacles in the moving path to make sure the moving algorithm can cover the whole environment.

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.

    [2] A. Panwar and S. A. Kumar, “Localization schemes in wireless sensor networks,” in Proc. of Int. Conf. on Advanced Computing & Communication Technologies, Rohtak, 2012, pp. 443-449.

    [3] U. Nazir, M. A. Arshad, N. Shahid, and S. H. Raza,“Classification of localization algorithms for wireless sensor networks: A survey,” in Proc. of Int. Conf. on Open Source Systems and Technologies, Lohore, 2012, pp. 1-5.

    [4] R. Garg, A. L. Varna, and M. Wu, “An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks,” IEEE Trans. on Information Forensics and Security, vol. 7, no. 2, pp. 717-730, 2013.

    [5] H. Chenji and R. Stoleru, “Toward accurate mobile sensor network localization in noisy environments,” IEEE Trans. on Mobile Computing, vol. 12, no. 6, pp. 1094-1106, 2013.

    [6] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” ACM Trans. on Embedded Computing System, vol. 4, no. 4, pp. 877-906, 2005.

    [7] J. Hightower, G. Borriello, and R. Want, “SpotON: An indoor 3D location sensing technology based on RF signal strength,” M.S. thesis, Department of Computer Science and Engineering, University of Washington, Seattle, USA, 2000.

    [8] D. Niculescu and B. Nath, “DV-based positioning in ad hoc networks,” Kluwer J. Telecommunications System, vol. 22, no. 1, pp. 267-280, Jan. 2003.

    [9] K. D. Frampton, “Acoustic self-localization in a distributed sensor network,” IEEE Sensors Journal, vol. 6, no. 1, pp. 166-172, Feb. 2006.

    [10] F. Dai and J. Wu, “Efficient broadcasting in ad hoc wireless networks using directional antennas,” IEEE Trans. on Parallel and Distributed Systems, vol. 17, no. 4, pp. 335-347, Apr. 2006.

    [11] J. Sun, J. Yu, L. Zhu, D. Wu, and Y. Cao, “Construction of generalized ricci flow based virtual coordinates for wireless sensors network,” IEEE Sensors Journal, vol. 12, no. 6, pp. 2109-2112, Jan. 2012.

    [12] Z.-W. Guo, Y. Guo, F. Hong, Z.-K. Jin, Y. He, Y. Feng, and Y.-H. Liu, “Perpendicular intersection: locating wireless sensors with mobile beacon,” IEEE Trans. on Vehicular Technology, vol. 59, no. 7, pp. 3501-3509, Sep. 2010.

    [13] S. Lee, E. Kim, C. Kim, and K. Kim, “Localization with a mobile beacon based on geometric constraints in wireless sensor networks,” IEEE Trans. on Wireless Communications, vol. 8, no. 12, pp. 5801-5805, Dec. 2009.

    Kuo-Feng Huangwas born in Hsinchu in 1979. He received the M.S. and Ph.D. degrees from the Department of Computer Science and Information Engineering, Tamkang University, Taipei in 2007 and 2011, respectively. Presently, he is working at the Institute for Information Industry (III) as a section manager, Taipei. His major research interest is wireless networks.

    Po-Ju Chenwas born in Taichung in 1979. She received her M.S. degree from the Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan in 2003. She is currently an engineer at the Institute for Information Industry (III), Taipei. Her research interests include wireless networks and embedded systems.

    Emery Jouwas born in Taoyuan in 1950. He received his B.S degree in physics from Tsing Hua University, Hsinchu, his M.S. degree in computer science from University of Texas at Austin, USA, and his Ph.D degree in computer science from University of Maryland at College Park, USA. Dr. Jou had been working at Wall Street, USA over 12 years (Morgan Stanley and JPMorganChase). He had also been working with Thales nCipher at Cambridge UK. In 2009, Dr. Jou was a visiting professor at College of Computer Science, Chiao Tung University, Hsinchu. He was also a consultant with the Industrial Technology Research Institute (ITRI). Dr. Jou is currently a research scientist at the Institute for Information Industry (III), Taipei. His research interests include wireless networks and in-memory computing.

    Manuscript received December 3, 2013; revised March 13, 2014.

    K.-F. Huang is with the Institute for Information Industry, Taipei 10622 (Corresponding author e-mail: sailerhuang@iii.org.tw).

    P.-J. Chen and E. Jou are with the Institute for Information Industry, Taipei 10622 (e-mail: cpoju@iii.org.tw; emeryjou@iii.org.tw).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.008

    热99re8久久精品国产| 色播亚洲综合网| 少妇人妻一区二区三区视频| 欧美日本视频| 亚洲久久久久久中文字幕| 最近最新免费中文字幕在线| 欧美午夜高清在线| 12—13女人毛片做爰片一| 亚洲va日本ⅴa欧美va伊人久久| 好男人在线观看高清免费视频| 亚洲av成人av| av国产免费在线观看| 波野结衣二区三区在线| 麻豆av噜噜一区二区三区| 亚洲国产欧洲综合997久久,| 一进一出抽搐gif免费好疼| 中文字幕高清在线视频| 很黄的视频免费| 一个人免费在线观看的高清视频| 伦理电影大哥的女人| 色尼玛亚洲综合影院| 中文字幕免费在线视频6| 免费电影在线观看免费观看| 97人妻精品一区二区三区麻豆| 日本熟妇午夜| 欧美+日韩+精品| 又黄又爽又刺激的免费视频.| 美女高潮的动态| 两人在一起打扑克的视频| 精品人妻熟女av久视频| 啪啪无遮挡十八禁网站| 乱人视频在线观看| 噜噜噜噜噜久久久久久91| 成人特级av手机在线观看| 国产成人福利小说| 久久精品影院6| 国产高清视频在线观看网站| 黄片小视频在线播放| 91麻豆精品激情在线观看国产| 欧美又色又爽又黄视频| av在线蜜桃| 国产精品一区二区性色av| 精品不卡国产一区二区三区| 麻豆成人av在线观看| 网址你懂的国产日韩在线| 亚洲欧美日韩东京热| 欧美日韩国产亚洲二区| 久久久久久久久中文| 天堂影院成人在线观看| 色视频www国产| 国产美女午夜福利| 成人午夜高清在线视频| 天堂√8在线中文| 97碰自拍视频| 婷婷色综合大香蕉| 黄色女人牲交| 国产国拍精品亚洲av在线观看| 亚洲美女黄片视频| 身体一侧抽搐| 在线十欧美十亚洲十日本专区| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品国产亚洲精品| 日本一二三区视频观看| 日本免费a在线| 九九热线精品视视频播放| 免费av毛片视频| 精品人妻1区二区| 麻豆久久精品国产亚洲av| 欧美区成人在线视频| 伦理电影大哥的女人| 国产亚洲精品av在线| 色在线成人网| 国产精品综合久久久久久久免费| 免费一级毛片在线播放高清视频| 精品午夜福利视频在线观看一区| 午夜激情福利司机影院| 欧美成狂野欧美在线观看| 国产精品久久视频播放| 51午夜福利影视在线观看| 色综合站精品国产| 欧美黑人欧美精品刺激| 国产精品爽爽va在线观看网站| 99久久精品热视频| 日本黄大片高清| 午夜精品一区二区三区免费看| 嫩草影院精品99| 麻豆国产97在线/欧美| 久久亚洲精品不卡| 此物有八面人人有两片| 91久久精品电影网| 欧美日韩黄片免| 悠悠久久av| 在线国产一区二区在线| 国产久久久一区二区三区| 亚洲成av人片免费观看| 九九热线精品视视频播放| 村上凉子中文字幕在线| 熟女电影av网| 久久久久久久久久成人| 亚洲精品乱码久久久v下载方式| 亚洲熟妇熟女久久| 色噜噜av男人的天堂激情| 亚洲国产精品999在线| 日韩成人在线观看一区二区三区| 成人国产综合亚洲| 99国产精品一区二区三区| 一本综合久久免费| 色5月婷婷丁香| 日日摸夜夜添夜夜添av毛片 | 精品熟女少妇八av免费久了| 给我免费播放毛片高清在线观看| 中亚洲国语对白在线视频| 啪啪无遮挡十八禁网站| 国产精品久久视频播放| 一边摸一边抽搐一进一小说| 十八禁人妻一区二区| 免费观看的影片在线观看| 日韩有码中文字幕| 一级av片app| 色尼玛亚洲综合影院| 日韩大尺度精品在线看网址| 免费av观看视频| 伦理电影大哥的女人| 欧美三级亚洲精品| 亚洲 国产 在线| 3wmmmm亚洲av在线观看| 十八禁网站免费在线| 99国产综合亚洲精品| 99久久无色码亚洲精品果冻| 日本免费a在线| 一区二区三区免费毛片| a在线观看视频网站| 亚洲人与动物交配视频| 亚洲一区高清亚洲精品| 午夜激情福利司机影院| 亚洲国产精品久久男人天堂| 中文字幕av在线有码专区| 在线观看66精品国产| 波野结衣二区三区在线| 亚洲av二区三区四区| 国产精品98久久久久久宅男小说| 色综合婷婷激情| 国产熟女xx| 欧美激情国产日韩精品一区| 亚洲va日本ⅴa欧美va伊人久久| 日日摸夜夜添夜夜添av毛片 | 国产精品久久久久久久久免 | 日日夜夜操网爽| av专区在线播放| 国产高清三级在线| 蜜桃亚洲精品一区二区三区| 色综合欧美亚洲国产小说| 精品日产1卡2卡| www.熟女人妻精品国产| 久久国产精品人妻蜜桃| 精品一区二区三区av网在线观看| 观看免费一级毛片| 天堂网av新在线| 小蜜桃在线观看免费完整版高清| 丁香六月欧美| 成人精品一区二区免费| 99热精品在线国产| 国产精品电影一区二区三区| netflix在线观看网站| 亚洲久久久久久中文字幕| 欧美一区二区亚洲| 亚洲av美国av| 日本 av在线| 亚洲成人中文字幕在线播放| 久久人人精品亚洲av| 日本免费一区二区三区高清不卡| 中文字幕av在线有码专区| 国产探花在线观看一区二区| 国产亚洲精品综合一区在线观看| 日本一本二区三区精品| 欧美日韩综合久久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 最好的美女福利视频网| avwww免费| 波多野结衣高清作品| a级毛片免费高清观看在线播放| 午夜福利免费观看在线| 我要看日韩黄色一级片| 亚洲五月天丁香| 97热精品久久久久久| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看| 国产69精品久久久久777片| 男人狂女人下面高潮的视频| 真实男女啪啪啪动态图| 少妇的逼水好多| 精品福利观看| 久久香蕉精品热| 中文字幕av成人在线电影| 国产主播在线观看一区二区| 99热只有精品国产| 亚洲性夜色夜夜综合| 成人无遮挡网站| 美女 人体艺术 gogo| 亚洲av电影不卡..在线观看| 亚洲国产精品久久男人天堂| 亚洲av成人精品一区久久| 午夜日韩欧美国产| 国产视频一区二区在线看| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 国产三级中文精品| 国产精品久久久久久亚洲av鲁大| 欧美日韩黄片免| 久久热精品热| 少妇丰满av| 一二三四社区在线视频社区8| 亚洲国产欧洲综合997久久,| 亚洲性夜色夜夜综合| 亚洲五月天丁香| 能在线免费观看的黄片| 如何舔出高潮| 午夜精品一区二区三区免费看| 久久人妻av系列| 久久久久久久亚洲中文字幕 | 午夜a级毛片| 长腿黑丝高跟| 国产精品精品国产色婷婷| 中国美女看黄片| 狂野欧美白嫩少妇大欣赏| 精品日产1卡2卡| 脱女人内裤的视频| 757午夜福利合集在线观看| 亚洲精品在线美女| 亚洲av成人不卡在线观看播放网| 亚洲av成人不卡在线观看播放网| 91av网一区二区| 久久久久久久久大av| 成人特级av手机在线观看| 欧美成人a在线观看| 非洲黑人性xxxx精品又粗又长| 成年免费大片在线观看| av在线老鸭窝| 国产探花极品一区二区| 三级国产精品欧美在线观看| 最好的美女福利视频网| 亚洲成av人片在线播放无| 成人高潮视频无遮挡免费网站| av天堂中文字幕网| 91久久精品电影网| 五月伊人婷婷丁香| 色哟哟·www| 成人午夜高清在线视频| 国产人妻一区二区三区在| 日韩欧美在线二视频| 少妇的逼水好多| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 丰满人妻一区二区三区视频av| 国产一区二区在线av高清观看| 制服丝袜大香蕉在线| 久久午夜亚洲精品久久| 免费看日本二区| 国产精品电影一区二区三区| 国产精品国产高清国产av| 好男人电影高清在线观看| 亚洲激情在线av| 观看美女的网站| 成人性生交大片免费视频hd| 日本三级黄在线观看| 在线观看舔阴道视频| 午夜两性在线视频| 久久国产乱子伦精品免费另类| 国产精品电影一区二区三区| 中文字幕高清在线视频| av天堂中文字幕网| 99国产极品粉嫩在线观看| 精品一区二区免费观看| 性色av乱码一区二区三区2| av女优亚洲男人天堂| 国产av一区在线观看免费| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 国产人妻一区二区三区在| 十八禁国产超污无遮挡网站| 亚洲av中文字字幕乱码综合| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 美女高潮喷水抽搐中文字幕| 国产精品女同一区二区软件 | 亚洲自偷自拍三级| 免费观看人在逋| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 亚洲av电影不卡..在线观看| 99久久成人亚洲精品观看| 午夜视频国产福利| 一级黄色大片毛片| 精品人妻1区二区| 国产精品免费一区二区三区在线| 国产国拍精品亚洲av在线观看| 国产一区二区三区在线臀色熟女| 性色av乱码一区二区三区2| 俺也久久电影网| 97超级碰碰碰精品色视频在线观看| 婷婷丁香在线五月| 99热精品在线国产| 午夜日韩欧美国产| 午夜两性在线视频| 亚洲成人中文字幕在线播放| 久久精品久久久久久噜噜老黄 | 天堂影院成人在线观看| 亚洲色图av天堂| 婷婷色综合大香蕉| 天美传媒精品一区二区| 成人鲁丝片一二三区免费| 搡老熟女国产l中国老女人| 日韩免费av在线播放| 国产成人福利小说| 好男人在线观看高清免费视频| 亚洲不卡免费看| 婷婷亚洲欧美| 精品久久久久久久久亚洲 | 99热只有精品国产| 国产亚洲精品久久久com| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 丰满人妻一区二区三区视频av| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 精品国内亚洲2022精品成人| 在线观看66精品国产| 成人三级黄色视频| 一级毛片久久久久久久久女| 欧美黄色淫秽网站| 中文资源天堂在线| 午夜影院日韩av| 天美传媒精品一区二区| 亚洲欧美激情综合另类| 中文字幕高清在线视频| 91字幕亚洲| 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 丁香六月欧美| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 人人妻人人看人人澡| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单 | 99精品久久久久人妻精品| 夜夜躁狠狠躁天天躁| 色哟哟哟哟哟哟| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 99久久精品一区二区三区| 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 亚洲成av人片免费观看| 淫妇啪啪啪对白视频| 国内精品美女久久久久久| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区精品| 日本一本二区三区精品| 我的老师免费观看完整版| 天堂√8在线中文| bbb黄色大片| 国产熟女xx| 3wmmmm亚洲av在线观看| 最近最新免费中文字幕在线| 校园春色视频在线观看| 免费av不卡在线播放| 草草在线视频免费看| 一本久久中文字幕| 久久久久久久亚洲中文字幕 | 一个人免费在线观看的高清视频| 久9热在线精品视频| 美女被艹到高潮喷水动态| 在线观看av片永久免费下载| 久久久精品欧美日韩精品| 热99re8久久精品国产| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 国产国拍精品亚洲av在线观看| 久久久色成人| 少妇的逼水好多| 精品久久久久久,| 亚洲七黄色美女视频| 国产成人影院久久av| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 宅男免费午夜| av女优亚洲男人天堂| 亚洲成av人片在线播放无| 久久国产乱子免费精品| 嫩草影院入口| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 欧美精品国产亚洲| 99热6这里只有精品| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 禁无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲乱码一区二区免费版| 欧美在线一区亚洲| 观看免费一级毛片| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 99热这里只有精品一区| 亚洲第一区二区三区不卡| 亚洲无线在线观看| 首页视频小说图片口味搜索| 亚洲av二区三区四区| 长腿黑丝高跟| 一级黄片播放器| 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清专用| 91狼人影院| 精品一区二区免费观看| 国产真实乱freesex| 特级一级黄色大片| 热99在线观看视频| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 久久久成人免费电影| 日韩有码中文字幕| 久久久久久久久久成人| 搡女人真爽免费视频火全软件 | 国内精品久久久久久久电影| 国产精品亚洲美女久久久| 国产一区二区在线观看日韩| 中亚洲国语对白在线视频| 在线播放国产精品三级| av天堂中文字幕网| 日韩中字成人| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品1区2区在线观看.| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 亚洲第一区二区三区不卡| 成年女人永久免费观看视频| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 美女免费视频网站| 亚洲精品久久国产高清桃花| 亚洲在线观看片| 亚洲第一区二区三区不卡| 精品久久国产蜜桃| 久久久国产成人精品二区| 亚洲经典国产精华液单 | 欧美丝袜亚洲另类 | 国产激情偷乱视频一区二区| 一区二区三区免费毛片| 国产又黄又爽又无遮挡在线| 亚洲精品亚洲一区二区| 日本 欧美在线| 色综合婷婷激情| avwww免费| 午夜激情欧美在线| 三级男女做爰猛烈吃奶摸视频| www.999成人在线观看| 精品午夜福利视频在线观看一区| 国产老妇女一区| 搡老妇女老女人老熟妇| 国内精品久久久久精免费| 一级a爱片免费观看的视频| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 亚洲国产欧美人成| 久久久久精品国产欧美久久久| 在线天堂最新版资源| 亚洲七黄色美女视频| 国产在视频线在精品| 精品人妻视频免费看| 可以在线观看的亚洲视频| 小说图片视频综合网站| 午夜亚洲福利在线播放| 久久精品91蜜桃| 首页视频小说图片口味搜索| 在线观看66精品国产| 极品教师在线免费播放| 又黄又爽又刺激的免费视频.| 一级黄色大片毛片| 亚洲无线在线观看| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 日本a在线网址| 啦啦啦韩国在线观看视频| 五月伊人婷婷丁香| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 搞女人的毛片| 一个人免费在线观看电影| 欧美激情国产日韩精品一区| 久久人人爽人人爽人人片va | 久久伊人香网站| 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| 久久6这里有精品| 国产在线精品亚洲第一网站| 久久国产乱子伦精品免费另类| 午夜福利在线观看吧| 18+在线观看网站| 精品国产三级普通话版| 欧美日韩福利视频一区二区| 天天一区二区日本电影三级| 少妇的逼好多水| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 色哟哟·www| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 成人永久免费在线观看视频| 久久久久久国产a免费观看| 精品久久久久久久久久免费视频| 日本与韩国留学比较| 久久久国产成人免费| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 欧美最黄视频在线播放免费| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| 久久久久亚洲av毛片大全| 久久九九热精品免费| 国语自产精品视频在线第100页| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 日韩欧美 国产精品| 久久亚洲真实| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 国产精品人妻久久久久久| 国产成人福利小说| 夜夜躁狠狠躁天天躁| 久久中文看片网| 黄色丝袜av网址大全| 成人三级黄色视频| 成年免费大片在线观看| 神马国产精品三级电影在线观看| 成年人黄色毛片网站| 女同久久另类99精品国产91| 日本 欧美在线| 伦理电影大哥的女人| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添av毛片 | 五月伊人婷婷丁香| 一级av片app| 日本与韩国留学比较| 国产日本99.免费观看| 好男人电影高清在线观看| 麻豆成人午夜福利视频| 精品一区二区三区视频在线观看免费| 宅男免费午夜| 乱码一卡2卡4卡精品| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 中文字幕人成人乱码亚洲影| 内地一区二区视频在线| 国产私拍福利视频在线观看| 男女那种视频在线观看| 亚洲精品粉嫩美女一区| 亚洲午夜理论影院| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区亚洲| 白带黄色成豆腐渣| 亚洲最大成人手机在线| 亚洲专区中文字幕在线| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| 99久久精品热视频| 乱码一卡2卡4卡精品| 国产私拍福利视频在线观看| 中文在线观看免费www的网站| 欧美在线黄色| 亚洲人成网站在线播| 黄色女人牲交| 亚洲天堂国产精品一区在线| 久久中文看片网| 国产精品一区二区免费欧美| 一二三四社区在线视频社区8| 老女人水多毛片| 亚洲18禁久久av| 日韩大尺度精品在线看网址| 精品久久国产蜜桃| 欧美高清成人免费视频www| 黄色视频,在线免费观看| 一本综合久久免费| 国产高清有码在线观看视频| 看十八女毛片水多多多| 成人无遮挡网站| 午夜福利在线观看免费完整高清在 | 国产黄片美女视频| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看|