• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Manipulation of Terahertz Radiation Using Vanadium Dioxide

    2014-03-02 01:10:36QiYeWen

    Qi-Ye Wen

    Manipulation of Terahertz Radiation Using Vanadium Dioxide

    Qi-Ye Wen

    —Vanadium dioxide (VO2) is a phase transition material which undergoes a reversible metal-insulator transition (MIT) when triggered by thermal, photo, electrical, and even stress. The huge conduction change of VO2renders it a promising material for terahertz (THz) manipulation. In this paper, some interesting works concerning the growth and characteristics of the VO2film are selectively reviewed. A switching of THz radiation by photo-driven VO2film is demonstrated. Experiments indicate an ultrafast optical switching to THz transmission within 8 picoseconds, and a switching ratio reaches to over 80% during a wide frequency range from 0.3THz to 2.5THz.

    Index Terms—Active device, phase transition; terahertz (THz), vanadium dioxide.

    1. Introduction

    The terahertz (THz) technology offers a variety of applications including spectroscopy, imaging, and communications. Much effort has been devoted to developing THz sources and detectors, which has promoted THz research into one of the most rapidly growing field. However, substantive progression of THz applications also depends on the realization of active components for wave manipulation and modulation[1]. Lying between the radio frequency and infrared, THz electromagnetic waves have been notoriously difficult to modulate because many materials inherently do not respond to THz radiation. High-performance elements to control and manipulate THz electromagnetic waves, such as modulators, switches and active filters are in high demand to develop sophisticated THz communication and imaging systems[2]-[4].

    Vanadium dioxide (VO2) is the interesting electron material that exhibits a reversible first-order phase transition from a insulating state to a metallic state[5]-[7]. Associated with this metal-insulator transition (MIT) are a lattice structural transition from the monoclinic to tetragonal, a change of conductivity by several orders of magnitude, and significant changes of the optical properties at all wavelengths[8]-[10]. These properties render VO2a promising candidate for a variety of interesting applications, such as the electronic switch, gated field effective transistor (FET), memories, modulators, thermal, and chemical sensors. Experimental and theoretical studies to unravel the mechanism of MIT have been ongoing for nearly half a century. A number of reviews on MIT mechanisms and materials in the past years indicate the consistent interest in this subject[11]-[13]. A recent review gave a detailed description to the representative device concepts utilizing MIT in VO2films[14]. The VO2film plays an especially important role in the technologically relevant THz frequency regime[1],[15]. Since semiconductors are transparent to THz wave while conductors are reflective, the THz transmission can be dynamically modified from transparent to reflecting modes by controlling the phase transition of the VO2film. VO2films, separately or integrated with resonant element (e.g. metamateirals), have already been used to control and manipulate the THz wave[16]-[20].

    2. Fabrication of High Quality VO2Films for THz Application

    For either separate or integrated applications, high quality VO2films with strong response to THz radiation are fundamentally needed. VO2films have been fabricated by sol-gel[16], reactive sputtering[21],[22]or pulsed laser deposition (PLD)[23]techniques on a variety of substrates, including sapphire, TiO2, silicon, glass, and fused silica. The crystal structure, oxide phase, crystallinity, grain size, and phase transition characteristics can be strictly controlled by optimizing the growth process.

    One interesting work is that a polymer-assisteddeposition (PAD) method was proposed to fabricate vanadium oxide thin films on sapphire[24]. PAD is a chemical solution deposition technique. Besides the advantages of low cost, easy setup, and the ability for large area coating, PAD shows its unique ability in the precisecontrol of both structures and stoichiometry of thin films. By using the PAD technique, VO2films with controllable crystal phases were synthesized on (0001) sapphire substrates by modifying the processing parameters. Microstructural studies from X-ray diffraction and high-resolution transmission electron microscopy reveal that the monoclinic VO2films have good crystallinity and epitaxial quality, as shown in Fig. 1 (a) to Fig. 1 (c). The interface relationships between the films and the substrates were determined to be VO2(001)//Al2O3(0001) andrespectively. The temperature dependence measurements of electric resistivity shown in Fig. 1 (d) and (e) indicate that the metal-insulatortransitions for VO2thin films occur at 341 K, with a change of four orders of magnitude in resistivity. The transition temperature width of VO2film is as narrow as 5 K. The properties of the as-grown VO2film by PAD is comparable to that of the epitaxial film grown by PLD, indicating that PAD is a feasible way to synthesize high quality vanadium oxide films.

    Fig. 1. Structure and phase transition properties of the VO2film grown by PAD technique: (a) XRD φ-scan result of a VO2thin film on Al2O3(0001) substrate, (b) cross-sectional high resolution TEM images from VO2on Al2O3(0001) substrate, (c) corresponding SAD pattern from VO2and substrate, (d) resistivity versus temperature curves for a VO2thin fi lm grown on Al2O3(0001) substrate, and (e) Gaussian fitting of the resistivity versus temperature curve for the VO2thin film.

    To fabricate high quality VO2thin films, Al2O3and TiO2are conventional employed as substrates. The epitaxial growth of the VO2thin films on sapphires renders a change of the resistivity (ΔR) more than four orders of magnitude due to the very small lattice mismatch[24]-[26]. However, Al2O3and TiO2are expensive. A cost-effective substrate is silicate glass. However, silicon glass has a huge absorption to THz wave thus it is not a good choice in the THz area. We thus proposed a new kind of glass substrate—BK7 glass, which is highly transparent to both THz and optical bands thus is suitable for THz applications. By using the low temperature magnetron sputtering technology, high quality VO2films were deposited on the BK7 substrate without post-annealing treatment. The crystallinity and microstructure of the thin film were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that the as-deposited film crystallizes directly to single-phase VO2with (011) preferred orientation and compact nanostructure. Under a heating-cooling cycle, films undergo a metal-insulator transition with an abrupt change in resistivity more than 4 orders of magnitude. THz transmission modulation was characterized by a THz time domain spectrum system (THz-TDS). The results are plotted in Fig. 2. It can be seen that the film exhibits a broadband modulation to THz wave from 0.2 THz to 2 THz with a giant modulation depth of 89%. Due to the high transparence and the huge modulation effect, the VO2/BK7 sample can be widely used as THz devices such as modulators and switches.

    Electrically triggered phase transition (E-MIT) in VO2is of great interest in novel devices for electric switches, resistance random access memory (ReRAM) networks, and so on[27]-[30]. Out-of-plane metal-VO2-semiconductor (MOS) structures set the basis for realization of E-MIT in VO2[31]-[34]. In this vertical device geometry, TiO2and sapphire are insulating and may not be applicable as the bottom contacts in VO2based out-of plane devices. To date, the most frequently used conducting substrate in vertical VO2devices is heavily doped Si, which is the mainstay substrate material in the microelectronics industry[32],[33],[35]. However, the large crystal lattice mismatch and formation of silicides or native oxide layers set big obstacles for directly depositing VO2on the Si substrate[36],[37]. The direct deposition of VO2on the Si substrate can only render a two orders change in the resistivity of the VO2thin film and a thermal hysteresis (ΔH) of more than 20 K[38]. Such bufferlayers as yttria stabilized zirconia (YSZ) film were proposed to improve the growth of VO2thin films on the Si substrate[39]. It was reported that the 145 nm YSZ buffer layer can greatly decrease the thermal hysteresis (ΔH) to 6 K and increase the ΔRto 3 orders of magnitude[39]. However, due to the thermal instability in phase and microstructure of YSZ material, novel techniques for fabricating high quality VO2thin films on the silicon substrate are still highly desirable.

    Fig. 2. Temperature dependence of the THz transmission through VO2/BK7 sample: (a) the time domain spectrum, and (b) the frequency domain spectrum.

    Heavily doped Ge substrates are conducting, and have a slightly smaller lattice mismatch with VO2than Si, thus have been proposed as the substrate for VO2based vertical devices. By physical vapor deposition, high-quality VO2thin films have been successfully grown on single crystal Ge(100) substrates[34]. It was reported that the VO2thin films grown on the Ge substrate show a higher degree of crystallinity, slightly reduced compressive strain, and larger resistance change across MIT compared to those grown on the Si substrate. Voltage-triggered MIT is observed at room temperature at a critical voltage of only 2.1 V with a hysteresis window of 1 V in VO2thin films grown on Ge. Ge may be a suitable substrate for further explorations of phase transition based oxide electronics utilizing MITs.

    Fig. 3. I-V character curves of VO2based MOIM structure: (a) current-voltage (I-V) curves of the test circuit at various temperatures in a heating process with the singal sweeping mode; inset: the schematic diagram of the MOIM structure, the double sweeping mode at particular temperature of 25°C and the leakage current I-V curves of the test circuit for the deposited buffer layer SiO2, (b) and (c) the ln (I/V) vs. Sqrt (V) constructed from I-V curves at various temperatures shown in (a); inset in (b) the magnified region of the ln (I/V) vs. Sqrt (V).

    It was recently reported that with particular perpendicular structures, for example the metal/VO2/metal structure, the device size can be significantly reduced to submicron scale and the OFF (insulating state)/ON (metallic state) switch time can be improved to less than 2 ns[31]. The ultrafast E-MIT is believed to be induced by electronic correlation effects rather than the joule heating, because the heating driven MIT would give rise to a longer switch time[40]. However, the current-driven joule heating effect in a metal/VO2/metal structure is inevitable once the metallic state of VO2is established, which will hinder the ON-OFF process of the device. In order to eliminate this joule heating effect, a metal-oxide-insulator-metal (MOIM) structure has been demonstrated by introducing a thin SiO2insulating layer between the VO2film and the bottom metal layer[41]. By the reactive sputtering method, the VO2film has been successful grown on SiO2buffered metal electrode, and a metal-oxide (VO2)-insulator(SiO2)-metal (MOIM) junction has also been fabricated. The VO2film has an abrupt thermal-induced MIT with a change of resistance of 2 orders of magnitude. The electrically-driven MIT (E-MIT) switching characteristics have been investigated by applying a perpendicular voltage to the VO2based MOIM device at particular temperatures, sharp jumps in electric currents were observed in theI-Vcharacteristics under a low threshold voltage of 1.6 V, as indicated in Fig. 3. With the SiO2layer, the current value is smaller than 0.1 A both before and after the MIT of VO2, thus the Joule heating effect can be depressed. Furthermore, the SiO2buffer layer can eliminate the stress between VO2films and the metal electrode, thus can improve the quality of VO2films. SiO2has excellent thermal, mechanical, and optical properties, and is compatible with micro-electromechanical devices, which have a great application in the semiconductor process. This MOIM structure is expected to be of significance in exploring ultrafast electronic devices incorporating the correlated oxides based MOIM structure.

    3. Broadband THz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films

    By thermally triggering the phase transition of these films, a large switching ration to THz radiation can be achieved during a broad frequency range. However, for the thermal control, the switching speed is essentially restricted to the time of the heat dissipation, which is in the second scale[20]. Moreover, for electrical control, the voltage applied to the gate terminal is several tens of volts, which can deteriorate the reliability and durability of the switching devices and give rise to considerable switching power loss[42]. It was reported that the photo-induced phase transition is remarkably fast due to a nonthermal mechanism[43]. Nakajimaet al.[44]observed a picosecond THz transmission switching by using 8mJ/cm2pulse laser to pump the VO2thin film, but the magnitude of the THz transmittance change is only 36.8%. Broadband, ultrafast response time, and large switching ratio are still not achieved for the VO2based THz optical switching. In this work, by using the above-mentioned VO2/BK7 sample, the photo-induced phase transition and the corresponding THz transmission modulation were demonstrated.

    The temperature dependence of electric resistivity for the as-prepared VO2films was measured by a four-point probe method, as shown in Fig. 4. The resistivity changes are as large as four orders of magnitude during the phase transition. The transition temperatures can be deduced by Gaussian fitting of the resistivity versus temperature curves (the inset in Fig. 4). The transition temperature is 64.4°C for heating, and 60.5°C for cooling. It should be noted that the transition width (ΔT) is only 3.5 K for the as-grown VO2film, which is comparable to that of the epitaxial film grown by pulse laser deposition technology[23].

    Fig. 4. Hysteresis loop of the resistivity against temperature for the VO2thin films across the phase transition. Inset: the derivative of the resistivity for the heating and cooling transition curves.

    We determined the photo-induced MIT of the thin VO2films by THz pump-probe technology. The pump-probe measurement was performed by using a Ti:sapphire regenerative amplifier delivering ultrashort optical pulses with a duration of 100 fs and a central wavelength of 800 nm at a repetition rate of 1 kHz. The electro-optic detection method was chosen to measure the transmitted signals. The output of the laser has an average power of 0.9 W, and is divided by beam splitters into three portions (pump, generation, and probe). The spot size of the pump laser is enlarged to 8.0 mm in diameter, and the average pump power is 18 mW, corresponding to a pulse energy of 143 μJ/cm2. The picosecond time resolution is provided by delaying the pump-probe arrival time at the sample. Fig. 5 (a) and Fig. 5 (b) show the time domain waveforms of the THz signals transmitted through the bare BK7 substrate and BK7+VO2film in the presence and absence of optical pump. It can be noticed that the THz signals for the bare BK7 substrate are almost identical regardless of the optical pumping, indicating that the BK7 glass has no response to THz wave. On the contrary, the amplitude of the transmitted THz wave through the VO2film on BK7 substrate is reduced significantly by the optical pump with a little shift of the peak position. This slight position-shift means a small decrease of the refractive index of the thin film with optical pump.

    In Fig. 5 (c) we plot the spectrum obtained by conducting the Fourier transformation to the time-domain data plotted in Fig. 5 (b). Since the THz-TDS measurements were performed in the atmosphere, a few strong absorptions by vapor were clearly observed in the frequency spectrum. By normalized to air reference, the transition spectrum of VO2thin films was obtained andplotted as Fig. 5 (d). It can be seen that the VO2thin films, with the substrate, have a high transmittance of about 70%, while the optical pump reduces the THz transmittance to about 10%. Therefore, we obtain an average transmission modulation depth larger than 80% in the frequency range from 0.3 THz to 2.5 THz. This modulation depth is comparable to that of the thermal-induced THz transmission modulation, which is much higher than the previously reported photo-induced THz modulation and the metamaterials based modulator.

    Fig. 5. Time traces for transmitted THz waves through (a) bare substrate, (b) VO2films on substrate with and without laser pump, (c) frequency spectrum using the Fourier transformation to the time-domain data plotted in (b), and (d) the transition spectrum of VO2thin films.

    The photo-induced switching time of our sample was also studied by using the THz pump-probe method. The THz peak transmission was measured by changing the relative time delay between the THz wave and the optical pulse. Fig. 6 shows the temporal evolutions of the transmittance changes of THz wave for VO2films. The transmittance drops rapidly just after the photoexcitation, and reaches the minimum value within 8 ps. The 90% to 10% transmission switching time we obtained is about 6 ps, which is significantly fast than the thermal-induced THz switching[20]. The reversal process of the phase transition is longer beyond the limitation of our set-up, which is estimated to be from a few nanoseconds to hundreds of nanosecond depending on the pump intensity. Remarkable features of the switching behavior investigated here include the room-temperature operation, broadband and ultrafast response, and larger switching ratio. Moreover, the 143 μJ/cm2pump threshold for the photoinduced phase transition is equivalent to a 75 pJ pulse for a typical 50 mm2mode size in a single-mode fiber, making such schemes attractive for real-world applications.

    Fig. 6. Pump-probe signal as a function of pulse delay measured at room temperature.

    4. Conclusions

    In this paper, we selectively review some recent work on the fabrication and exploration of high quality VO2phase transition films for THz manipulation. The ultrafast nature of the phase transition along with spectacularchanges in the electrical/dielectric properties creates several possibilities for THz modulation devices such as modulators, and switches. The VO2/BK7 sample was used to demonstrate its photo-induced phase transition and the corresponding THz transmission switching. It was found that by pumping the VO2film with relatively lower laser power, the picosecond switching time, large modulation depth, and broad bandwidth properties were simultaneously achieved. VO2based high-performance elements to control and manipulate THz electromagnetic waves are excellent candidates to develop sophisticated THz communication and imaging systems.

    [1] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597-600, 2006..

    [2] W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett., vol. 94, no. 21, pp. 213511, 2009.

    [3] T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett., vol. 84, no. 21, pp. 3555, 2004.

    [4] D. Shrekenhamer, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express, vol. 19, no. 10, pp. 9968-9975, 2011.

    [5] F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett., vol. 3, no. 1, pp. 34-36, 1959.

    [6] A. Zylbersztejn and N. F. Mott, “Limits on vanadium oxide Mott metal-insulator transition field-effect transistors,” Phys. Rev. B, vol. 11, pp. 4383-4395, Jun. 1975.

    [7] E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Appl. Opt., vol. 30, no. 19, pp. 2782-2787, 1991.

    [8] R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Jr. Haglund, and L. C. Feldman, “Tunable optical switch by using magnetic fluids,” Appl. Phys. Lett., vol. 85, pp. 1410, Aug. 2004.

    [9] H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, “Monoclinic and correlated metal phase in VO(2) as evidence of the Mott transition: coherent phonon analysis,” Phys. Rev. Lett., vol. 97, no. 26, pp. 266401, 2006.

    [10] J.-Z. Cui, D.-A. Da, and W.-S. Jiang, “Study of structural, electrical and optical properties of VO2thermochromic thin films,” Acta Phys. Sin., vol. 47, no, 3, pp. 0454, 1998.

    [11] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys., vol. 70, pp. 1039-1263, 1998.

    [12] P. P. Edwards, R. L. Johnston, F. Hensel, C. N. R. Rao, and D. P. Tunstall, “A perspective on themetal-nonmetal transition,” Solid State Phys. Adv. Res. Appl., vol. 52, pp. 229-338, 1999.

    [13] S. V. Kravchenko and M. P. Sarachik, “Metal-insulator transition in two-dimensional electron systems,” Rep. Prog. Phys., vol. 67, no. 1, pp. 1-44, 2004.

    [14] Z. Yang, C. H. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res., vol. 41, pp. 337-637, Aug. 2011.

    [15] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597-600, 2006.

    [16] Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “ Magnetic properties of V doped TiO2nano-crystalline film synthesized by liquid phase deposition technique,” J. Phys. D: Appl. Phys., vol. 45, no. 23, pp. 235106, 2012.

    [17] Q.-W. Shi, W.-X. Huang, Y.-X. Zhang, J.-Z. Yan, Y.-B. Zhang, M.-Mao, Y.-Zhang, and M.-J. Tu, “VO2films deposited by sol-gel method, ”ACS Appl. Mater., vol. 3, no. 9, pp. 3523-3527, 2011.

    [18] Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2cut-wires for thermal tunability,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021111, 2010.

    [19] M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2phase transition,” Nano Lett., vol. 10, no. 6, pp. 2064-2068, 2010.

    [20]J. Kyoung, M. Seo, H. Park, S. Koo, H. S. Kim, Y. Park, B. J. Kim, K. Ahn, N. Park, H. T. Kim, and D. S. Kim, “Giant nonlinear response of terahertz nanoresonators on VO2thin film,” Opt. Express, vol. 18, no. 16, pp. 16452-16459, 2010.

    [21] S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett., vol. 98, pp. 071105, Feb. 2011.

    [22] P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett., vol. 36, no. 10, pp. 1927-1929, 2011.

    [23] T.-H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan, and J. Narayan, “Semiconductor-metal transition characteristics of VO2thin films grown on c- and r-sapphire substrates,” J. Appl. Phys., vol. 107, no. 5, pp. 053514, 2010.

    [24] Y.-D. Ji, T.-S. Pan, Z. Bi, W.-Z. Liang, Y. Zhang, H.-Z. Zeng, Q.-Y. Wen, H.-W. Zhang, C.-L. Chen, Q.-X. Jia, and Y. Lin, “Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases,” Appl. Phys. Lett., vol. 101, pp. 071902, 2012.

    [25] B.-G. Chae, H.-T. Kim, S.-J. Yun, B.-J. Kim, Y.-W. Lee, and K.-Y. Kang, “Comparative analysis of VO2thin films prepared on sapphire and SiO2/Si substrates by the Sol/Gel process,” Jpn J. Appl. Phys., vol. 46, no. 1, pp. 7, 38-743, 2007.

    [26] D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, and S. Ramanathana, “Structure-functional property relationships in RF-sputtered vanadium dioxide thin films,” J. Appl. Phys., vol. 102, no. 11, pp. 113715, 2007.

    [27] G. Stefanovich, A. Pergament, and D. Stefanovich,“Electrical switching and Mott transition in VO2,” Journal of Physics-Condensed Matter, vol. 12, no. 41, pp. 8837-8845, 2000.

    [28] G. Seo, B.-J. Kim, C. Ko, Y. Cui, Y. W. Lee, J.-H. Shin, S. Ramanathan, and H.-T. Kim, “Voltage-pulse-induced switching dynamics in VO2thin-film devices on silicon,”IEEE Electron Device Letters, vol. 32, no. 11, pp. 1582-1584, 2011.

    [29] M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B. H. Park, “Two series oxide resistors applicable to high speed and high density nonvolatile memory,” Advanced Materials, vol. 19, no. 22, pp. 3919, 2007.

    [30] M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, “Excellent selector characteristics of nanoscale VO2for high-density bipolar ReRAM applications,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1579-1581, 2011.

    [31] Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 220, 2013.

    [32] D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. of Appl. Phys., vol. 106, no. 8, pp. 083702, 2009.

    [33] C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Applied Physics Letters, vol. 93, no. 25, pp. 252101, 2008.

    [34] Z. Yang, C. Ko, and S. Ramanathan, “Metal-insulator transition characteristics of VO2thin films grown on Ge (100) single crystals,” J Appl. Phys., vol. 108, no. 7, pp. 073708, 2010.

    [35] C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys., vol. 106, no. 3, pp. 034101, 2009.

    [36] K. N. Tu, J. F. Ziegler, and C. J. Kircher, “Formation of vanadium silicides by the interactions of V with bare and oxidized Si wafers,” Appl. Phys. Lett., vol. 23, no. 9, pp. 493, 1973.

    [37] N.-Y. Yuan, J.-H. Li, G. Li, and X.-S. Chen, “The large modification of phase transition characteristics of VO2films on SiO2/Si substrates,” Thin Solid Films, vol. 515, no. 4, pp. 1275-1279, 2006.

    [38] R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on thevanadium dioxide metal-insulator phase transition,” Opt. Express, vol. 18, no. 11, pp. 11192-11201, 2010.

    [39] A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R. J. Narayan, and J. Narayan, “Semiconductor to metal transition characteristics of VO2thin films grown epitaxially on Si (001),” App. Phys. Lett., vol. 95, no. 11, pp. 111915, 2009.

    [40] B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B, vol. 84, pp. 241410, Dec. 2011.

    [41] D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, Z. Chen, Y.-L. Jing, and H.-W. Zhang, “Electrically-driven metal-insulator transition of VO2thin films in a metal-oxide-insulator-metal device structure,” Materials Science in Semiconductor Processing, vol. 27, no. 1/2, pp. 140-144, 2014.

    [42] C. R. Cho, S. I. Cho, S. Vadim, R. Jung, and I. Yoo,“Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing,” Thin Solid Films, vol. 495, no. 1, pp. 375-379, 2006.

    [43] C. Kubler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Jr Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2,” Phys. Rev. Lett., vol. 99, pp. 116401, Sep. 2007.

    [44] M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto,“Photoinduced metallic state in VO2proved by the terahertz pump-probe spectroscopy” Appl. Phys. Lett., vol. 92, no. 1, pp. 011907, 2008.

    Qi-Ye Wenwas born in Guangxi, China in 1976. He received the B.S. degree from Wuhan University of Technology, Wuhan in 1998, the M.S. degree from Guangxi University, Nanning in 2001, and the Ph.D. degree from University of Electronic Science and Technology of China, Chengdu in 2005. He is now a professor with the School of Microelectronic and Solid-state Electronics, UESTC. His research interests include electronic materials and devices for THz wave manipulation, THz communication and imaging.

    Manuscript received August 15, 2014; revised September 10, 2014. This work was supported by the National Natural Science Foundation of China under Grant No. 61131005, Keygrant Project of Chinese Ministry of Education under Grant No. 313013, New Century Excellent Talent Foundation under Grant No. NCET-11-0068, and Sichuan Youth S. & T. Foundation under Grant No. 2011JQ0001.

    Q.-Y. Wen is with the State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China (Corresponding author e-mail: qywen@uestc.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.003

    免费看美女性在线毛片视频| 日本三级黄在线观看| 99精品在免费线老司机午夜| 免费av不卡在线播放| 欧美又色又爽又黄视频| 欧美一区二区国产精品久久精品| 国产美女午夜福利| 美女被艹到高潮喷水动态| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 嫩草影院入口| 亚洲精品乱码久久久v下载方式 | 色老头精品视频在线观看| 国产精品综合久久久久久久免费| 1024香蕉在线观看| 日本一二三区视频观看| 精品99又大又爽又粗少妇毛片 | 欧美激情在线99| 国产97色在线日韩免费| 不卡av一区二区三区| 女人高潮潮喷娇喘18禁视频| 香蕉丝袜av| 无人区码免费观看不卡| 中文资源天堂在线| 亚洲自拍偷在线| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 一级毛片高清免费大全| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 色av中文字幕| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 免费看十八禁软件| 久久久精品大字幕| 黄色 视频免费看| 日韩欧美三级三区| 毛片女人毛片| 丁香六月欧美| 2021天堂中文幕一二区在线观| 成人特级av手机在线观看| 最近在线观看免费完整版| 九色国产91popny在线| 欧美日韩综合久久久久久 | x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 女人高潮潮喷娇喘18禁视频| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 亚洲av日韩精品久久久久久密| 一级作爱视频免费观看| 99国产精品99久久久久| 亚洲自拍偷在线| 精品国产乱码久久久久久男人| 久久这里只有精品19| 中文字幕av在线有码专区| 精品不卡国产一区二区三区| 亚洲av成人av| 亚洲成人久久爱视频| 亚洲 欧美一区二区三区| 999精品在线视频| 99精品欧美一区二区三区四区| 久久久久九九精品影院| 中文字幕久久专区| 国产三级中文精品| 一夜夜www| 少妇的丰满在线观看| 久久精品亚洲精品国产色婷小说| 热99在线观看视频| 美女cb高潮喷水在线观看 | av在线天堂中文字幕| 国内精品久久久久久久电影| 超碰成人久久| 免费av毛片视频| 免费看十八禁软件| 可以在线观看毛片的网站| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 好男人电影高清在线观看| 国产精品九九99| 狂野欧美白嫩少妇大欣赏| 中文字幕av在线有码专区| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 亚洲专区国产一区二区| 免费高清视频大片| 夜夜夜夜夜久久久久| 超碰成人久久| 国产高清激情床上av| 国产精品久久视频播放| 丁香六月欧美| 国产精品久久久av美女十八| 18禁裸乳无遮挡免费网站照片| 中文字幕最新亚洲高清| 精品国产亚洲在线| 亚洲性夜色夜夜综合| 免费看日本二区| 亚洲国产精品合色在线| 久久婷婷人人爽人人干人人爱| 麻豆av在线久日| 观看免费一级毛片| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 高清在线国产一区| 999久久久精品免费观看国产| 亚洲精品美女久久久久99蜜臀| 久99久视频精品免费| 亚洲中文日韩欧美视频| 男女午夜视频在线观看| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 又黄又爽又免费观看的视频| 在线永久观看黄色视频| 一边摸一边抽搐一进一小说| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 在线观看日韩欧美| 亚洲av成人一区二区三| 日韩成人在线观看一区二区三区| 日本a在线网址| 蜜桃久久精品国产亚洲av| 熟女电影av网| 国产精品av视频在线免费观看| 性色avwww在线观看| 久久久久久久久免费视频了| 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 色噜噜av男人的天堂激情| 欧美成人一区二区免费高清观看 | 噜噜噜噜噜久久久久久91| www国产在线视频色| 曰老女人黄片| 久久久久久久久久黄片| 好男人在线观看高清免费视频| 一区二区三区国产精品乱码| 欧美日本亚洲视频在线播放| 18禁美女被吸乳视频| 久久伊人香网站| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 宅男免费午夜| 国产成人一区二区三区免费视频网站| 国产伦在线观看视频一区| 亚洲美女视频黄频| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 国产视频一区二区在线看| 日韩三级视频一区二区三区| av片东京热男人的天堂| 色老头精品视频在线观看| 久久久久久久久久黄片| 欧美成人一区二区免费高清观看 | 舔av片在线| 美女高潮的动态| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久久黄片| 免费在线观看亚洲国产| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 宅男免费午夜| 99热6这里只有精品| 白带黄色成豆腐渣| 岛国视频午夜一区免费看| 在线看三级毛片| 国产精品99久久99久久久不卡| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 久久香蕉国产精品| 欧美一级毛片孕妇| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 一个人免费在线观看电影 | 麻豆国产97在线/欧美| 在线观看免费午夜福利视频| 天堂网av新在线| 夜夜看夜夜爽夜夜摸| 啦啦啦观看免费观看视频高清| av在线天堂中文字幕| 又爽又黄无遮挡网站| 9191精品国产免费久久| 亚洲国产精品sss在线观看| 69av精品久久久久久| 欧美中文日本在线观看视频| 在线十欧美十亚洲十日本专区| 国产成人系列免费观看| 亚洲av熟女| 亚洲第一电影网av| 亚洲专区字幕在线| 亚洲片人在线观看| 久久久久国内视频| 黑人欧美特级aaaaaa片| 小说图片视频综合网站| 婷婷六月久久综合丁香| 母亲3免费完整高清在线观看| 午夜激情欧美在线| 久久久久久久久中文| 国产高清视频在线播放一区| 黄色女人牲交| 久久久久久久精品吃奶| 99久久国产精品久久久| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 国产精品一及| www.www免费av| 精品99又大又爽又粗少妇毛片 | 久久国产精品影院| 99久久精品热视频| 久久亚洲真实| 久久久久性生活片| 怎么达到女性高潮| 国产精品99久久99久久久不卡| av国产免费在线观看| 成在线人永久免费视频| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻| av中文乱码字幕在线| 男女视频在线观看网站免费| 丁香六月欧美| 色综合亚洲欧美另类图片| 国产视频内射| 国产亚洲av高清不卡| 中文字幕熟女人妻在线| 国产高清videossex| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 亚洲欧美日韩东京热| 宅男免费午夜| 少妇的丰满在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 宅男免费午夜| 精品午夜福利视频在线观看一区| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 小说图片视频综合网站| 久久午夜综合久久蜜桃| 久久国产乱子伦精品免费另类| 男人和女人高潮做爰伦理| 超碰成人久久| 久久久久久久午夜电影| 国产aⅴ精品一区二区三区波| 久久国产乱子伦精品免费另类| 好男人在线观看高清免费视频| 曰老女人黄片| 成在线人永久免费视频| 国内精品久久久久精免费| 亚洲片人在线观看| e午夜精品久久久久久久| 国产一级毛片七仙女欲春2| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 久久午夜亚洲精品久久| 亚洲色图av天堂| 成在线人永久免费视频| 亚洲 欧美一区二区三区| 在线永久观看黄色视频| 99久国产av精品| 男人舔奶头视频| 两性夫妻黄色片| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区| 国产免费av片在线观看野外av| www国产在线视频色| 好男人电影高清在线观看| 久久性视频一级片| 婷婷精品国产亚洲av| 偷拍熟女少妇极品色| 99久久精品一区二区三区| 色综合亚洲欧美另类图片| 91麻豆av在线| 97碰自拍视频| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 国产精品精品国产色婷婷| 一级毛片精品| 18禁国产床啪视频网站| 欧美中文综合在线视频| 日韩欧美精品v在线| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 欧美日韩中文字幕国产精品一区二区三区| 国产又黄又爽又无遮挡在线| 日本 av在线| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 成人午夜高清在线视频| 91在线观看av| 视频区欧美日本亚洲| 91老司机精品| 久久久成人免费电影| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 一级作爱视频免费观看| 亚洲精品在线美女| 丝袜人妻中文字幕| 成年版毛片免费区| 成人午夜高清在线视频| 亚洲专区字幕在线| 最近视频中文字幕2019在线8| 国产精品电影一区二区三区| 国产成年人精品一区二区| 伦理电影免费视频| 国产精品香港三级国产av潘金莲| 国产精品亚洲av一区麻豆| 精品人妻1区二区| 无人区码免费观看不卡| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 在线a可以看的网站| 免费搜索国产男女视频| 国产精品国产高清国产av| 一个人免费在线观看电影 | 日日干狠狠操夜夜爽| 国产精品亚洲美女久久久| 久久久久久大精品| 国产精品一区二区免费欧美| 国产精品,欧美在线| 高清在线国产一区| 国产伦精品一区二区三区视频9 | 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av | 国产探花在线观看一区二区| 精品乱码久久久久久99久播| www.熟女人妻精品国产| 亚洲国产看品久久| 操出白浆在线播放| 成人国产综合亚洲| 色噜噜av男人的天堂激情| 国产精品香港三级国产av潘金莲| 高清毛片免费观看视频网站| 国产欧美日韩精品一区二区| 午夜福利欧美成人| 国产成人av教育| 一二三四在线观看免费中文在| 九九热线精品视视频播放| 蜜桃久久精品国产亚洲av| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 中文字幕人妻丝袜一区二区| 国产成人欧美在线观看| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| 国产视频内射| 亚洲精品在线美女| 亚洲精品中文字幕一二三四区| 国产精品精品国产色婷婷| 操出白浆在线播放| 国产毛片a区久久久久| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 亚洲精品美女久久av网站| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 桃红色精品国产亚洲av| 窝窝影院91人妻| 亚洲国产精品999在线| 99riav亚洲国产免费| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 免费在线观看亚洲国产| 99视频精品全部免费 在线 | 91麻豆av在线| ponron亚洲| 欧美黑人巨大hd| 欧美高清成人免费视频www| 国产主播在线观看一区二区| bbb黄色大片| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影| 最新在线观看一区二区三区| av在线蜜桃| 99久久无色码亚洲精品果冻| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 少妇的丰满在线观看| 免费在线观看影片大全网站| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 波多野结衣高清无吗| 18美女黄网站色大片免费观看| 小蜜桃在线观看免费完整版高清| 精品国产美女av久久久久小说| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 男人的好看免费观看在线视频| 国产激情欧美一区二区| avwww免费| 可以在线观看的亚洲视频| 欧美激情久久久久久爽电影| 一二三四社区在线视频社区8| 校园春色视频在线观看| 日韩欧美 国产精品| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 亚洲国产欧洲综合997久久,| 99热这里只有精品一区 | 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 最近视频中文字幕2019在线8| 午夜精品一区二区三区免费看| 一级a爱片免费观看的视频| 国产淫片久久久久久久久 | 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频| 久久中文看片网| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 国产淫片久久久久久久久 | 久久亚洲精品不卡| 欧美3d第一页| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 国产亚洲av高清不卡| 午夜福利在线观看吧| 亚洲av五月六月丁香网| 国产成人精品无人区| 国产精品乱码一区二三区的特点| 成年女人永久免费观看视频| 成年免费大片在线观看| 又黄又粗又硬又大视频| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 日韩中文字幕欧美一区二区| 精品久久久久久久末码| 99国产精品一区二区三区| 免费看美女性在线毛片视频| 黑人操中国人逼视频| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 亚洲,欧美精品.| svipshipincom国产片| 一a级毛片在线观看| 亚洲欧美精品综合久久99| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 久久久久久人人人人人| 久久久色成人| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 少妇裸体淫交视频免费看高清| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 狂野欧美白嫩少妇大欣赏| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 国产精品女同一区二区软件 | 男人和女人高潮做爰伦理| 最好的美女福利视频网| 午夜久久久久精精品| 成人特级av手机在线观看| 色老头精品视频在线观看| 午夜精品在线福利| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| 国产一区二区三区在线臀色熟女| 免费av不卡在线播放| 一进一出抽搐动态| 少妇人妻一区二区三区视频| 亚洲人成网站高清观看| 观看美女的网站| 日本黄色视频三级网站网址| 国产97色在线日韩免费| 在线免费观看的www视频| 欧美高清成人免费视频www| 嫩草影院入口| 男人舔奶头视频| 亚洲精品乱码久久久v下载方式 | 99久久国产精品久久久| 久久精品aⅴ一区二区三区四区| 一级毛片精品| 91久久精品国产一区二区成人 | 国产乱人视频| 99久久国产精品久久久| 老司机在亚洲福利影院| 欧美日韩黄片免| 久久精品91无色码中文字幕| 手机成人av网站| 亚洲av熟女| 国产精品一区二区三区四区免费观看 | 国产成人福利小说| 可以在线观看毛片的网站| 久久久久久大精品| 国产熟女xx| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 两性夫妻黄色片| 一区二区三区高清视频在线| 日韩有码中文字幕| 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站 | 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 精品日产1卡2卡| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 波多野结衣巨乳人妻| 长腿黑丝高跟| 露出奶头的视频| bbb黄色大片| 亚洲 国产 在线| av片东京热男人的天堂| 亚洲成人精品中文字幕电影| 一进一出抽搐动态| 国产精品一区二区三区四区免费观看 | 成人鲁丝片一二三区免费| 日本 av在线| 亚洲在线自拍视频| 变态另类丝袜制服| 特大巨黑吊av在线直播| 一区福利在线观看| 九色国产91popny在线| www.999成人在线观看| 亚洲人成网站高清观看| 亚洲熟妇中文字幕五十中出| 伦理电影免费视频| 黄片小视频在线播放| 国产又黄又爽又无遮挡在线| 一个人看的www免费观看视频| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区| 午夜影院日韩av| 99久久综合精品五月天人人| 国产私拍福利视频在线观看| 成人欧美大片| 久久久久久国产a免费观看| 亚洲国产欧美网| 一夜夜www| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 亚洲美女黄片视频| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 一级毛片高清免费大全| 日本a在线网址| 午夜两性在线视频| 美女 人体艺术 gogo| 亚洲成人中文字幕在线播放| 国产人伦9x9x在线观看| 欧美黑人欧美精品刺激| 国产1区2区3区精品| a级毛片a级免费在线| 99国产精品一区二区三区| 中国美女看黄片| 国产99白浆流出| 99热6这里只有精品| 国产又色又爽无遮挡免费看| 国产综合懂色| 国产一区二区在线av高清观看| 搞女人的毛片| 99国产综合亚洲精品| 欧美日韩精品网址| 青草久久国产| 国产精品影院久久| 美女扒开内裤让男人捅视频| 五月玫瑰六月丁香|