• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    2014-03-02 01:10:35JamesKolodzeyGuangChiXuanPengChengLvNathanSustersicandXinMa

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    —Electrically pumped high power terahertz (THz) emitters that operated above room temperature in a pulse mode were fabricated from nitrogen-doped n-type 6H-SiC. The emission spectra had peaks centered on 5THz and 12THz (20meV and 50meV) that were attributed to radiative transitions of excitons bound to nitrogen donor impurities. Due to the relatively deep binding energies of the nitrogen donors, above 100meV, and the high thermal conductivity of the SiC substrates, the THz output power and operating temperature were significantly higher than previous dopant based emitters. With peak applied currents of a few amperes, and a top surface area of 1mm2, the device emitted up to 0.5mW at liquid nitrogen temperature (77K), and tens of microwatts up to 333K. This result is the highest temperature of THz emission reported from impuritybased emitters.

    Index Terms—Intracenter radiative transitions, semiconductor devices, silicon carbide, terahertz emitting devices, wide band gap semiconductors.

    1. Introduction

    In recent years, new applications in terahertz (THz) communication, imaging, medicine, remote sensing, and spectroscopy have initiated huge research interests in THz devices[1]-[3]. There are few sources, however, which emit in the THz frequency range (1 THz-10 THz) and are suitable for compact, portable, and low cost applications. Powerful terahertz sources were desired, especially with higher operating temperatures that could, in principle, operate without cryogenics. There has been considerable interest in THz emitters based on doped semiconductors, such as impurity-doped Si[4]-[7], impurity-doped Ge[8]-[10], and impurity-doped SiC[11]-[13]. These impurity-based devices emit THz frequencies by a mechanism of intracenter radiative transitions in hydrogenic dopant states[14]. The operating temperatures of such devices were limited, however, by the relatively low ionization energies of the dopants compared with the thermal energykBT[14]. For example, boron in Si has an ionization energy of 45 meV, and at temperatures above 130 K, most of the holes would be excited into the valence band and unavailable for radiative transitions. For Si-based impurity emitters with boron dopants, the highest reported operating temperature was 118 K[7]. Alternative elements with deeper binding energies, however, may be able to achieve higher operating temperatures. For example, Lvet al.[12]reported THz emission at 150 K from a nitrogen-doped 4H-SiC device. The nitrogen donor in 4H-SiC has ionization energies of 52.1 meV for theh-site (hexagonal) and 91.8 meV for thek-site (cubic)[15]. Nitrogen in 6H-SiC, as described here, has deeper ionization energies of 81 meV for theh-site, 137.6 meV for thek1-site, and 142.4 meV for thek2-site[16]. In addition, the high thermal conductivity of silicon carbide enables it to sustain high drive currents with less heating, which would depopulate the excited states, as explained elsewhere[14]. In this report, we describe THz emission from nitrogen doped 6H-SiC devices that operate at much higher temperature than previous SiC THz emitters.

    2. Experiment

    The THz devices were fabricated from a 625 μm thick double-sided polished n-type 6H-SiC wafer of 0.1 Ohm resistivity (at room temperature), which was predominantly doped with 1018cm-3Nitrogen donors. Compensating dopants included 1016cm-3Boron and 1015cm-3Aluminum, as indicated in the Secondary Ion Mass Spectrometry (SIMS) profile shown in Fig. 1 (a), measured by the Evans Analytical Group. For device fabrication, wafer pieces were RCA cleaned, followed by contact photolithography to define a mesh-shaped metal contact pattern in the photoresist with 80 μm lines and spaces, for a 50% shading factor, as shown in Fig. 1 (b). The metal contacts weredeposited by the e-beam evaporation of Ti/Au (10 nm/300 nm), on both the front and back of the samples. After photoresist lift-off, the samples were cut into 1×1 mm2and 2×2 mm2dices, and then mounted onto a copper block heat sink using low temperature epoxy with high electrical and thermal conductivity. Fig. 1 (b) shows a close-up photo of two devices fabricated on a die, with one device wire-bonded to a soldering pad. The copper heat sink was attached to the cold finger of a liquid nitrogen-cooled cryostat (forT≥77 K) with a high density polyethylene (HDPE) optical window, transparent to wavelengths longer than about 17 μm. The device temperatures reported here were of the heat sink measured with a platinum resistor. During the current pulses, the temperature of the active portion of the actual device could be as much as 50 K higher than the heat sink, according to our calculations and to reports by Kumaret al.[17]. The emission spectra were measured using a Thermo Nicolet Nexus 870 Fourier transform infra-red (FTIR) spectrometer operated in the step scan mode, and equipped with a liquid helium-cooled silicon bolometer detector made by IRLabs. An Agilent electrical pulse generator was used to drive the samples with sub-microsecond pulse trains. The applied current on the device was measured using an inductive current probe and an oscilloscope. An EG&G Princeton Applied Research Model 5209 lock-in amplifier was used to synchronously detect the signals from the bolometer.

    Fig. 1. Wafer dopant concentrations and device configuration: (a) SIMS depth profile of dopant concentrations for the 6H-SiC wafer used in this paper and (b) photomicrograph of a typical 1×2 mm2SiC die with two 1×1 mm2devices fabricated on it. One of the devices was wire-bonded to a gold contact pad (at bottom).

    3. Results and Discussion

    Intense electroluminescence (EL) was observed over the spectral range from 2 THz to 13 THz, which increased in intensity with a peak pumping current as shown in Fig. 2 (a). Two families of spectral peaks were centered around 4.7 THz and 12 THz, with internal fine structures that were resolved at higher currents. Fig. 2 (b) shows the emission spectra over a temperature range from 77 K to 333 K, at the same pumping current of 3 A. As the heat sink temperature increased from 90 K to 150 K, the two emission features around 4.7 THz and 12 THz broadened and merged, and additional peaks appeared at intermediate frequencies. The devices continued to emit in the pulse mode at temperatures up to 333 K (60°C), which is the highest emission temperature reported for any dopant based terahertz emitter of which we are aware.

    Fig. 2. Electroluminescent spectra under different pumping conditions: (a) emitted spectra from N-doped 6H-SiC device with indicated current pulse heights at 77 K, and (b) emission from the THz device at different temperatures with fixed peak pumping current of 3 A. The vertical scale has been varied and offset to help identify the emission features.

    Terahertz emission from dopant based devices is typically associated with hydrogenic transitions, for example from 2p→1sstates. The THz emission energies from the 6H-SiC devices were observed to be around 20 meV and 46 meV, however, and were unlikely to be from transitions between nitrogen states because the minimum energy separation betweenp-states ands-states is 59 meV from theh-site 2p0→1stransition[16]. This observation suggests that the THz emission might not originate from hydrogenic radiative transitions among impurity states. On the other hand, the THz emission peaks matched very well with the spectral peaks obtained from low-temperature photoluminescence excitation (PLE) spectroscopy[18]on 6H-SiC materials with similar nitrogen doping, which wereassociated with nitrogen-bound excitons. Thus it was reasonable to attribute the observed THz emission to intra-excitonic transitions.

    Fig. 3 shows the emitted power versus temperature from 77 K to 333 K for applied current pulses with a 3 A peak value. The emitted power dropped steeply from 526 μW at 77 K to 249 μW at 90 K, and then more gradually decreased to 49 μW at 333 K, implying that two thermal activation energies were involved. The inset to Fig. 3 shows the calculated percentage of neutral (freeze-out) nitrogen donors versus temperature. Below ~90 K, most of the nitrogen donors were occupied by electrons. The reason for the reduction in emitted power above 77 K is uncertain, but is attributed to donor ionization. Due to thermal ionization as the temperature increased, fewer excitons were bound to the donor states, which reduced the output power of the device, and the emitted power tended to follow the carrier occupation as shown in the inset to Fig. 3.

    Fig. 3. Emitted power versus temperature at uniform 3 A peak pumping current. The inset shows the calculated neutral (freeze-out) nitrogen donor percentage versus temperature. Above 100 K, the trend of decease in emitted power versus temperature followed the dependence of donor occupation with temperature.

    Although the applied current pulse duty cycle was intentionally kept low (<0.1%) to reduce local heating, the broad spectra above 150 K may contain contributions from blackbody radiation. To determine if the spectra were from electrically pumped dopant based transitions, a series of current and temperature dependent measurements was performed. Fig. 3 shows that the THz emission intensity was observed to decrease with increasing temperatures with fixed 3 A current pulses, whereas the blackbody emission should increase proportionally toT4(Tis the blackbody temperature). In addition, if the emitted power was due to thermal heating, it should increase roughly withI2(Iis the pumping current). As shown in Fig. 4 of the emitted power versus pumping current, however, at 210 K the power exhibited weakI2components (curve bending slightly upwards), which meant that there may be thermal blackbody components. Finally, the total radiated power in the range from 1 THz to 15 THz for a blackbody of the size of our device at 333 K was calculated to be less than 8 μW, whereas our device emitted about 50 μW at 333 K, confirming that the emission peaks were associated with the applied current pulses and not to steady state residual heat from the device. Thus the emission spectra presented in this paper were attributed primarily to dopant-based transitions. It may be however, that the peak current modulated the device temperature, which contributed slightly to blackbody emission.

    Fig. 4. Emitted power integrated over the THz spectral range from 2 THz to 15 THz versus peak applied pumping current at the indicated device heat sink temperatures of 77 K, 90 K, and 210 K.

    The spectral response of the FTIR was calibrated with an external variable-temperature, recessed-cone blackbody radiator. Fig. 4 shows the emitted power versus pumping current at three different temperatures. At 77 K, the emitted power first increased with the current but then decreased when the current was above 4 A. This trend with the current was similar to that observed for the THz emission from 4H-SiC[12]. It may be that the combined higher applied field, current, and heating increased the probability for the bound carriers to be freed from the impurities, thus reducing the bound exciton population, and hence reducing the emission intensity.

    4. Conclusion

    In summary, a powerful THz emitter that operated above room temperature in the pulsed mode was fabricated from nitrogen doped n-type 6H-SiC. The emission spectra had peaks in the range from 2 THz to 13 THz, which were attributed to radiative bound exciton transitions associated with the nitrogen donor impurities. A 1×1×0.6 mm3size device was capable of emitting more than 500 μW of power at 77 K, and 49 μW at 333 K. This result is the highest recorded power and highest operating temperature among impurity-based THz emitters. The power density at 77 K corresponded to 50 mW·cm-2, which is suitable for a wide range of THz device applications.

    Acknowledgment

    Special thanks to Alex Andrianov, James Choyke, R. Chris Clark, Matthew Coppinger, Gregory DeSalvo, Joseph Gigante, Keith Goossen, Tanya Paskova, Dimitris Pavlidis, Adrian Powell, Steven Saddow, John Zavada, and John Zolper for useful discussions and important contributions.

    [1] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett., vol. 40, no. 2, pp. 124-126, Jan. 2004.

    [2] T. L?ffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett., vol. 90, no. 9, pp. 091111, Mar. 2007.

    [3] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys., vol. 39, no. 17, pp. 301-310, Sep. 2006.

    [4] T. N. Adam, R. T. Troeger, S. K. Ray, P.-C. Lv, and J. Kolodzey, “Terahertz electroluminescence from borondoped silicon devices,” Appl. Phys. Lett., vol. 83, no. 9, pp. 1713, Aug. 2003.

    [5] P.-C. Lv, R. T. Troeger, T. N. Adam, S. Kim, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan,“Electroluminescence at 7 terahertz from phosphorus donors in silicon,” Appl. Phys. Lett., vol. 85, no. 1, pp. 22, Jun. 2004.

    [6] P.-C. Lv, R. T. Troeger, S. Kim, S. K. Ray, K. W. Goossen, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan, “Terahertz emission from electrically pumped gallium doped silicon devices,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3660, Oct. 2004.

    [7] G. Xuan, S. Kim, M. Coppinger, N. Sustersic, J. Kolodzey, and P.-C. Lv, “Increasing the operating temperature ofboron doped silicon terahertz electroluminescence devices,” Appl. Phys. Lett., vol. 91, no. 6, pp. 061109, Aug. 2007.

    [8] S. Salomon and H. Fan, “Far-infrared recombination emission in n-Ge and p-InSb,” Phys. Rev. B, vol. 1, no. 2, pp. 662-671, Jan. 1970.

    [9] S. Thomas and H. Fan, “Far-infrared recombination radiation from n-type Ge and GaAs,” Phys. Rev. B, vol. 9, no. 10, pp. 4295-4305, May 1974.

    [10] A. V. Andrianov, A. O. Zakhar’in, I. N. Yassievich, and N. N. Zinov’ev, “Terahertz electroluminescence under conditions of shallow acceptor breakdown in germanium,” J. Exp. Theor. Phys. Lett., vol. 79, no. 8, pp. 365-367, Apr. 2004.

    [11] A. V. Andrianov, J. P. Gupta, J. Kolodzey, V. I. Sankin, A. O. Zakhar’in, and Y. B. Vasilyev, “Current injection induced terahertz emission from 4H-SiC p-n junctions,”Appl. Phys. Lett., vol. 103, no. 22, pp. 221101, Nov. 2013.

    [12] P.-C. Lv, X. Zhang, J. Kolodzey, and A. Powell, “Compact electrically pumped nitrogen-doped 4H-SiC terahertz emitters operating up to 150 K,” Appl. Phys. Lett., vol. 87, no. 24, pp. 241114, Dec. 2005.

    [13] G. Xuan, P.-C. Lv, X. Zhang, J. Kolodzey, G. DeSalvo, and A. Powell, “Silicon carbide terahertz emitting devices,” J. Electron. Mater., vol. 37, no. 5, pp. 726-729, Jan. 2008.

    [14] J. Kolodzey and J. P. Gupta, “Terahertz emitters based on intracenter transitions in semiconductors,” in SPIE Optical Engineering + Applications, San Diego, 2013, pp. 88460E.

    [15] W. G?tz, A. Sch?ner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, “Nitrogen donors in 4H-silicon carbide,” J. Appl. Phys., vol. 73, no. 7, pp. 3332, Apr. 1993.

    [16] W. Suttrop, G. Pensl, W. J. Choyke, R. Stein, and S. Leibenzeder, “Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide,” J. Appl. Phys., vol. 72, no. 8, pp. 3708, Oct. 1992.

    [17] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno,“Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2494, Apr. 2004.

    [18] T. Egilsson, I. G. Ivanov, A. Henry, and E. Janzén,“Excitation spectra of nitrogen bound excitons in 4H- and 6H-SiC,” J. Appl. Phys., vol. 91, no. 4, pp. 2028, Feb. 2002.

    James Kolodzeywas born in Philadelphia, Pennsylvania in the USA in 1950. He received the Ph.D. degree in electrical engineering from Princeton University in Princeton, New Jersey in 1986 for research on silicon germanium alloys.

    From 1986 to 1990, he was an assistant professor of electrical engineering at the University of Illinois at Urbana-Champaign where he established laboratories for the cryogenic studies of high frequency devices and the fabrication of devices by molecular beam epitaxy. Since 1991, he has been in the Department of Electrical and Computer Engineering at the University of Delaware, in Newark, Delaware in the USA, where he is currently the Charles Black Evans Professor of Electrical Engineering. He has over 130 publications in refereed journals and over 100 conference publications. His research interests include: the fabrication and characterization of high frequency optical and electronic devices; the properties of terahertz sources and detectors; silicon-germanium-tin-carbon materials for infrared optoelectronics; quantum dot devices; spintronic devices, alternative gate dielectrics for CMOS; and interfaces between biological materials and semiconductors.

    Prof. Kolodzey is a Senior Member of the Institute of Electrical and Electronic Engineers, has several patents, served as chair of conferences, and received awards for research contributions.

    Guang-Chi Xuanwas born in Guangdong, China in 1977. He received the B.S. degree from Tsinghua University, Beijing in 2000 and the Ph.D. degree from the University of Delaware, Newark, DE in 2007, both in electrical engineering. He is currently with the Silicon Systems Group at Applied Materials Inc. in Santa Clara, CA working on Etch products.

    Peng-Cheng Lvwas born in Hubei, China in 1977. He received the B.S. degree in materials science&engineering from South China University of Technology in 1999, the M.S. degree in advanced materials for micro-&nano-systems from the Singapore-M.I.T. Alliance in 2001, and the Ph.D. degree in electrical engineering from the University of Delaware, USA in 2005. His research interests include novel optoelectronic materials, devices, and sensors.

    Nathan Sustersicwas born in Cleveland, Ohio, USA in 1981. He received the B.E.E (2003), M.S. (2005), and Ph.D. (2009) degrees in electrical engineering from the University of Delaware, Newark. He is currently a Process Technology Development Engineer at Intel Corporation, in Hillsboro, Oregon, focusing on the research and development of CVD and ALD thin films for future generation microprocessor fabrication technology. His other areas of expertise include Group IV Molecular Beam Epitaxy for the fabrication of optoelectronic devices as well as low bandgap solar cell structures for multijunction solar cells.

    Xin Mawas born in Hebei, China. She received the Ph.D. degree in electrical and computer engineering from the University of Delaware, Newark, DE in 2014 for research of solution processed organic and nano-material based novel light emitting devices. She is currently working as a postdoc researcher at University of Delaware, focusing on germanium-tin optoelectronic device fabrication and characterization. Her research interests include novel semiconductor materials, quantum dot devices, organic electronics, and material characterization.

    Dr. Ma has served as a committee member for Women in Engineering at University of Delaware, and received several awards including Graduate Dissertation Fellowship, Graduate Faculty Award, and etc.

    Manuscript received September 15 2014; revised September 16, 2014. This work was supported by the NSF Award No. DMR-0601920, and by ONR Contract No. N0001-4-00-1-0834.

    J. Kolodzey is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (Corresponding author e-mail:kolodzey@udel.edu).

    G.-C. Xuan is with Applied Materials Inc., Santa Clara, CA 95054, USA (e-mail: gc.xuan@gmail.com).

    P.-C. Lv is with AlphaSense, Inc., Wilmington, DE 19809, USA (e-mail: pengcheng@alphasense.net).

    N. Sustersic is with Intel Corporation, Hillsboro, OR 97214, USA (e-mail: natrons@gmail.com).

    X. Ma is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (e-mail: xinma@udel.edu).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.002

    日韩成人伦理影院| 少妇丰满av| 国产一区二区激情短视频| 嫩草影院入口| 国产91av在线免费观看| 久久精品国产亚洲av涩爱 | 成人亚洲欧美一区二区av| 欧美日本亚洲视频在线播放| 国产精品爽爽va在线观看网站| 亚洲精品久久国产高清桃花| 免费黄网站久久成人精品| 在线播放无遮挡| 国内精品美女久久久久久| 一a级毛片在线观看| 狂野欧美激情性xxxx在线观看| 久久国内精品自在自线图片| 真实男女啪啪啪动态图| 大香蕉久久网| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 97超级碰碰碰精品色视频在线观看| 黄色欧美视频在线观看| 精品不卡国产一区二区三区| 久久久久久伊人网av| 日本a在线网址| 亚洲国产色片| 日本在线视频免费播放| 少妇熟女aⅴ在线视频| 久久久午夜欧美精品| 亚洲av美国av| av女优亚洲男人天堂| 国产高清三级在线| 午夜福利在线观看免费完整高清在 | av国产免费在线观看| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 热99在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 国内精品一区二区在线观看| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 亚洲成人久久爱视频| 亚洲在线自拍视频| 免费无遮挡裸体视频| 精品人妻视频免费看| 日韩强制内射视频| 欧美丝袜亚洲另类| 欧美绝顶高潮抽搐喷水| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 99精品在免费线老司机午夜| 日韩人妻高清精品专区| 久久精品综合一区二区三区| 99热6这里只有精品| 青春草视频在线免费观看| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 最近在线观看免费完整版| 老师上课跳d突然被开到最大视频| av天堂中文字幕网| 亚洲精品色激情综合| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 成年版毛片免费区| 久久亚洲精品不卡| 午夜福利视频1000在线观看| 大又大粗又爽又黄少妇毛片口| 麻豆久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 可以在线观看的亚洲视频| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区免费观看 | 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 人人妻,人人澡人人爽秒播| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区 | 又黄又爽又免费观看的视频| 高清日韩中文字幕在线| av女优亚洲男人天堂| 真人做人爱边吃奶动态| 97碰自拍视频| 我要看日韩黄色一级片| 极品教师在线视频| 日本黄色视频三级网站网址| 色哟哟·www| 国产人妻一区二区三区在| 免费人成在线观看视频色| 大型黄色视频在线免费观看| 免费大片18禁| 欧美成人免费av一区二区三区| 国产免费男女视频| av免费在线看不卡| 亚洲成人久久爱视频| 亚洲中文日韩欧美视频| 男人舔奶头视频| av在线天堂中文字幕| 国产日本99.免费观看| 18+在线观看网站| 日日啪夜夜撸| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| .国产精品久久| 国产精品一及| 人妻少妇偷人精品九色| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 淫妇啪啪啪对白视频| 国产精品一区二区性色av| 国产一区二区亚洲精品在线观看| 一级av片app| 黄色一级大片看看| 亚洲自偷自拍三级| 中文字幕精品亚洲无线码一区| 免费av观看视频| 久久久午夜欧美精品| 欧美一区二区亚洲| 成年女人毛片免费观看观看9| 白带黄色成豆腐渣| 久久人人爽人人爽人人片va| 在线看三级毛片| 内射极品少妇av片p| 黄片wwwwww| 18禁在线无遮挡免费观看视频 | 国产一区二区亚洲精品在线观看| 极品教师在线视频| av福利片在线观看| 深夜精品福利| 国产日本99.免费观看| 不卡视频在线观看欧美| 久久久久久久久大av| 久久国内精品自在自线图片| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 亚洲四区av| 亚洲丝袜综合中文字幕| 黄片wwwwww| 国模一区二区三区四区视频| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 欧美激情在线99| 精品久久久久久久久久久久久| av.在线天堂| 床上黄色一级片| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 久99久视频精品免费| av在线亚洲专区| 搡女人真爽免费视频火全软件 | 搞女人的毛片| 亚洲18禁久久av| 久久精品夜色国产| 国内精品一区二区在线观看| 日本精品一区二区三区蜜桃| 色视频www国产| 国语自产精品视频在线第100页| 99久久中文字幕三级久久日本| 麻豆国产av国片精品| 亚洲av中文字字幕乱码综合| 国产一区二区三区av在线 | 成年av动漫网址| 插逼视频在线观看| 久久久精品欧美日韩精品| 免费黄网站久久成人精品| 精品一区二区三区视频在线观看免费| 免费大片18禁| 国产在视频线在精品| 精品人妻偷拍中文字幕| 一个人免费在线观看电影| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 十八禁国产超污无遮挡网站| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看| 免费看光身美女| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 99久久久亚洲精品蜜臀av| 日本免费a在线| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 免费看美女性在线毛片视频| 天堂网av新在线| av在线观看视频网站免费| 夜夜爽天天搞| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 国产精品一区www在线观看| 伦精品一区二区三区| 国产蜜桃级精品一区二区三区| 简卡轻食公司| 一级黄色大片毛片| 变态另类丝袜制服| 欧美另类亚洲清纯唯美| 日韩一本色道免费dvd| 69人妻影院| 日本一本二区三区精品| 欧美bdsm另类| 成人性生交大片免费视频hd| 伦理电影大哥的女人| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 国产三级在线视频| 99久久精品国产国产毛片| 中国美白少妇内射xxxbb| 一进一出好大好爽视频| 国产日本99.免费观看| av天堂中文字幕网| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 精华霜和精华液先用哪个| 午夜精品在线福利| 国产成人freesex在线 | 大香蕉久久网| 嫩草影院精品99| 久久久a久久爽久久v久久| 亚洲精品在线观看二区| 日本欧美国产在线视频| 不卡视频在线观看欧美| 成人特级av手机在线观看| 99热这里只有精品一区| 国产高潮美女av| 夜夜爽天天搞| 熟妇人妻久久中文字幕3abv| 免费不卡的大黄色大毛片视频在线观看 | 成人特级黄色片久久久久久久| 嫩草影院精品99| 乱码一卡2卡4卡精品| 国产男靠女视频免费网站| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 亚洲精品乱码久久久v下载方式| 国产精品综合久久久久久久免费| 18禁裸乳无遮挡免费网站照片| 日韩成人伦理影院| 亚洲av免费在线观看| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 你懂的网址亚洲精品在线观看 | 床上黄色一级片| 亚洲人成网站在线播| 一区二区三区高清视频在线| 亚洲精品国产av成人精品 | 国产亚洲av嫩草精品影院| 亚洲无线观看免费| a级毛片免费高清观看在线播放| 国产久久久一区二区三区| 日日啪夜夜撸| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 激情 狠狠 欧美| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 欧美xxxx性猛交bbbb| 黄色日韩在线| 免费观看人在逋| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 老熟妇仑乱视频hdxx| 嫩草影院入口| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| av在线老鸭窝| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 亚洲第一区二区三区不卡| 狠狠狠狠99中文字幕| 亚洲欧美成人精品一区二区| 99在线人妻在线中文字幕| 精品久久久久久成人av| 午夜影院日韩av| 亚洲成人久久爱视频| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 在线a可以看的网站| av在线天堂中文字幕| 大又大粗又爽又黄少妇毛片口| 香蕉av资源在线| 中出人妻视频一区二区| 色在线成人网| 51国产日韩欧美| 不卡一级毛片| 男人的好看免费观看在线视频| 久久鲁丝午夜福利片| or卡值多少钱| 国产在线男女| 国产国拍精品亚洲av在线观看| 级片在线观看| 色综合亚洲欧美另类图片| 成人鲁丝片一二三区免费| 91久久精品电影网| 麻豆成人午夜福利视频| av在线蜜桃| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 激情 狠狠 欧美| 精品国内亚洲2022精品成人| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 国产片特级美女逼逼视频| 熟女电影av网| 亚洲va在线va天堂va国产| 人人妻人人澡人人爽人人夜夜 | 国产伦精品一区二区三区四那| 国产精品一及| 乱码一卡2卡4卡精品| 日韩制服骚丝袜av| 国产精品久久电影中文字幕| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 国产av在哪里看| 精品人妻熟女av久视频| 嫩草影视91久久| 亚洲国产精品成人久久小说 | 久久久久久久久久黄片| 老女人水多毛片| 国产伦精品一区二区三区视频9| 成人二区视频| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 毛片一级片免费看久久久久| 特级一级黄色大片| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 国产精品女同一区二区软件| 免费av观看视频| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| 露出奶头的视频| 亚洲丝袜综合中文字幕| 丰满乱子伦码专区| 看黄色毛片网站| 少妇的逼好多水| 啦啦啦韩国在线观看视频| 99热只有精品国产| 亚洲av成人精品一区久久| 国产精品,欧美在线| 亚洲国产精品国产精品| 日日撸夜夜添| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 深夜精品福利| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 国内精品久久久久精免费| 国产男人的电影天堂91| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 国产av不卡久久| 国产成人a区在线观看| 91麻豆精品激情在线观看国产| 精品久久久久久久久久久久久| 久久婷婷人人爽人人干人人爱| 欧美高清性xxxxhd video| 亚洲天堂国产精品一区在线| 日日撸夜夜添| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 国产男人的电影天堂91| 国产精品野战在线观看| 九九热线精品视视频播放| 国产精品野战在线观看| av在线天堂中文字幕| 尾随美女入室| 日韩成人av中文字幕在线观看 | 男插女下体视频免费在线播放| 99视频精品全部免费 在线| 最近手机中文字幕大全| 国产精品一区二区性色av| 1024手机看黄色片| 天天躁夜夜躁狠狠久久av| 国产麻豆成人av免费视频| 嫩草影视91久久| 秋霞在线观看毛片| 国产一区二区三区av在线 | 亚洲国产精品合色在线| 性插视频无遮挡在线免费观看| 人人妻人人澡人人爽人人夜夜 | 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 欧美绝顶高潮抽搐喷水| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 午夜老司机福利剧场| 小说图片视频综合网站| 日本欧美国产在线视频| ponron亚洲| 别揉我奶头~嗯~啊~动态视频| 97碰自拍视频| 成人鲁丝片一二三区免费| 久久国产乱子免费精品| 在线播放国产精品三级| 黑人高潮一二区| 成人综合一区亚洲| 久久久久久大精品| 不卡视频在线观看欧美| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 精品一区二区三区视频在线观看免费| 人妻少妇偷人精品九色| 国产精品无大码| 成熟少妇高潮喷水视频| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av香蕉五月| 欧美成人免费av一区二区三区| 日本 av在线| 国产大屁股一区二区在线视频| 我的女老师完整版在线观看| 成人美女网站在线观看视频| 一级毛片电影观看 | 又爽又黄无遮挡网站| av国产免费在线观看| 亚洲不卡免费看| 亚洲精品色激情综合| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 亚洲,欧美,日韩| 国产成人a∨麻豆精品| av福利片在线观看| 1024手机看黄色片| 亚洲乱码一区二区免费版| 晚上一个人看的免费电影| 久久亚洲精品不卡| 大又大粗又爽又黄少妇毛片口| 丰满乱子伦码专区| 免费看光身美女| 亚洲精品久久国产高清桃花| 国产女主播在线喷水免费视频网站 | 国产精品1区2区在线观看.| 插阴视频在线观看视频| 日本免费一区二区三区高清不卡| 国产视频内射| 亚洲欧美成人综合另类久久久 | 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| av专区在线播放| 成人漫画全彩无遮挡| 国产探花极品一区二区| 亚洲五月天丁香| 国产午夜福利久久久久久| 国产美女午夜福利| 精品人妻视频免费看| 精品久久久久久久久久久久久| 国产男人的电影天堂91| 久久亚洲国产成人精品v| 91久久精品国产一区二区成人| av天堂中文字幕网| 亚洲欧美中文字幕日韩二区| 国产男靠女视频免费网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧洲综合997久久,| 日韩成人伦理影院| 97热精品久久久久久| 三级国产精品欧美在线观看| 国产日本99.免费观看| 国产高清激情床上av| 精品一区二区三区av网在线观看| 我要看日韩黄色一级片| 国产高清不卡午夜福利| 可以在线观看的亚洲视频| 日韩欧美精品v在线| 亚洲第一电影网av| 国产一区二区在线av高清观看| 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 国产免费一级a男人的天堂| 99热全是精品| 在线观看一区二区三区| 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 成人亚洲欧美一区二区av| 一进一出抽搐动态| 少妇被粗大猛烈的视频| 淫妇啪啪啪对白视频| 免费看美女性在线毛片视频| 在线a可以看的网站| 国产精品一区www在线观看| 日韩中字成人| 午夜精品一区二区三区免费看| 亚洲性夜色夜夜综合| 精品福利观看| 午夜爱爱视频在线播放| 婷婷色综合大香蕉| 啦啦啦观看免费观看视频高清| 深爱激情五月婷婷| 一个人看的www免费观看视频| 国产精品一区www在线观看| 美女大奶头视频| 久久久a久久爽久久v久久| 欧美性猛交╳xxx乱大交人| 亚洲av二区三区四区| 久久久国产成人免费| 久久人人精品亚洲av| 99久久成人亚洲精品观看| 精品久久国产蜜桃| 日韩精品中文字幕看吧| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆| 最近最新中文字幕大全电影3| 欧美性猛交╳xxx乱大交人| 波野结衣二区三区在线| 亚洲成人久久爱视频| 国内揄拍国产精品人妻在线| 一级毛片aaaaaa免费看小| 亚洲七黄色美女视频| 我的老师免费观看完整版| 男人狂女人下面高潮的视频| 日本 av在线| 老师上课跳d突然被开到最大视频| 国产私拍福利视频在线观看| 免费av观看视频| 毛片一级片免费看久久久久| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 国产三级中文精品| 日本三级黄在线观看| a级毛片a级免费在线| 国产精品1区2区在线观看.| 国产黄色视频一区二区在线观看 | 亚洲成人精品中文字幕电影| 级片在线观看| 国产精品精品国产色婷婷| 你懂的网址亚洲精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 99热精品在线国产| 亚洲aⅴ乱码一区二区在线播放| 12—13女人毛片做爰片一| 亚洲av不卡在线观看| 国产一区二区亚洲精品在线观看| 精品福利观看| 51国产日韩欧美| 久久久久久久久大av| 国产精品不卡视频一区二区| 国产精品久久视频播放| 日本与韩国留学比较| 又黄又爽又刺激的免费视频.| 久久综合国产亚洲精品| 久久精品91蜜桃| 成年女人毛片免费观看观看9| 床上黄色一级片| 免费无遮挡裸体视频| 热99re8久久精品国产| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 春色校园在线视频观看| 搡老岳熟女国产| 一级毛片aaaaaa免费看小| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 听说在线观看完整版免费高清| 国产精品久久久久久久电影| 成人二区视频| 天堂√8在线中文| 午夜福利在线观看吧| av中文乱码字幕在线| 国产综合懂色| av在线播放精品| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品久久男人天堂| 舔av片在线| 欧美三级亚洲精品| 校园春色视频在线观看| 国产一区二区三区在线臀色熟女| 三级男女做爰猛烈吃奶摸视频| 欧美3d第一页| 国产精品三级大全| 国产高清不卡午夜福利| 国产精品伦人一区二区| 97在线视频观看| 在线天堂最新版资源| 成熟少妇高潮喷水视频| or卡值多少钱| 精品一区二区三区人妻视频| 日本在线视频免费播放| 日韩成人av中文字幕在线观看 | 校园春色视频在线观看| 最近视频中文字幕2019在线8|