• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    2014-03-02 01:10:42KuoFengHuangPoJuChenandEmeryJou

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    —Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average location error.

    Index Terms—Localization, mobile sensor node, received signal strength indicator, wireless sensor networks.

    1. Introduction

    Recently wireless sensor networks (WSNs)[1]-[3]are getting more and more convenient, and both applications and researches are becoming skillful. WSNs will deploy sensor nodes in the target area for monitoring and sensing the environmental information. Awareness of the accurate positions of the sensor nodes could improve the data transmission rate. Meanwhile, the deployment of sensor nodes in WSNs can be categorized into two cases which are random deployment and uniform deployment. In the random distribution case, we usually need other hardware or time costs to estimate the unknown sensor’s position. Furthermore, the costs will affect the accuracy of position estimated and induce the location error to be serious. Hence, the localization mechanism reducing the localization error is an important issue in WSNs[4],[5].

    The localization mechanisms can be classified as range-based and range-free approaches. Range-free approaches do not assume the availability or validity of distance information and only rely on the connectivity measurements of undetermined sensors to a number of seeds[1]. Having lower requirements on hardware, the accuracy and precision of range-free approaches are easily affected by the node densities and network conditions, which are often unacceptable for many WSN applications that demand precise localization. Range-based approaches calculate node distances based on some measured quantity[6], whereas they usually require extra hardware support; thus, they are expensive in terms of manufacturing costs and energy consumption. And how to reduce the extra costs becomes an important task to find out. When the sensor node position is estimated, the data transfer speed and other parameters needed to be optimized will have significant improvements.

    In this paper we proposed a mechanism using a mobile reference node (MRN) with the received signal strength indicator[7](RSSI) and trilateration in WSNs localization to reduce energy consumption and the location error. The rest of this paper is arranged as follows. Section 2 reviews some range-based and range-free approaches. The proposed MRN mechanism is described in Section 3. Section 4 presents the simulation results. Finally, the conclusions are drawn in Section 5.

    2. Related Work

    The mechanisms proposed to estimate sensor node positions in literature fall into two categories: range-free and range-based approaches.

    2.1 Range-Free Approaches

    In an approximate point-in-triangulation test (APIT)[6], some sensor nodes transmit signals with the global position system (GPS) in a high frequency or in other ways to obtain sensor nodes locations, which are called beacon. Each node estimates whether it resides inside or outside several triangular regions bounded by the beacons which are also called seeds, and hears and refines the computed location by overlapping such regions which are usually triangles. As an alternate solution, DV-Hop[8]only makes use of a constant number of seeds. Instead of single-hop broadcasting, seeds flood their locations throughout the network, maintaining a running hop count at each node along the path. Nodes calculate their positions based on the received seed locations, and the hop counts from the corresponding anchors and the average distance per hop through the trilateration method.

    2.2 Range-Based Approaches

    The time of arrival method (TOA) obtains the range information through signal propagation time[9], and the time-difference-of-arrival method (TDOA) estimates the node locations by utilizing the time differences among signals that are received from multiple senders[9]. As an extension of TOA and TDOA, the angle of arrival method (AOA) allows nodes to estimate the relative directions between neighbors by setting an antenna array for each node[10]. However, all those approaches require expensive hardware costs. RSSI is utilized to estimate the distance between two nodes with ordinary hardware[7]. Various theoretical or empirical models of radio signal propagation have been constructed to map absolute RSSI values into estimated distances. Recently, mobile-assisted localization approaches have been proposed to improve the efficiency of range-based approaches. The location of a sensor node can be calculated with the range measurements from the mobile node to itself.

    With the RSSI values from the mobile node to an unknown node in an ideal sense, the distance between other unknown nodes should be calculated according to the log-normal shadowing model in (1), which is widely used in the range-based localization approaches[7]:

    whereTPis the transmission power,is the path loss for a reference distance of0d,dis the actual distance between two nodes, and α is the path-loss exponent. The random variation in RSSI is expressed as a Gaussian random variableXσ=N(0,2σ). All values of power are given in decibels relative to 1 mW, and all distances are given in meters. α is set between 2 and 5. σ is set between 4 and 10, depending on the specific environment[7].

    3. Localization Mechanism with Mobile Reference Node

    The proposed mechanism can be divided into two phases: the node localization phase and mobile reference node moving direction decision phase. We assume that each unknown sensor node (USN) has its unique node ID and mark the upper left corner as the initial position of the mobile reference node. The trilateration[11]is used in this paper to calculate the unknown node location. The sink knows the length (defined asL) and width (defined asM) of the entire environment after the deployment of the sensor nodes. The length of each grid is defined as the transmission radiusRof the mobile reference node (MRN). Moreover, there are two parameters,kandp, which will be used to make the following decisions: 1) divide each virtual grid and tag an grid ID on each virtual grid; 2) determine the mobile reference node’s start position; 3) help MRN to set the first direction needed to turn. Andkandpare

    3.1 Node Localization Algorithm

    In this section, we present a node localization algorithm which contains two phases: a) MRN broadcast algorithm and b) sensor node localization algorithm.

    A. MRN Broadcast Algorithm

    As shown in Fig. 1, at first, MRN broadcasts a Wake_up beacon to wake up the USNs in the virtual grid. After that, MRN broadcasts an Initial_start signal and moves R/2. It will broadcast an Initial_stop signal and a Wake_up beacon again to wake up some USNs who have not woke in the first broadcast. Meanwhile, it will broadcast a Middle_start signal and start to move to the end point of a virtual grid’s length. When MRN moves to the end point, it will broadcast a Middle_stop signal which means that MRN has finished moving the length of the grid side. As shown in Fig. 2, it is a single virtual square broadcast. The Initial_stop signal and Middle_stop signal are used to notify the unknown sensor nodes that have already calculated coordinates to return the location coordinates to MRN. The start signal packet contains two fields: the Start_signal_flag and mobile node coordinate. The Start_signal_flag is used to indicate what kind of the signal type is.

    Fig. 1. MRN broadcast algorithm.

    Fig. 2. Single virtual square broadcast.

    However, USN may locate at the special regionxas shown in Fig. 3. The special region is determined by whether the value ofkis an odd value. The USN, located at the position ofx, can receive the start signal when MRNcome to (1) as shown in Fig. 3. USN makes a count on the number of received signals for executing the localization algorithm after receiving the first signal. Meanwhile, the sleeping control strategy is triggered when the USN does not receive any signal more than the threshold of time duration. When MRN moves to (2), it broadcasts the Wake_up beacon to ensure the USN can receive the Middle_start signal. Otherwise, if MRN moves to (3) and (4), it will broadcast an Exception_start signal for USN located at the special region, which can receive the third signal.

    Fig. 3. Special regions: (a) one edge situation (1), (b) one edge situation (2), (c) two edges situation, and (d) no edge situation

    B. Sensor Node Localization Algorithm

    As shown in Fig. 4, we give USNs a threshold time period to wait, defined as R_time which is greater than the moving time. We will make USNs wait for R_time before the USNs get into the sleep state until the Wake_up beacon is accepted in the next action. USNs will estimate its own location through the trilateration after it receives three signals and one end signal. When USN receives three signals, it will keep in the awaking state for receiving the end signal.

    Fig. 4. Sensor node localization algorithm.

    3.2 MRN Moving Direction Scheme

    We propose an MRN moving direction algorithm to determine the moving direction of MRN as shown in Fig. 5, which is divided into two cases: i)kis even and ii)kis odd. There are several variables is used to determine the moving direction here.Sis the special grid number which is equal to the biggest grid number of the next-to-last row. MD_cnt is the number of the rotation. N_cnt is the number of straight moving times.Nis used to determine whether MRN has to change the direction or not. Andtis used to set the direction of rotating (true: left turn, false: right turn).

    Fig. 5. MRN moving direction algorithm.

    A. When k Is Even

    Whenkis even, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 6.

    Fig. 6. MRN moving direction procedure when k is even.

    B. When k Is Odd

    Whenkis odd, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 7.

    Fig. 7. MRN moving direction procedure when k is odd.

    4. Simulation and Analysis

    In this section, we use NS2 vision 2.29 as the simulator to analyze the proposed localization mechanism. The simulation parameters are shown in Table 1[12]. We discuss the result in two aspects: i) average location error and ii) energy consumption. Four other RSSI-based localization approaches are compared, which are a range-based approach of trilateration (TRL)[7]and three mobile-assisted localization approaches that are PI[12](perpendicular intersection: locating wireless sensors with mobile beacon), BI[12](localization of WSNs with a mobile beacon), and MBBGC[13](localization with a mobile beacon based on geometric constraints in WSNs).

    Table 1: Parameter setting

    4.1 Average Location Error Analysis

    Six different environment sizes and the corresponding sensor nodes number are shown in Table 2.

    As shown in Fig. 8, PI has the similar performance with the proposed MRN method by continuously finding the strongest signal strength and using the triangulation method to achieve the lowest error rate. For the MBBGC, the error rate will increase when the environment size is increasing. The accuracy of MBBGC decreases due to the USNs located at the boundary of intersection or the random move of the mobile node.

    Table 2: Sensor nodes number

    Fig. 8. Average location error.

    4.2 Energy Consumption Analysis

    As shown in Fig. 9, the proposed MRN method has lower energy consumption than the others. PI needs to continuously broadcast to find the strongest signal strength for increasing the localization accuracy. The proposed method just needs to broadcast three signals for each edge of the reference node’s route. The proposed method can save significant energy consumption for signaling in this strategy than PI. Otherwise, the energy consumption is increasing due to the random moves of the mobile node when the environment size is increasing. The difference in energy consumption between MBBGC and MRN is 130000 mW when the environment size is 600 m2.

    As shown in Fig. 10, The proposed MRN method could save more energy consumption than the others when the environment size increases. The sleeping control mechanism of MRN could avoid the USNs wasting energy with a setting waiting threshold. Sensor nodes have to keep awaking before the mobile node receiving the coordinate information in both PI and MBBGC. The difference in energy consumption between MRN and PI is approximately 43000 mW and the difference between MRN and MBBGC is approximately 59000 mW when the size is 600 m2.

    Fig. 9. Mobile node energy consumption.

    Fig. 10. Unknown sensor nodes energy consumption.

    5. Conclusions and Future Work

    In WSNs, the throughput will be high when we can handle all sensor nodes’ locations in the whole environment. Nowadays, there are a lot of localization technologies restricted by the cost or the natural environment. Therefore, in some cases the location error can not be avoided. To reduce the location error we need to find other paths to make the breakthrough.

    In this paper, we propose a localization mechanism by using MRN with the RSSI method to estimate distances. Then we use the trilateration method to ensure the location more accuracy. The simulation results show that the mechanism we propose have smaller location errors compared with other methods. And in the energy consumption comparison, the proposed mechanism has a very significant reduction, whether in the mobile node or unknown nodes.

    In the future, we will improve our mechanism in the three-dimensional size of the environment, and overcome the obstacles in the moving path to make sure the moving algorithm can cover the whole environment.

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.

    [2] A. Panwar and S. A. Kumar, “Localization schemes in wireless sensor networks,” in Proc. of Int. Conf. on Advanced Computing & Communication Technologies, Rohtak, 2012, pp. 443-449.

    [3] U. Nazir, M. A. Arshad, N. Shahid, and S. H. Raza,“Classification of localization algorithms for wireless sensor networks: A survey,” in Proc. of Int. Conf. on Open Source Systems and Technologies, Lohore, 2012, pp. 1-5.

    [4] R. Garg, A. L. Varna, and M. Wu, “An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks,” IEEE Trans. on Information Forensics and Security, vol. 7, no. 2, pp. 717-730, 2013.

    [5] H. Chenji and R. Stoleru, “Toward accurate mobile sensor network localization in noisy environments,” IEEE Trans. on Mobile Computing, vol. 12, no. 6, pp. 1094-1106, 2013.

    [6] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” ACM Trans. on Embedded Computing System, vol. 4, no. 4, pp. 877-906, 2005.

    [7] J. Hightower, G. Borriello, and R. Want, “SpotON: An indoor 3D location sensing technology based on RF signal strength,” M.S. thesis, Department of Computer Science and Engineering, University of Washington, Seattle, USA, 2000.

    [8] D. Niculescu and B. Nath, “DV-based positioning in ad hoc networks,” Kluwer J. Telecommunications System, vol. 22, no. 1, pp. 267-280, Jan. 2003.

    [9] K. D. Frampton, “Acoustic self-localization in a distributed sensor network,” IEEE Sensors Journal, vol. 6, no. 1, pp. 166-172, Feb. 2006.

    [10] F. Dai and J. Wu, “Efficient broadcasting in ad hoc wireless networks using directional antennas,” IEEE Trans. on Parallel and Distributed Systems, vol. 17, no. 4, pp. 335-347, Apr. 2006.

    [11] J. Sun, J. Yu, L. Zhu, D. Wu, and Y. Cao, “Construction of generalized ricci flow based virtual coordinates for wireless sensors network,” IEEE Sensors Journal, vol. 12, no. 6, pp. 2109-2112, Jan. 2012.

    [12] Z.-W. Guo, Y. Guo, F. Hong, Z.-K. Jin, Y. He, Y. Feng, and Y.-H. Liu, “Perpendicular intersection: locating wireless sensors with mobile beacon,” IEEE Trans. on Vehicular Technology, vol. 59, no. 7, pp. 3501-3509, Sep. 2010.

    [13] S. Lee, E. Kim, C. Kim, and K. Kim, “Localization with a mobile beacon based on geometric constraints in wireless sensor networks,” IEEE Trans. on Wireless Communications, vol. 8, no. 12, pp. 5801-5805, Dec. 2009.

    Kuo-Feng Huangwas born in Hsinchu in 1979. He received the M.S. and Ph.D. degrees from the Department of Computer Science and Information Engineering, Tamkang University, Taipei in 2007 and 2011, respectively. Presently, he is working at the Institute for Information Industry (III) as a section manager, Taipei. His major research interest is wireless networks.

    Po-Ju Chenwas born in Taichung in 1979. She received her M.S. degree from the Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan in 2003. She is currently an engineer at the Institute for Information Industry (III), Taipei. Her research interests include wireless networks and embedded systems.

    Emery Jouwas born in Taoyuan in 1950. He received his B.S degree in physics from Tsing Hua University, Hsinchu, his M.S. degree in computer science from University of Texas at Austin, USA, and his Ph.D degree in computer science from University of Maryland at College Park, USA. Dr. Jou had been working at Wall Street, USA over 12 years (Morgan Stanley and JPMorganChase). He had also been working with Thales nCipher at Cambridge UK. In 2009, Dr. Jou was a visiting professor at College of Computer Science, Chiao Tung University, Hsinchu. He was also a consultant with the Industrial Technology Research Institute (ITRI). Dr. Jou is currently a research scientist at the Institute for Information Industry (III), Taipei. His research interests include wireless networks and in-memory computing.

    Manuscript received December 3, 2013; revised March 13, 2014.

    K.-F. Huang is with the Institute for Information Industry, Taipei 10622 (Corresponding author e-mail: sailerhuang@iii.org.tw).

    P.-J. Chen and E. Jou are with the Institute for Information Industry, Taipei 10622 (e-mail: cpoju@iii.org.tw; emeryjou@iii.org.tw).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.008

    久久人人爽人人片av| 深夜a级毛片| 老师上课跳d突然被开到最大视频| 成人美女网站在线观看视频| 亚洲无线观看免费| 高清毛片免费看| 女人被狂操c到高潮| 午夜激情欧美在线| 男插女下体视频免费在线播放| 91久久精品国产一区二区成人| 欧美性猛交黑人性爽| 深夜精品福利| 国产精品免费一区二区三区在线| 无遮挡黄片免费观看| 亚洲精品亚洲一区二区| 午夜福利在线观看免费完整高清在 | 97超碰精品成人国产| 久久久久久久亚洲中文字幕| 别揉我奶头 嗯啊视频| 99久国产av精品| 91精品国产九色| 99热6这里只有精品| 日本一二三区视频观看| 一区二区三区免费毛片| 免费搜索国产男女视频| 日本爱情动作片www.在线观看 | 一本精品99久久精品77| 国产久久久一区二区三区| 国产在线男女| 一本精品99久久精品77| 亚洲美女搞黄在线观看 | 国内少妇人妻偷人精品xxx网站| 欧美日韩一区二区视频在线观看视频在线 | 中文亚洲av片在线观看爽| 免费av不卡在线播放| 亚洲人成网站在线播放欧美日韩| 欧美最新免费一区二区三区| 亚洲中文日韩欧美视频| 国产伦精品一区二区三区四那| 免费一级毛片在线播放高清视频| 久久久久久久亚洲中文字幕| 日本在线视频免费播放| 午夜精品国产一区二区电影 | 国产精品不卡视频一区二区| 中文在线观看免费www的网站| 99久国产av精品国产电影| 别揉我奶头~嗯~啊~动态视频| 卡戴珊不雅视频在线播放| 岛国在线免费视频观看| 亚洲aⅴ乱码一区二区在线播放| 最近中文字幕高清免费大全6| 国产黄色小视频在线观看| 99国产精品一区二区蜜桃av| 日日干狠狠操夜夜爽| av卡一久久| 男人的好看免费观看在线视频| 六月丁香七月| 久久久色成人| 给我免费播放毛片高清在线观看| 最近手机中文字幕大全| 久久久国产成人免费| 麻豆乱淫一区二区| 亚洲av电影不卡..在线观看| 国产精品久久电影中文字幕| 国产综合懂色| 十八禁国产超污无遮挡网站| 联通29元200g的流量卡| 波多野结衣巨乳人妻| 91狼人影院| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 欧美+亚洲+日韩+国产| 少妇被粗大猛烈的视频| 美女免费视频网站| 久久久成人免费电影| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| 亚洲国产欧美人成| 一个人免费在线观看电影| 一级毛片我不卡| 禁无遮挡网站| 精品一区二区三区视频在线| 久久精品夜色国产| 免费看av在线观看网站| 特大巨黑吊av在线直播| 男女那种视频在线观看| 搡老熟女国产l中国老女人| 国语自产精品视频在线第100页| 亚洲欧美精品自产自拍| 波多野结衣高清无吗| 精品人妻视频免费看| 午夜a级毛片| 在线免费观看的www视频| 91久久精品国产一区二区三区| 欧美一区二区亚洲| 97热精品久久久久久| 久久午夜亚洲精品久久| 精品欧美国产一区二区三| 乱系列少妇在线播放| 热99re8久久精品国产| 内地一区二区视频在线| 免费人成在线观看视频色| 不卡视频在线观看欧美| 亚洲最大成人中文| 亚洲中文字幕日韩| 我的老师免费观看完整版| av中文乱码字幕在线| 黄片wwwwww| 日本 av在线| 我的女老师完整版在线观看| 九九热线精品视视频播放| 丝袜美腿在线中文| 人妻少妇偷人精品九色| 最新在线观看一区二区三区| 亚洲高清免费不卡视频| 少妇熟女欧美另类| 精品一区二区三区视频在线| 干丝袜人妻中文字幕| 中文字幕久久专区| 久久久久久久久久成人| 久久精品91蜜桃| 亚洲三级黄色毛片| 日韩精品中文字幕看吧| 黄色一级大片看看| 亚洲人成网站在线播放欧美日韩| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 亚洲成人中文字幕在线播放| 我的女老师完整版在线观看| 最近视频中文字幕2019在线8| 97热精品久久久久久| 国产麻豆成人av免费视频| 午夜精品国产一区二区电影 | 日本色播在线视频| 少妇被粗大猛烈的视频| 国产黄a三级三级三级人| 国产精品久久久久久av不卡| 国产成人aa在线观看| 内地一区二区视频在线| 亚洲三级黄色毛片| 伦精品一区二区三区| 在线观看66精品国产| 欧美又色又爽又黄视频| 香蕉av资源在线| 免费看美女性在线毛片视频| 久久久色成人| 午夜精品国产一区二区电影 | 十八禁网站免费在线| or卡值多少钱| 美女cb高潮喷水在线观看| 老司机午夜福利在线观看视频| 午夜久久久久精精品| 亚洲成av人片在线播放无| 国产高清不卡午夜福利| 久久热精品热| 一区福利在线观看| 麻豆国产97在线/欧美| 亚洲国产精品成人综合色| 午夜福利视频1000在线观看| 日本黄色片子视频| 午夜精品一区二区三区免费看| 日韩精品中文字幕看吧| 婷婷色综合大香蕉| 午夜日韩欧美国产| 黄色日韩在线| 日韩欧美 国产精品| 免费av毛片视频| 狂野欧美激情性xxxx在线观看| 六月丁香七月| 国产视频内射| 人妻丰满熟妇av一区二区三区| 日韩精品中文字幕看吧| 免费看a级黄色片| 久久中文看片网| 91在线精品国自产拍蜜月| 麻豆国产av国片精品| 精品99又大又爽又粗少妇毛片| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 日本免费一区二区三区高清不卡| 成人国产麻豆网| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久av| 美女xxoo啪啪120秒动态图| 少妇丰满av| 亚洲熟妇熟女久久| 亚洲七黄色美女视频| 一本一本综合久久| 亚洲人成网站在线播| 一级毛片aaaaaa免费看小| 在线观看免费视频日本深夜| av天堂在线播放| 亚洲av美国av| 搡老妇女老女人老熟妇| 国产欧美日韩一区二区精品| 国内精品久久久久精免费| 伦精品一区二区三区| 国产精品久久久久久久电影| 久久精品国产自在天天线| 九色成人免费人妻av| 日韩欧美精品免费久久| 国产单亲对白刺激| 日韩欧美在线乱码| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 日日撸夜夜添| 日产精品乱码卡一卡2卡三| 免费电影在线观看免费观看| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| 亚洲天堂国产精品一区在线| 伦精品一区二区三区| 一区二区三区高清视频在线| 国产一区亚洲一区在线观看| 欧美成人一区二区免费高清观看| 麻豆av噜噜一区二区三区| 丝袜喷水一区| 国产黄片美女视频| 久久久午夜欧美精品| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 不卡视频在线观看欧美| 亚洲美女黄片视频| 色哟哟·www| 亚洲精品影视一区二区三区av| 国产视频内射| 91在线观看av| 欧美又色又爽又黄视频| 男女边吃奶边做爰视频| 亚洲国产精品成人久久小说 | 成熟少妇高潮喷水视频| 国产伦一二天堂av在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇熟女久久| 一本一本综合久久| 亚洲三级黄色毛片| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 99热6这里只有精品| 看黄色毛片网站| 欧美日韩一区二区视频在线观看视频在线 | 乱人视频在线观看| 国产真实乱freesex| av在线老鸭窝| 黄色日韩在线| 男女下面进入的视频免费午夜| 六月丁香七月| 一卡2卡三卡四卡精品乱码亚洲| 国内精品一区二区在线观看| 美女大奶头视频| 搡老妇女老女人老熟妇| 美女高潮的动态| 内射极品少妇av片p| 午夜福利在线在线| 国产男人的电影天堂91| 国内精品宾馆在线| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 久久午夜福利片| 亚洲不卡免费看| 你懂的网址亚洲精品在线观看 | 亚洲av成人精品一区久久| 欧美最新免费一区二区三区| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 欧美绝顶高潮抽搐喷水| 3wmmmm亚洲av在线观看| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 日韩成人伦理影院| 亚洲真实伦在线观看| 欧美性感艳星| 99久国产av精品| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区 | 久久精品综合一区二区三区| 国产真实乱freesex| 久久久精品大字幕| 亚洲国产高清在线一区二区三| 国产精品免费一区二区三区在线| 高清毛片免费观看视频网站| 欧美国产日韩亚洲一区| 国内精品一区二区在线观看| 国产 一区精品| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| 欧美绝顶高潮抽搐喷水| 日韩精品有码人妻一区| 久久6这里有精品| 亚洲av电影不卡..在线观看| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| 99riav亚洲国产免费| 又黄又爽又刺激的免费视频.| 国产免费一级a男人的天堂| 国产一区二区激情短视频| 51国产日韩欧美| 免费av观看视频| 五月伊人婷婷丁香| 日韩高清综合在线| 午夜久久久久精精品| 午夜福利在线观看免费完整高清在 | 伦理电影大哥的女人| 婷婷色综合大香蕉| 亚洲精品久久国产高清桃花| 精品久久久久久久久久久久久| 成人亚洲欧美一区二区av| 国产蜜桃级精品一区二区三区| 亚洲欧美清纯卡通| 级片在线观看| 亚洲色图av天堂| 国产亚洲91精品色在线| 国产麻豆成人av免费视频| 免费av观看视频| 精品一区二区三区人妻视频| 久久久成人免费电影| 免费观看的影片在线观看| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 噜噜噜噜噜久久久久久91| 欧美中文日本在线观看视频| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 亚洲无线在线观看| 男插女下体视频免费在线播放| 一级毛片aaaaaa免费看小| 亚洲乱码一区二区免费版| 免费人成视频x8x8入口观看| 直男gayav资源| 在线观看免费视频日本深夜| 久久精品影院6| 国产精品一二三区在线看| 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 成人性生交大片免费视频hd| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 一边摸一边抽搐一进一小说| 成人综合一区亚洲| 日产精品乱码卡一卡2卡三| 免费大片18禁| 91精品国产九色| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产成人久久av| 久久人人爽人人片av| h日本视频在线播放| 国产亚洲91精品色在线| 久久99热6这里只有精品| 国产黄片美女视频| 亚洲熟妇熟女久久| 日本黄色片子视频| 国产黄片美女视频| 日韩中字成人| 激情 狠狠 欧美| 欧美3d第一页| 99久久精品一区二区三区| 一进一出抽搐gif免费好疼| 日韩欧美免费精品| 男人狂女人下面高潮的视频| h日本视频在线播放| 久久中文看片网| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 亚洲欧美日韩无卡精品| 毛片女人毛片| 国产午夜精品论理片| 日日撸夜夜添| 最近2019中文字幕mv第一页| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 欧美色视频一区免费| 尾随美女入室| 久久婷婷人人爽人人干人人爱| 亚洲国产色片| 国产精品99久久久久久久久| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻aⅴ院| 五月玫瑰六月丁香| 久久久国产成人精品二区| 成人亚洲欧美一区二区av| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 精品一区二区三区人妻视频| av在线天堂中文字幕| 国产综合懂色| 国产男靠女视频免费网站| 一级毛片我不卡| 日韩成人伦理影院| 黑人高潮一二区| 精品无人区乱码1区二区| 中文亚洲av片在线观看爽| 亚洲性夜色夜夜综合| 又爽又黄a免费视频| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 丰满的人妻完整版| 中文在线观看免费www的网站| 国产乱人视频| 性插视频无遮挡在线免费观看| 久久人妻av系列| 2021天堂中文幕一二区在线观| 精品久久久久久久末码| 一级毛片aaaaaa免费看小| 一级a爱片免费观看的视频| 毛片女人毛片| 日韩,欧美,国产一区二区三区 | 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 乱系列少妇在线播放| 日韩,欧美,国产一区二区三区 | av在线亚洲专区| 久久久久久伊人网av| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 国产乱人偷精品视频| 亚洲美女黄片视频| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 成熟少妇高潮喷水视频| 一区二区三区高清视频在线| 99国产精品一区二区蜜桃av| 青春草视频在线免费观看| 欧美日韩在线观看h| 色5月婷婷丁香| 久久久久国产精品人妻aⅴ院| 精品午夜福利在线看| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费| 国产精品精品国产色婷婷| 精品一区二区三区av网在线观看| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 看非洲黑人一级黄片| 美女 人体艺术 gogo| 国产精品久久久久久久电影| 午夜亚洲福利在线播放| 看片在线看免费视频| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 久久韩国三级中文字幕| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 高清毛片免费看| 亚洲国产精品sss在线观看| 人妻少妇偷人精品九色| 在线a可以看的网站| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 黄片wwwwww| 性欧美人与动物交配| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| 亚洲无线观看免费| 天堂√8在线中文| 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 大香蕉久久网| 舔av片在线| 亚洲欧美日韩高清在线视频| 99久久精品热视频| 老司机福利观看| 色在线成人网| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 国产黄色小视频在线观看| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 色尼玛亚洲综合影院| 欧美日韩精品成人综合77777| 亚洲成a人片在线一区二区| 91久久精品电影网| 亚洲欧美清纯卡通| 在线a可以看的网站| 69人妻影院| 亚洲人成网站在线观看播放| 变态另类丝袜制服| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 国产高潮美女av| 性色avwww在线观看| 人人妻人人澡人人爽人人夜夜 | 国国产精品蜜臀av免费| 99热这里只有是精品50| 日日撸夜夜添| 亚洲不卡免费看| www日本黄色视频网| 少妇熟女欧美另类| 91久久精品电影网| 日本一二三区视频观看| 在线观看免费视频日本深夜| 卡戴珊不雅视频在线播放| 国产免费男女视频| 欧美性猛交╳xxx乱大交人| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 高清毛片免费看| 日本免费一区二区三区高清不卡| 欧美一区二区国产精品久久精品| 在线看三级毛片| 国产免费男女视频| 久久这里只有精品中国| 99国产精品一区二区蜜桃av| 亚洲国产精品国产精品| 国产精品亚洲一级av第二区| 亚洲一级一片aⅴ在线观看| 三级毛片av免费| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 深爱激情五月婷婷| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 亚洲成av人片在线播放无| 露出奶头的视频| 真人做人爱边吃奶动态| 欧美性猛交黑人性爽| 赤兔流量卡办理| a级毛片免费高清观看在线播放| 国产激情偷乱视频一区二区| 男女边吃奶边做爰视频| 成人精品一区二区免费| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 久久久久久大精品| 日韩欧美在线乱码| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 18+在线观看网站| 美女xxoo啪啪120秒动态图| 亚洲欧美成人精品一区二区| 嫩草影院精品99| 国产成人一区二区在线| 日本a在线网址| 欧美人与善性xxx| 岛国在线免费视频观看| 伦理电影大哥的女人| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 日本一二三区视频观看| 1000部很黄的大片| 99在线视频只有这里精品首页| av在线蜜桃| 可以在线观看的亚洲视频| 一区二区三区高清视频在线| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| 麻豆乱淫一区二区| 日本与韩国留学比较| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 97超视频在线观看视频| 十八禁国产超污无遮挡网站| 国产av不卡久久| 看黄色毛片网站| 综合色丁香网| 欧美+日韩+精品| 免费搜索国产男女视频| 人人妻人人澡人人爽人人夜夜 | 一级毛片久久久久久久久女| 日韩,欧美,国产一区二区三区 | 中文字幕av成人在线电影| 午夜激情欧美在线| av在线观看视频网站免费| 啦啦啦啦在线视频资源| 搡老岳熟女国产| 国产av一区在线观看免费| 久久久久久久久久黄片| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱 | 亚洲五月天丁香| 插逼视频在线观看| 亚洲成人久久爱视频| 自拍偷自拍亚洲精品老妇| 三级毛片av免费| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 日本 av在线| 色尼玛亚洲综合影院| 国产高清视频在线观看网站| 日韩一区二区视频免费看| 噜噜噜噜噜久久久久久91| 国产精品乱码一区二三区的特点| 久久午夜福利片| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 18禁黄网站禁片免费观看直播| 直男gayav资源| 天堂√8在线中文| 亚洲欧美成人精品一区二区| 国产高清有码在线观看视频| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 五月玫瑰六月丁香| 国产在线男女| 日本a在线网址|