• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    2014-03-02 01:10:35JamesKolodzeyGuangChiXuanPengChengLvNathanSustersicandXinMa

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    —Electrically pumped high power terahertz (THz) emitters that operated above room temperature in a pulse mode were fabricated from nitrogen-doped n-type 6H-SiC. The emission spectra had peaks centered on 5THz and 12THz (20meV and 50meV) that were attributed to radiative transitions of excitons bound to nitrogen donor impurities. Due to the relatively deep binding energies of the nitrogen donors, above 100meV, and the high thermal conductivity of the SiC substrates, the THz output power and operating temperature were significantly higher than previous dopant based emitters. With peak applied currents of a few amperes, and a top surface area of 1mm2, the device emitted up to 0.5mW at liquid nitrogen temperature (77K), and tens of microwatts up to 333K. This result is the highest temperature of THz emission reported from impuritybased emitters.

    Index Terms—Intracenter radiative transitions, semiconductor devices, silicon carbide, terahertz emitting devices, wide band gap semiconductors.

    1. Introduction

    In recent years, new applications in terahertz (THz) communication, imaging, medicine, remote sensing, and spectroscopy have initiated huge research interests in THz devices[1]-[3]. There are few sources, however, which emit in the THz frequency range (1 THz-10 THz) and are suitable for compact, portable, and low cost applications. Powerful terahertz sources were desired, especially with higher operating temperatures that could, in principle, operate without cryogenics. There has been considerable interest in THz emitters based on doped semiconductors, such as impurity-doped Si[4]-[7], impurity-doped Ge[8]-[10], and impurity-doped SiC[11]-[13]. These impurity-based devices emit THz frequencies by a mechanism of intracenter radiative transitions in hydrogenic dopant states[14]. The operating temperatures of such devices were limited, however, by the relatively low ionization energies of the dopants compared with the thermal energykBT[14]. For example, boron in Si has an ionization energy of 45 meV, and at temperatures above 130 K, most of the holes would be excited into the valence band and unavailable for radiative transitions. For Si-based impurity emitters with boron dopants, the highest reported operating temperature was 118 K[7]. Alternative elements with deeper binding energies, however, may be able to achieve higher operating temperatures. For example, Lvet al.[12]reported THz emission at 150 K from a nitrogen-doped 4H-SiC device. The nitrogen donor in 4H-SiC has ionization energies of 52.1 meV for theh-site (hexagonal) and 91.8 meV for thek-site (cubic)[15]. Nitrogen in 6H-SiC, as described here, has deeper ionization energies of 81 meV for theh-site, 137.6 meV for thek1-site, and 142.4 meV for thek2-site[16]. In addition, the high thermal conductivity of silicon carbide enables it to sustain high drive currents with less heating, which would depopulate the excited states, as explained elsewhere[14]. In this report, we describe THz emission from nitrogen doped 6H-SiC devices that operate at much higher temperature than previous SiC THz emitters.

    2. Experiment

    The THz devices were fabricated from a 625 μm thick double-sided polished n-type 6H-SiC wafer of 0.1 Ohm resistivity (at room temperature), which was predominantly doped with 1018cm-3Nitrogen donors. Compensating dopants included 1016cm-3Boron and 1015cm-3Aluminum, as indicated in the Secondary Ion Mass Spectrometry (SIMS) profile shown in Fig. 1 (a), measured by the Evans Analytical Group. For device fabrication, wafer pieces were RCA cleaned, followed by contact photolithography to define a mesh-shaped metal contact pattern in the photoresist with 80 μm lines and spaces, for a 50% shading factor, as shown in Fig. 1 (b). The metal contacts weredeposited by the e-beam evaporation of Ti/Au (10 nm/300 nm), on both the front and back of the samples. After photoresist lift-off, the samples were cut into 1×1 mm2and 2×2 mm2dices, and then mounted onto a copper block heat sink using low temperature epoxy with high electrical and thermal conductivity. Fig. 1 (b) shows a close-up photo of two devices fabricated on a die, with one device wire-bonded to a soldering pad. The copper heat sink was attached to the cold finger of a liquid nitrogen-cooled cryostat (forT≥77 K) with a high density polyethylene (HDPE) optical window, transparent to wavelengths longer than about 17 μm. The device temperatures reported here were of the heat sink measured with a platinum resistor. During the current pulses, the temperature of the active portion of the actual device could be as much as 50 K higher than the heat sink, according to our calculations and to reports by Kumaret al.[17]. The emission spectra were measured using a Thermo Nicolet Nexus 870 Fourier transform infra-red (FTIR) spectrometer operated in the step scan mode, and equipped with a liquid helium-cooled silicon bolometer detector made by IRLabs. An Agilent electrical pulse generator was used to drive the samples with sub-microsecond pulse trains. The applied current on the device was measured using an inductive current probe and an oscilloscope. An EG&G Princeton Applied Research Model 5209 lock-in amplifier was used to synchronously detect the signals from the bolometer.

    Fig. 1. Wafer dopant concentrations and device configuration: (a) SIMS depth profile of dopant concentrations for the 6H-SiC wafer used in this paper and (b) photomicrograph of a typical 1×2 mm2SiC die with two 1×1 mm2devices fabricated on it. One of the devices was wire-bonded to a gold contact pad (at bottom).

    3. Results and Discussion

    Intense electroluminescence (EL) was observed over the spectral range from 2 THz to 13 THz, which increased in intensity with a peak pumping current as shown in Fig. 2 (a). Two families of spectral peaks were centered around 4.7 THz and 12 THz, with internal fine structures that were resolved at higher currents. Fig. 2 (b) shows the emission spectra over a temperature range from 77 K to 333 K, at the same pumping current of 3 A. As the heat sink temperature increased from 90 K to 150 K, the two emission features around 4.7 THz and 12 THz broadened and merged, and additional peaks appeared at intermediate frequencies. The devices continued to emit in the pulse mode at temperatures up to 333 K (60°C), which is the highest emission temperature reported for any dopant based terahertz emitter of which we are aware.

    Fig. 2. Electroluminescent spectra under different pumping conditions: (a) emitted spectra from N-doped 6H-SiC device with indicated current pulse heights at 77 K, and (b) emission from the THz device at different temperatures with fixed peak pumping current of 3 A. The vertical scale has been varied and offset to help identify the emission features.

    Terahertz emission from dopant based devices is typically associated with hydrogenic transitions, for example from 2p→1sstates. The THz emission energies from the 6H-SiC devices were observed to be around 20 meV and 46 meV, however, and were unlikely to be from transitions between nitrogen states because the minimum energy separation betweenp-states ands-states is 59 meV from theh-site 2p0→1stransition[16]. This observation suggests that the THz emission might not originate from hydrogenic radiative transitions among impurity states. On the other hand, the THz emission peaks matched very well with the spectral peaks obtained from low-temperature photoluminescence excitation (PLE) spectroscopy[18]on 6H-SiC materials with similar nitrogen doping, which wereassociated with nitrogen-bound excitons. Thus it was reasonable to attribute the observed THz emission to intra-excitonic transitions.

    Fig. 3 shows the emitted power versus temperature from 77 K to 333 K for applied current pulses with a 3 A peak value. The emitted power dropped steeply from 526 μW at 77 K to 249 μW at 90 K, and then more gradually decreased to 49 μW at 333 K, implying that two thermal activation energies were involved. The inset to Fig. 3 shows the calculated percentage of neutral (freeze-out) nitrogen donors versus temperature. Below ~90 K, most of the nitrogen donors were occupied by electrons. The reason for the reduction in emitted power above 77 K is uncertain, but is attributed to donor ionization. Due to thermal ionization as the temperature increased, fewer excitons were bound to the donor states, which reduced the output power of the device, and the emitted power tended to follow the carrier occupation as shown in the inset to Fig. 3.

    Fig. 3. Emitted power versus temperature at uniform 3 A peak pumping current. The inset shows the calculated neutral (freeze-out) nitrogen donor percentage versus temperature. Above 100 K, the trend of decease in emitted power versus temperature followed the dependence of donor occupation with temperature.

    Although the applied current pulse duty cycle was intentionally kept low (<0.1%) to reduce local heating, the broad spectra above 150 K may contain contributions from blackbody radiation. To determine if the spectra were from electrically pumped dopant based transitions, a series of current and temperature dependent measurements was performed. Fig. 3 shows that the THz emission intensity was observed to decrease with increasing temperatures with fixed 3 A current pulses, whereas the blackbody emission should increase proportionally toT4(Tis the blackbody temperature). In addition, if the emitted power was due to thermal heating, it should increase roughly withI2(Iis the pumping current). As shown in Fig. 4 of the emitted power versus pumping current, however, at 210 K the power exhibited weakI2components (curve bending slightly upwards), which meant that there may be thermal blackbody components. Finally, the total radiated power in the range from 1 THz to 15 THz for a blackbody of the size of our device at 333 K was calculated to be less than 8 μW, whereas our device emitted about 50 μW at 333 K, confirming that the emission peaks were associated with the applied current pulses and not to steady state residual heat from the device. Thus the emission spectra presented in this paper were attributed primarily to dopant-based transitions. It may be however, that the peak current modulated the device temperature, which contributed slightly to blackbody emission.

    Fig. 4. Emitted power integrated over the THz spectral range from 2 THz to 15 THz versus peak applied pumping current at the indicated device heat sink temperatures of 77 K, 90 K, and 210 K.

    The spectral response of the FTIR was calibrated with an external variable-temperature, recessed-cone blackbody radiator. Fig. 4 shows the emitted power versus pumping current at three different temperatures. At 77 K, the emitted power first increased with the current but then decreased when the current was above 4 A. This trend with the current was similar to that observed for the THz emission from 4H-SiC[12]. It may be that the combined higher applied field, current, and heating increased the probability for the bound carriers to be freed from the impurities, thus reducing the bound exciton population, and hence reducing the emission intensity.

    4. Conclusion

    In summary, a powerful THz emitter that operated above room temperature in the pulsed mode was fabricated from nitrogen doped n-type 6H-SiC. The emission spectra had peaks in the range from 2 THz to 13 THz, which were attributed to radiative bound exciton transitions associated with the nitrogen donor impurities. A 1×1×0.6 mm3size device was capable of emitting more than 500 μW of power at 77 K, and 49 μW at 333 K. This result is the highest recorded power and highest operating temperature among impurity-based THz emitters. The power density at 77 K corresponded to 50 mW·cm-2, which is suitable for a wide range of THz device applications.

    Acknowledgment

    Special thanks to Alex Andrianov, James Choyke, R. Chris Clark, Matthew Coppinger, Gregory DeSalvo, Joseph Gigante, Keith Goossen, Tanya Paskova, Dimitris Pavlidis, Adrian Powell, Steven Saddow, John Zavada, and John Zolper for useful discussions and important contributions.

    [1] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett., vol. 40, no. 2, pp. 124-126, Jan. 2004.

    [2] T. L?ffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett., vol. 90, no. 9, pp. 091111, Mar. 2007.

    [3] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys., vol. 39, no. 17, pp. 301-310, Sep. 2006.

    [4] T. N. Adam, R. T. Troeger, S. K. Ray, P.-C. Lv, and J. Kolodzey, “Terahertz electroluminescence from borondoped silicon devices,” Appl. Phys. Lett., vol. 83, no. 9, pp. 1713, Aug. 2003.

    [5] P.-C. Lv, R. T. Troeger, T. N. Adam, S. Kim, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan,“Electroluminescence at 7 terahertz from phosphorus donors in silicon,” Appl. Phys. Lett., vol. 85, no. 1, pp. 22, Jun. 2004.

    [6] P.-C. Lv, R. T. Troeger, S. Kim, S. K. Ray, K. W. Goossen, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan, “Terahertz emission from electrically pumped gallium doped silicon devices,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3660, Oct. 2004.

    [7] G. Xuan, S. Kim, M. Coppinger, N. Sustersic, J. Kolodzey, and P.-C. Lv, “Increasing the operating temperature ofboron doped silicon terahertz electroluminescence devices,” Appl. Phys. Lett., vol. 91, no. 6, pp. 061109, Aug. 2007.

    [8] S. Salomon and H. Fan, “Far-infrared recombination emission in n-Ge and p-InSb,” Phys. Rev. B, vol. 1, no. 2, pp. 662-671, Jan. 1970.

    [9] S. Thomas and H. Fan, “Far-infrared recombination radiation from n-type Ge and GaAs,” Phys. Rev. B, vol. 9, no. 10, pp. 4295-4305, May 1974.

    [10] A. V. Andrianov, A. O. Zakhar’in, I. N. Yassievich, and N. N. Zinov’ev, “Terahertz electroluminescence under conditions of shallow acceptor breakdown in germanium,” J. Exp. Theor. Phys. Lett., vol. 79, no. 8, pp. 365-367, Apr. 2004.

    [11] A. V. Andrianov, J. P. Gupta, J. Kolodzey, V. I. Sankin, A. O. Zakhar’in, and Y. B. Vasilyev, “Current injection induced terahertz emission from 4H-SiC p-n junctions,”Appl. Phys. Lett., vol. 103, no. 22, pp. 221101, Nov. 2013.

    [12] P.-C. Lv, X. Zhang, J. Kolodzey, and A. Powell, “Compact electrically pumped nitrogen-doped 4H-SiC terahertz emitters operating up to 150 K,” Appl. Phys. Lett., vol. 87, no. 24, pp. 241114, Dec. 2005.

    [13] G. Xuan, P.-C. Lv, X. Zhang, J. Kolodzey, G. DeSalvo, and A. Powell, “Silicon carbide terahertz emitting devices,” J. Electron. Mater., vol. 37, no. 5, pp. 726-729, Jan. 2008.

    [14] J. Kolodzey and J. P. Gupta, “Terahertz emitters based on intracenter transitions in semiconductors,” in SPIE Optical Engineering + Applications, San Diego, 2013, pp. 88460E.

    [15] W. G?tz, A. Sch?ner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, “Nitrogen donors in 4H-silicon carbide,” J. Appl. Phys., vol. 73, no. 7, pp. 3332, Apr. 1993.

    [16] W. Suttrop, G. Pensl, W. J. Choyke, R. Stein, and S. Leibenzeder, “Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide,” J. Appl. Phys., vol. 72, no. 8, pp. 3708, Oct. 1992.

    [17] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno,“Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2494, Apr. 2004.

    [18] T. Egilsson, I. G. Ivanov, A. Henry, and E. Janzén,“Excitation spectra of nitrogen bound excitons in 4H- and 6H-SiC,” J. Appl. Phys., vol. 91, no. 4, pp. 2028, Feb. 2002.

    James Kolodzeywas born in Philadelphia, Pennsylvania in the USA in 1950. He received the Ph.D. degree in electrical engineering from Princeton University in Princeton, New Jersey in 1986 for research on silicon germanium alloys.

    From 1986 to 1990, he was an assistant professor of electrical engineering at the University of Illinois at Urbana-Champaign where he established laboratories for the cryogenic studies of high frequency devices and the fabrication of devices by molecular beam epitaxy. Since 1991, he has been in the Department of Electrical and Computer Engineering at the University of Delaware, in Newark, Delaware in the USA, where he is currently the Charles Black Evans Professor of Electrical Engineering. He has over 130 publications in refereed journals and over 100 conference publications. His research interests include: the fabrication and characterization of high frequency optical and electronic devices; the properties of terahertz sources and detectors; silicon-germanium-tin-carbon materials for infrared optoelectronics; quantum dot devices; spintronic devices, alternative gate dielectrics for CMOS; and interfaces between biological materials and semiconductors.

    Prof. Kolodzey is a Senior Member of the Institute of Electrical and Electronic Engineers, has several patents, served as chair of conferences, and received awards for research contributions.

    Guang-Chi Xuanwas born in Guangdong, China in 1977. He received the B.S. degree from Tsinghua University, Beijing in 2000 and the Ph.D. degree from the University of Delaware, Newark, DE in 2007, both in electrical engineering. He is currently with the Silicon Systems Group at Applied Materials Inc. in Santa Clara, CA working on Etch products.

    Peng-Cheng Lvwas born in Hubei, China in 1977. He received the B.S. degree in materials science&engineering from South China University of Technology in 1999, the M.S. degree in advanced materials for micro-&nano-systems from the Singapore-M.I.T. Alliance in 2001, and the Ph.D. degree in electrical engineering from the University of Delaware, USA in 2005. His research interests include novel optoelectronic materials, devices, and sensors.

    Nathan Sustersicwas born in Cleveland, Ohio, USA in 1981. He received the B.E.E (2003), M.S. (2005), and Ph.D. (2009) degrees in electrical engineering from the University of Delaware, Newark. He is currently a Process Technology Development Engineer at Intel Corporation, in Hillsboro, Oregon, focusing on the research and development of CVD and ALD thin films for future generation microprocessor fabrication technology. His other areas of expertise include Group IV Molecular Beam Epitaxy for the fabrication of optoelectronic devices as well as low bandgap solar cell structures for multijunction solar cells.

    Xin Mawas born in Hebei, China. She received the Ph.D. degree in electrical and computer engineering from the University of Delaware, Newark, DE in 2014 for research of solution processed organic and nano-material based novel light emitting devices. She is currently working as a postdoc researcher at University of Delaware, focusing on germanium-tin optoelectronic device fabrication and characterization. Her research interests include novel semiconductor materials, quantum dot devices, organic electronics, and material characterization.

    Dr. Ma has served as a committee member for Women in Engineering at University of Delaware, and received several awards including Graduate Dissertation Fellowship, Graduate Faculty Award, and etc.

    Manuscript received September 15 2014; revised September 16, 2014. This work was supported by the NSF Award No. DMR-0601920, and by ONR Contract No. N0001-4-00-1-0834.

    J. Kolodzey is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (Corresponding author e-mail:kolodzey@udel.edu).

    G.-C. Xuan is with Applied Materials Inc., Santa Clara, CA 95054, USA (e-mail: gc.xuan@gmail.com).

    P.-C. Lv is with AlphaSense, Inc., Wilmington, DE 19809, USA (e-mail: pengcheng@alphasense.net).

    N. Sustersic is with Intel Corporation, Hillsboro, OR 97214, USA (e-mail: natrons@gmail.com).

    X. Ma is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (e-mail: xinma@udel.edu).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.002

    日日摸夜夜添夜夜爱| 在线 av 中文字幕| 在线观看www视频免费| 精品亚洲成国产av| 国产男女超爽视频在线观看| 欧美人与性动交α欧美精品济南到 | 高清在线视频一区二区三区| 在线精品无人区一区二区三| 男女边摸边吃奶| 日本色播在线视频| 制服诱惑二区| 男的添女的下面高潮视频| 久久精品国产亚洲av涩爱| 国产一区二区激情短视频 | 国产av一区二区精品久久| 午夜老司机福利剧场| 国产成人免费无遮挡视频| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| 看免费av毛片| 丝袜美足系列| av不卡在线播放| 欧美日韩av久久| 国产精品一二三区在线看| 国产一级毛片在线| 国产精品久久久久久久久免| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 日产精品乱码卡一卡2卡三| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡 | 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 精品国产一区二区久久| 日韩不卡一区二区三区视频在线| av在线观看视频网站免费| 欧美xxⅹ黑人| 久久精品国产亚洲av高清一级| 男女免费视频国产| 午夜福利在线观看免费完整高清在| 久久99一区二区三区| 一级片免费观看大全| 国产极品天堂在线| 日本午夜av视频| 七月丁香在线播放| 精品久久蜜臀av无| 伦理电影免费视频| av在线播放精品| av电影中文网址| 99热全是精品| 免费黄网站久久成人精品| 新久久久久国产一级毛片| 80岁老熟妇乱子伦牲交| 看十八女毛片水多多多| 麻豆av在线久日| 亚洲国产av新网站| 高清不卡的av网站| 建设人人有责人人尽责人人享有的| 成人午夜精彩视频在线观看| 国产精品无大码| 久久人人爽av亚洲精品天堂| 精品99又大又爽又粗少妇毛片| 国产在线视频一区二区| 视频区图区小说| 久久 成人 亚洲| 男人爽女人下面视频在线观看| 欧美日韩精品网址| 一边摸一边做爽爽视频免费| 国产精品久久久久成人av| 午夜福利影视在线免费观看| 久久精品国产综合久久久| 丝袜美足系列| 久久精品夜色国产| 久热久热在线精品观看| 国产乱人偷精品视频| 亚洲精品国产av蜜桃| 亚洲欧美精品综合一区二区三区 | 国产成人aa在线观看| 色婷婷久久久亚洲欧美| 曰老女人黄片| 丝袜在线中文字幕| 久久久久国产精品人妻一区二区| 亚洲国产精品成人久久小说| 国产日韩欧美视频二区| 国产成人aa在线观看| 亚洲国产精品国产精品| 久久亚洲国产成人精品v| 国产精品.久久久| 亚洲欧美一区二区三区黑人 | 久久精品久久精品一区二区三区| 国产男女内射视频| 色视频在线一区二区三区| 我的亚洲天堂| 大片免费播放器 马上看| 超碰成人久久| 亚洲精品成人av观看孕妇| 婷婷成人精品国产| 久久精品国产a三级三级三级| 成人二区视频| 美女中出高潮动态图| 欧美+日韩+精品| 99国产精品免费福利视频| 亚洲经典国产精华液单| 午夜福利网站1000一区二区三区| 国产欧美日韩综合在线一区二区| 色吧在线观看| 日本av手机在线免费观看| 狂野欧美激情性bbbbbb| 秋霞伦理黄片| 亚洲成色77777| 超色免费av| 亚洲成国产人片在线观看| 国产成人av激情在线播放| 国产精品久久久久久av不卡| 国产精品久久久久成人av| 久久久久久人妻| 欧美变态另类bdsm刘玥| 色94色欧美一区二区| av在线观看视频网站免费| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 999精品在线视频| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| 日韩大片免费观看网站| 精品少妇一区二区三区视频日本电影 | 韩国av在线不卡| 伦精品一区二区三区| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 国产一区二区三区综合在线观看| 午夜福利在线观看免费完整高清在| 亚洲av中文av极速乱| 99香蕉大伊视频| 观看av在线不卡| 亚洲精品一区蜜桃| 97在线人人人人妻| 人妻 亚洲 视频| 日韩在线高清观看一区二区三区| 边亲边吃奶的免费视频| 国产97色在线日韩免费| 久久韩国三级中文字幕| 久久人人爽人人片av| 男人舔女人的私密视频| 精品视频人人做人人爽| 国产成人一区二区在线| 成年人免费黄色播放视频| 中文字幕人妻丝袜制服| 亚洲色图 男人天堂 中文字幕| 街头女战士在线观看网站| 少妇被粗大猛烈的视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级片'在线观看视频| 夫妻午夜视频| 日本av手机在线免费观看| 久久精品国产综合久久久| 最近2019中文字幕mv第一页| 国产亚洲一区二区精品| 亚洲国产色片| 青春草国产在线视频| 亚洲三级黄色毛片| 狠狠婷婷综合久久久久久88av| 成人手机av| 亚洲av成人精品一二三区| 亚洲三级黄色毛片| 国产av码专区亚洲av| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 天堂中文最新版在线下载| 成人国语在线视频| 日本av手机在线免费观看| 久久久久久久国产电影| 黑丝袜美女国产一区| 亚洲av.av天堂| 啦啦啦在线免费观看视频4| 人妻系列 视频| 亚洲精品一区蜜桃| 五月开心婷婷网| 黄色一级大片看看| 天堂俺去俺来也www色官网| 久久精品国产亚洲av天美| 黄片小视频在线播放| tube8黄色片| 在线观看免费高清a一片| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 国产 精品1| 新久久久久国产一级毛片| 岛国毛片在线播放| 欧美精品人与动牲交sv欧美| 国产精品偷伦视频观看了| 国产激情久久老熟女| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品999| 老司机亚洲免费影院| 蜜桃国产av成人99| 秋霞伦理黄片| 中文天堂在线官网| 免费久久久久久久精品成人欧美视频| 97精品久久久久久久久久精品| 国产成人午夜福利电影在线观看| 国产免费福利视频在线观看| 搡女人真爽免费视频火全软件| 黑人欧美特级aaaaaa片| 嫩草影院入口| 亚洲精品在线美女| 午夜福利,免费看| 九草在线视频观看| 丝瓜视频免费看黄片| 人妻一区二区av| 黄片无遮挡物在线观看| 男女高潮啪啪啪动态图| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 欧美成人午夜免费资源| 性色av一级| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久 | 美女脱内裤让男人舔精品视频| 成人国产av品久久久| 校园人妻丝袜中文字幕| 午夜老司机福利剧场| 建设人人有责人人尽责人人享有的| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 一级片免费观看大全| 综合色丁香网| 婷婷成人精品国产| 大香蕉久久网| 69精品国产乱码久久久| 免费观看无遮挡的男女| 青青草视频在线视频观看| 久久久久精品久久久久真实原创| 日韩制服骚丝袜av| 国产成人免费无遮挡视频| 成年av动漫网址| 人妻 亚洲 视频| 成年人免费黄色播放视频| 香蕉精品网在线| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 精品第一国产精品| 一边摸一边做爽爽视频免费| 又黄又粗又硬又大视频| 婷婷成人精品国产| 九草在线视频观看| 制服诱惑二区| 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 亚洲av男天堂| 午夜福利影视在线免费观看| 久久精品久久久久久久性| 在线观看三级黄色| 亚洲精品av麻豆狂野| 精品国产超薄肉色丝袜足j| 波野结衣二区三区在线| 啦啦啦在线观看免费高清www| 人妻少妇偷人精品九色| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 夫妻性生交免费视频一级片| 一区在线观看完整版| 久久久久久久精品精品| 久久午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 国产成人免费无遮挡视频| 亚洲美女视频黄频| √禁漫天堂资源中文www| 最近的中文字幕免费完整| 日本欧美视频一区| 大话2 男鬼变身卡| av天堂久久9| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 久久久久精品人妻al黑| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 国产免费又黄又爽又色| 国产黄色免费在线视频| 亚洲精品av麻豆狂野| 免费黄网站久久成人精品| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 日韩人妻精品一区2区三区| 天堂8中文在线网| 美女视频免费永久观看网站| 国产在线视频一区二区| 久久这里只有精品19| 日本爱情动作片www.在线观看| 久久久久久人人人人人| 中文字幕人妻丝袜一区二区 | 你懂的网址亚洲精品在线观看| 国产成人91sexporn| 一本大道久久a久久精品| 亚洲欧美色中文字幕在线| 久久久久久久久久人人人人人人| 中国三级夫妇交换| 2021少妇久久久久久久久久久| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 亚洲国产最新在线播放| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 中文字幕精品免费在线观看视频| 亚洲成人一二三区av| 亚洲中文av在线| 国产一区二区在线观看av| 老司机影院成人| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 久久午夜综合久久蜜桃| 欧美 日韩 精品 国产| 国产成人精品在线电影| 亚洲国产av影院在线观看| 亚洲成国产人片在线观看| 久久久久久久久久人人人人人人| 成人国产麻豆网| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院| 久久99蜜桃精品久久| 青青草视频在线视频观看| 伊人久久国产一区二区| 国产有黄有色有爽视频| 久久久久人妻精品一区果冻| 国产精品蜜桃在线观看| 成年人免费黄色播放视频| 国产精品 欧美亚洲| 欧美 日韩 精品 国产| 母亲3免费完整高清在线观看 | www.精华液| 一级片'在线观看视频| 亚洲欧美成人精品一区二区| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 18+在线观看网站| 搡女人真爽免费视频火全软件| 色婷婷久久久亚洲欧美| 色94色欧美一区二区| 制服人妻中文乱码| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 观看av在线不卡| a级毛片黄视频| 国产在线视频一区二区| 日韩大片免费观看网站| 日韩大片免费观看网站| 观看av在线不卡| 热re99久久国产66热| 在线观看人妻少妇| 国产成人精品无人区| av一本久久久久| 性色av一级| 大陆偷拍与自拍| 高清av免费在线| 激情视频va一区二区三区| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 日韩av在线免费看完整版不卡| 黄色怎么调成土黄色| av视频免费观看在线观看| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩在线播放| 咕卡用的链子| 午夜福利一区二区在线看| 极品人妻少妇av视频| 蜜桃国产av成人99| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 精品人妻偷拍中文字幕| 国产综合精华液| 美女福利国产在线| 国产精品 欧美亚洲| 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 黄色毛片三级朝国网站| 考比视频在线观看| 七月丁香在线播放| av不卡在线播放| 欧美激情极品国产一区二区三区| 国产精品免费大片| av在线app专区| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| 夫妻午夜视频| 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 久久99热这里只频精品6学生| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 精品人妻一区二区三区麻豆| 亚洲熟女精品中文字幕| 免费日韩欧美在线观看| 伦理电影大哥的女人| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线观看一区二区三区| 国产深夜福利视频在线观看| 久久99一区二区三区| 亚洲色图综合在线观看| 美女午夜性视频免费| 最黄视频免费看| 免费黄色在线免费观看| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 国产xxxxx性猛交| 最新中文字幕久久久久| 中文乱码字字幕精品一区二区三区| 久久久国产精品麻豆| 91久久精品国产一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产极品天堂在线| 亚洲国产欧美网| 两个人免费观看高清视频| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 在线看a的网站| 亚洲人成77777在线视频| 国产97色在线日韩免费| 一边摸一边做爽爽视频免费| 国产av码专区亚洲av| 久久久久国产一级毛片高清牌| 亚洲国产成人一精品久久久| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| av网站在线播放免费| 国产深夜福利视频在线观看| 国产精品无大码| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 国产熟女午夜一区二区三区| 午夜福利在线免费观看网站| 中国三级夫妇交换| 九九爱精品视频在线观看| 青草久久国产| 少妇 在线观看| 丝袜美腿诱惑在线| 亚洲精品av麻豆狂野| 午夜免费男女啪啪视频观看| 91aial.com中文字幕在线观看| 男女免费视频国产| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 国产一区二区在线观看av| 黄色 视频免费看| 久久久亚洲精品成人影院| 午夜日韩欧美国产| 亚洲,欧美,日韩| 欧美精品国产亚洲| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 成人午夜精彩视频在线观看| 日韩制服骚丝袜av| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 精品国产一区二区三区久久久樱花| 中文字幕色久视频| 老熟女久久久| 69精品国产乱码久久久| 中文字幕制服av| 69精品国产乱码久久久| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 丝袜美足系列| 久久鲁丝午夜福利片| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| 精品久久蜜臀av无| tube8黄色片| 又大又黄又爽视频免费| 性色av一级| 日韩av不卡免费在线播放| 一二三四中文在线观看免费高清| 丰满迷人的少妇在线观看| 天天影视国产精品| 国产精品一国产av| 最近的中文字幕免费完整| 永久网站在线| 亚洲综合精品二区| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 日日啪夜夜爽| 日日撸夜夜添| 国产野战对白在线观看| 亚洲av男天堂| 精品人妻一区二区三区麻豆| 极品人妻少妇av视频| av线在线观看网站| 日本wwww免费看| 亚洲图色成人| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线| 26uuu在线亚洲综合色| 熟妇人妻不卡中文字幕| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 亚洲激情五月婷婷啪啪| 人妻少妇偷人精品九色| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 黄色一级大片看看| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 精品少妇内射三级| 看免费成人av毛片| 久久久久久久久免费视频了| 欧美变态另类bdsm刘玥| 国产人伦9x9x在线观看 | 成年动漫av网址| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 香蕉精品网在线| 少妇被粗大猛烈的视频| 中文字幕亚洲精品专区| 一区在线观看完整版| 中文字幕亚洲精品专区| 欧美bdsm另类| 老熟女久久久| 可以免费在线观看a视频的电影网站 | 有码 亚洲区| 亚洲欧美色中文字幕在线| 中国三级夫妇交换| 涩涩av久久男人的天堂| 少妇的丰满在线观看| 国产日韩欧美在线精品| 熟女少妇亚洲综合色aaa.| 宅男免费午夜| av国产精品久久久久影院| 国产精品av久久久久免费| 亚洲四区av| 亚洲av中文av极速乱| 亚洲三区欧美一区| 两性夫妻黄色片| 在线亚洲精品国产二区图片欧美| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 精品久久蜜臀av无| 久热这里只有精品99| 9色porny在线观看| 欧美人与善性xxx| 亚洲精品久久午夜乱码| av有码第一页| 欧美人与性动交α欧美软件| 大话2 男鬼变身卡| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 日日爽夜夜爽网站| 久久精品国产亚洲av涩爱| 伦理电影免费视频| 亚洲久久久国产精品| 国产综合精华液| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 亚洲人成电影观看| 国产精品国产三级国产专区5o| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 亚洲欧洲国产日韩| 亚洲国产毛片av蜜桃av| 男女高潮啪啪啪动态图| 久久鲁丝午夜福利片| 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 国产亚洲午夜精品一区二区久久| 国产xxxxx性猛交| 欧美少妇被猛烈插入视频| 有码 亚洲区| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕免费大全7|