• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grain growth in calibre rolled Mg–3Al–1Zn alloy and its effect on hardness

    2015-02-16 02:56:11Kshyp
    Journal of Magnesium and Alloys 2015年4期

    ,B.P.Kshyp,

    aDepartment of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076,India

    bDepartment of Mechanical Engineering,Government Polytechnic,Kolhapur 416004,India

    cSpecial Materials Division,Vikram Sarabhai Space Center,ISRO,Trivandrum 695022,India

    Grain growth in calibre rolled Mg–3Al–1Zn alloy and its effect on hardness

    R.L.Doiphodea,b,S.V.S.Narayana Murtyc,N.Prabhua,B.P.Kashyapa,*

    aDepartment of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076,India

    bDepartment of Mechanical Engineering,Government Polytechnic,Kolhapur 416004,India

    cSpecial Materials Division,Vikram Sarabhai Space Center,ISRO,Trivandrum 695022,India

    Calibre rolling of Mg–3Al–1Zn alloy at 300°C led to development of fin grain size of 3 μm.Subsequent annealing,from 5 to 6000 minutes at 300–450°C,revealed faster grain growth initially up to 60 minutes,which became sluggish on prolonged annealing.The time exponent for grain growth kinetics(n)suggests bi-linear behaviour withn=0.11 and 0.008 over these time scales.The activation energy,based on variousnvalues, varied over wide ranges that made the understanding of the mechanisms for grain growth difficult This problem is explained by concurrent evolution of texture and grain boundary structure.The effect of grain growth on hardness at ambient temperature was found to follow the H–P type relationship.

    Annealing;AZ31 Mg-alloy;Calibre rolling;Twinning;Grain growth

    1.Introduction

    Magnesium is available abundantly in the nature and,owing to high specifistrength,its alloys are becoming popular in aerospace,automobile,biomedical,architecture and electronic industries[1,2].However,these alloys have limitation of poor mechanical processing because of their common hexagonal close packed(HCP)type crystal structure.There exist several processes that are used for plastic deformation.Rolling is one of them and it is used to form the sheets,bars and rods of various shapes.To improve the mechanical properties of rolled material many changes in the conventional rolling process were introduced[3–5],which could influenc the degree of grain refinement Calibre rolling(CR)process is one of the modifie rolling processes.In this technique,a pair of grooved rolls is turned in the opposite directions and the work-piece gets reduced to the desired thickness or cross section over several roll passes by the compressive force.CR is used for mass production of metals with high precision and high strength[6].

    The plastic deformation distorts the microstructure,and it causes the thermodynamically unstable state by introducing dislocations and other defects,which leads to increase in stored energy.This energy tends to revert to a stable state on subsequent annealing.This process of annealing results in three phenomena:recovery,recrystallization and grain growth[7].Since the actual number of dislocations removed during recovery is quite small,the change in mechanical properties is limited.The driving force for recrystallization is the removal of a large number of dislocations,and so the associated stored energy removed is quite large.The reduction in grain boundary area, and thus the reduction in grain boundary free energy with increase in grain size,itself provides the driving force for grain growth in polycrystalline materials.This Mg alloyAZ31 exhibits deformation twins,which possess different interfacial energy from the grain boundaries and can also influenc the boundary migration[8]in grain growth process.Various studies [9–11]addressed grain growth in this alloy system.However, no annealing study on grain growth after calibre rolling of this alloy is known.In the present paper,the effects of static annealing at different temperatures and over longer durations were investigated with the aim of investigating the kinetics and mechanisms for grain growth and examining its effect in terms of the Hall–Petch relationship.

    Nomenclature

    TAnnealing temperatures

    tIsothermal annealing time

    dGrain size(after annealing)

    d0Initial grain size

    σyYield strength

    kRate constant

    nGrowth law index(time exponent)

    VGrain boundary migration rate

    PDriving force

    MIntrinsic mobility of a boundary in the pure material

    t0Time at which grain growth would have started on completion of recrystallisation

    QActivation energy for grain growth

    σ0andkyThe Hall–Petch constants

    2.Experimental procedures

    Mg-alloyAZ31B in the form of rolled plate of 50 mm thickness and having chemical composition(wt%):Mg–Al 3.0,Zn 1.0 and Mn 0.2 was used.The calibre rolling was carried out at a temperature of 300°C to 12×12 mm2rods(~76%reduction) by a series of 5 roll passes in a rolling mill with reduction of~16%per pass.

    The samples of 10×5×5 mm3were cut from the calibre rolled rod.The annealing was carried out at temperatures(T) 300,350,400 and 450°C in a muffl furnace with the accuracy of±2°C.The annealing time(t)used was varied to 5,10,20, 30,60,240,600,1440,2880 and 6000 minutes within the accuracy of±2 seconds.The specimens were quenched in water immediately after annealing to retain the microstructures attained at high temperature.

    Metallographic specimen was prepared as per the ASTM procedure.The etching was carried out with acetic picral.The microstructure was examined by Olympus GX51 optical microscope(OM).Grain size measurement was done by mean linear intercept method and the error bars in mean linear intercept, called grain size(d)here,are reported at 95%confidenc level. Electron back scattered diffraction(EBSD)was obtained by scanning electron microscope(SEM)Quanta 3D FEG with EBSD attachment,andTSL software was used for analysis.The misorientation angle and twins were measured in the area 250×250 μm2with a step size of 0.4 μm.

    The microhardness measurement was carried out before and after annealing for all the specimens.The machine used was LM300AT,LECO make.The weight used was 15 gm and dwell time was kept at 15 seconds.Yield strength(σy)of the material is determined by the relation[12]: whereσyis in MPa and the hardness measured is in Hv.

    3.Results

    3.1.Initial microstructure

    The microstructure of the as received plate,as shown in Fig.1a,consists of equiaxed grains of average size 33.0±3.0 μm,along with the presence of a large number of twins.CR led to grain refinemen and the equiaxed microstructure developed is shown in Fig.1b.This reveals large reductions in number of twins and grain size to 3.0±0.5 μm,Fig.1b.This grain size will be called as initial grain sized0for further study here.The grain refinemen was observed in the CR condition due to dynamic recrystallization[3].The hardness of the as-calibre rolled material was 84.3 Hv.

    3.2.Microstructural evolution by annealing

    For all the conditions of temperature and time employed for annealing the microstructures remained equiaxed,but with the increased grain sizes.The evolved grain size will be called asd. The grain size measured after annealing at the temperatures of 300 and 450°C is plotted in Fig.2 as a function of time.The grain growth from 6 to 20 μm was observed for various times and temperatures of annealing.Microstructures after annealing at 300 and 450°C for 5 minutes and 6000 minutes are shown in Fig.3a and b and Fig.3c and d,respectively.The grain size obtained upon annealing at 300°C for 5 minutes was found to be 6.1±1.0 μm whereas it became 16.8±3.0 μm after 6000 minutes of annealing.After annealing at 450°C for the samedurations,these grain sizes were 8.8±1.0 and 20.4±3.0 μm respectively.The grain growth was faster initially up to 60 minutes after which it became sluggish during longer annealing time.

    Fig.1.Optical micrographs of the AZ31 Mg-alloy(a)as-received plate and(b)calibre rolled rod at 300°C.

    Fig.2.Grain size measured as a function of annealing time at 300 and 450°C.

    3.3.Effect of annealing on hardness

    Fig.4.Hardness measured as a function of annealing time at different temperatures.

    The hardness measured as a function of annealing time at different temperatures is plotted in Fig.4,which reveals a rapid reduction in hardness up to firs 60 minutes of annealing time and then the change becomes less sensitive to annealing time. The values of micro-hardness after annealing for various lengths of time and at different temperatures were noted to decrease as the grain size increases with the increase in time and temperature of annealing.

    Fig.3.Optical micrographs after annealing for 5 minutes at temperatures(a)300°C and(b)450°C;and for 6000 minutes at temperatures(c)300°C and(d)450°C.

    Fig.5.Plot of log d vs log t,giving growth law index“n”after annealing the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes.

    4.Discussion

    4.1.Grain growth kinetics and mechanisms

    As plotted in Fig.5,the variation in grain size with annealing time in log–log scale reveals bilinear behaviour of grain growth kinetics,with the variation in grain size with time exhibitingn=0.11 for the short annealing time(up to 60 minutes)and 0.008 for the longer duration(above 60 minutes).

    Normal grain growth data can usually be fitte to an equation of the form:

    wheredis the average grain size,kis a rate constant,tis isothermal annealing time andnis the growth law index(time exponent).

    If the measured growth law index isn=0.5,as known for pure metals,then the boundary migration of grain growth obeys the relationship:

    whereVis the grain boundary migration rate,Pis the driving force for a hypothetically pure material andMis the intrinsic mobility of the boundary in the pure material[13,14].However, these theories do not consider the solute effects on the growth law.Many investigators proposed the theories that consider the solute effects that include:

    ?The Lücke–Detert theory[15]

    ?The Gordon and Vandermeer theory[16]

    ?The Cahn and Lücke–Stüwe theory[8]

    The addition of solute,even in the parts per million ranges, was observed to reduce boundary mobility drastically.It is also a common observation that the addition of a small amount of solute increases the measured activation energy for boundary migration to higher values;sometimes much larger than for any identifia le atomistic process.

    Rath and Hu[17]pointed out the fact that a linear dependence of grain growth rate on driving force was seldom observed except for grain growth in metals of ultra high purity and at high annealing temperature,near the melting point. These authors also suggested that no meaningful activation energy could be measured for grain growth unless the value ofn=0.5 was employed.They suggested that the temperature dependence of the mobility parameter in grain growth could not be regarded as a single thermally activated process.To understand the mechanism involved in grain boundary migration,Qwas calculated by considering the variants ofn,based on the present work and that reported for pure metals(n=0.5),quasisingle phase(n=0.33)and two-phase(n=0.25)materials [18–20].

    The initial grain sized0can only be neglected if it is very small in comparison to grain sizes at long annealing times.But, for short annealing time,thed0is not small enough compared tod.Therefore,the analysis made by using Eq.(2)is not justified Using the appropriated0for each of these grain growth stages, Fig.5,it is found that the data would fi into the equation[21]:

    wheret0is the time at which grain growth would have started on completion of recrystallisation.

    This relationship can be used to measure the activation energy for grain growth(Q)accurately.The difference(d2?do2) is determined over the range of temperatures.A plot of log (d2?do2)versusT?1(K?1)yields the activation energy for grain growth to vary at various time periods as illustrated in Fig.6. However,it shows very high values of the activation energy. Table 2 lists the values of activation energy calculated by considering growth law index(n),constant(t)and constant(d) approaches.It shows very high values of activation energy. However,in the beginning of grain growth the activation energy was found to be 65–91 kJ mol?1,which is close to the anticipatedQof 92 kJ mol?1reported for grain boundary diffusion in magnesium.

    There exist very few studies on annealing of Mg-alloyAZ31 upon processing by various methods of plastic deformation,as summarised in Table 1 from the literature[9–11].The limited studies reported in the literature also exhibit a wide variation in the activation energy for grain growth(29–200 kJ mol?1),as compared to that expected on the basis of grain boundary (92 kJ mol?1)or lattice(135 kJ mol?1)diffusion[1].

    Fig.6.Arrhenius plot to determine the activation energy for grain growth after annealing the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes.

    As pointed out earlier for the variation innvalues of kinetics law[18–20],it could also be reasonable to assume that no meaningful value of activation energy for grain growth might appear for the system like AZ31 Mg-alloy,which contains various alloying or impurity elements[22].However,it is interesting to note from Table 2 that grain growth at fi e minutes of annealing,and using the present value ofn=0.1 and so also approaching the calculation by considering either constantdor constant time forQ,givesQ=64.5–90.7 kJ mol?1. These values ofQsupport the grain boundary diffusion to be the mechanism for grain growth.However,n=0.1 does not support the kinetics of grain growth commonly predicted but thisn~0.1 happens to be true for a wide range of materials [19].Further to the theoretical and experimental results on kinetics and mechanisms for grain growth,and the sources of deviations from thereof elaborated in the literature[17–20],in terms ofnandQvalues,the following experimental results and the inferences emerging could add to our understanding of grain growth in this alloy.(i)Twins formed profusely during CR disappear very fast during subsequent annealing.It is during the

    Table 1Studies on annealing of Mg alloy AZ31 as summarized from literature.

    *ECAP=equal channel angular pressing.process of twinning getting eliminated that the activation energy for grain growth is comparable with that for grain boundary diffusion.The subsequent dramatic change in the value ofQseems to suggest that the structural element of twin boundaries could provide extrinsic grain boundary dislocations to affect the otherwise CR grain boundary structure.Thus,theQvalues on longer annealing time may be affected.(ii)Concurrent to grain growth,texture evolution is seen during annealing as illustrated in Fig.7a by comparing the pole figure obtained upon annealing for 5 min and 6000 min at 300°C. This change in texture could resist grain boundary migration which could occur via the grain interior.(iii)The examination of grain boundary nature by EBSD,Fig.7b,also revealed formation of a greater proportion of low angle boundaries(35%), leaving a lesser proportion of high angle grain boundaries (65%)with the increase in annealing time from 5 min to 6000 min at 300°C.It is known that the rate of migration of high angle grain boundaries is faster than that of low angle boundaries[23,24].This property,in conjunction with the presence of low driving force due to the substantially reduced grain boundary area,can provide greater resistance to grain growth.

    Table 2Activation energy calculated considering growth law index(n),constant(t)and constant(d).

    Fig.7.EBSD analysis of the annealed samples at 300°C.(a)Pole figur (0001).(b)Misorientation angle versus number fraction of grains.

    4.2.Contributions of grain size and twinning to strength

    The grain size(d)dependence of yield strength(σy)is given by Hall–Petch type relationship[25,26]:

    Fig.8.Hall–Petch relationship after annealing of the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes,without distinguishing the temperature effect.

    which predicts that as the grain size decreases the yield strength increases.Here,σ0andkyrepresent the Hall–Petch constants having significanc to the strengthening caused by grain interior and grain boundary,respectively.This strengthening by grain refinemen is experimentally found to be true over the grain sizes ranging from 1 mm to 1 μm[27].This relationship is valid for strength,which is also related to hardness.It is seen that the hardness decreases as the grain grows at all the temperatures with increasing time(Fig.4).Micro-hardness is plotted against grain size(d?0.5)irrespective of the annealing temperature in Fig.8.It is seen to clearly obey the Hall–Petch type relationship(R2=0.92),which can be expressed as:

    Following the relationship between yield strength and hardness,viz.Eq.(1),the Hall–Petch type relationship for yield strength can be written by putting the values ofσ0andkyin Eq. (5)as:

    Similar plots were considered for grain sizes obtained at annealing temperatures of 300,350,400 and 450°C individually,and the Hall–Petch constantsσ0andkywere found to range between 55.8–63.7 MPa and 403.7–447.5 MPa μm?0.5respectively.However,no systematic effect of annealing temperature was noted in the variation ofσ0andky.The large value ofkyexhibits the strong grain size dependence of fl w stress.Therefore,the reduction in strength(hardness)is attributed to the increase in grain size by annealing.As listed in Table 3,there appear wide variations in the values ofσ0andkyin the literature [28–30].The value ofσ0is related to the critical resolved shear stress(CRSS)for the easiest(basal)slip system operatingwithin the grain volume.The value ofkydepends on temperature,texture,composition,preparation method employed for producing the materials,along with its dependence on the CRSS for the nonbasal(more difficult slip systems required to operate near the grain boundary.The values ofσ0andkycan depend in general on the state of the material developed,in the way it was produced by varying the working temperature or thermo mechanical treatments it was subjected to,as is the case for other mechanical properties in general[22].

    Table 3Comparison of the present values ofσ0andkyin AZ31 Mg-alloy with the literature.

    A close examination of the values ofσ0=59.4 andky=422 MPa μm?0.5in Table 3 reveals that the grain boundary component of strengtheningkyin calibre rolled material is much higher than that reported by other methods of processing of this AZ31 alloy.The source of this enhanced strengthening by grain boundaries is not clear at this stage.However,it appears tempting to think that resistance to grain boundary migration during annealing,requiring much higher activation energy for grain growth,could have its origin in the structural change in grain boundaries.Such change in grain boundary structure,when remains so upon quenching of the annealed material,can contribute to different grain boundary strengthening effect[31].In fact,Sangal and Tangri[32]reported a difference in the effects of grain boundary strengthening between equilibrium and non-equilibrium boundaries in type 316L stainless steel.In the present work,the AZ31 Mg-alloy contains profound number of twins which increase rapidly with increasing annealing time[33].Therefore,probably,the generation of twins introduces additional dislocations into the grain boundaries to become stronger than the otherwise equilibrium grain boundary structure.

    5.Conclusion

    Grain refinemen in Mg–3Al–1Zn alloy was achieved from 33 μm in as-mill rolled state to 3 μm upon calibre rolling of about 76%at 300°C.Annealing of these samples for 5–6000 minutes at 300–450°C and analyzing the grain growth along with its effect on hardness,at room temperature,leads to the following conclusions:

    1.Grain growth occurs from initial grain size of 3 μm up to 20 μm and is faster initially up to 60 minutes,but then becomes sluggish at longer annealing time.The grain growth kinetics law reveals two values of growth law index withn=0.11 for the shorter annealing time(up to 60 minutes)and its marginal decrease(n=0.008)for the longer annealing time(above 240 minutes).

    2.The activation energyQfor grain growth was found to be very high for all the growth law indices exceptn=0.1. However,the activation energy in the beginning of grain growth(65–91 kJ mol?1)supports grain boundary diffusion to be the mechanism.At longer annealing time,the exceptionally higher or lower activation energy values arise from other structural evolution in the material.

    3.Micro-hardness varies as a function of grain size

    following the Hall–Petch type relationship with the equivalent H–P parametersσ0=59.4(Ho=18.4)MPa andky=421.6(kv=145.2)MPa μm?0.5,irrespective of annealing temperature.Thekvfound in the calibre rolled material is much larger than known in this material that was processed by conventional rolling or friction stir

    processing.

    Acknowledgment

    We express our thanks to Dept.of Metallurgy,Government Polytechnic Kolhapur,for providing the testing facility.

    [1]H.Friedrich,B.Mordike,Magnesium Technology:Metallurgy,Design Data Applications,Springer Berlin Heidelberg,New York,2006.

    [2]C.Blawert,N.Hort,K.U.Kainer,Trans.Indian Inst.Met.57(2004) 397–408.

    [3]Q.Miao,L.Hu,G.Wang,E.Wang,Mater.Sci.Eng.A 528(2011) 6694–6701.

    [4]X.Huang,G.Haung,D.Xiao,Q.Liu,Mater.Sci.Forum 686(2011) 40–45.

    [5]W.Xia,Z.Chen,D.Chen,S.Zhu,J.Mater,Process.Technol.209(2009) 26–31.

    [6]Y.Tanno,T.Mukai,M.Asakawa,M.Kobayashi,Mater.Sci.Forum 419 (2003)359–364.

    [7]P.Cotterill,P.Mould,Recrystallization and Grain Growth in Metals, Surrey University Press,London,1976.

    [8]G.Gottstein,L.Shvindlerman,Grain Boundary Migration in Metals:Thermodynamics,Kinetics,Applications,CRC Press,Florida, 1999.

    [9]M.S.Tsai,C.P.Chang,Mater.Sci.Technol.29(2013)759–763.

    [10]G.Beer,M.R.Barnett,Scr.Mater.61(2009)1097–1100.

    [11]C.Su,L.Lu,M.Lai,Mater.Sci.Technol.23(2007)290–296.

    [12]M.A.Mayer,K.K.Chawla,Mechanical Behaviour of Materials,second

    ed.,Cambridge University Press,UK,2009.

    [13]N.Mott,Proc.Phys.Soc.60(1948)391.

    [14]D.Turnbull,Trans.AIME 191(1951)661–665.

    [15]K.Lücke,K.Detert,Acta Mater.5(1957)628–637.

    [16]P.Gordon,R.Vandermeer,Grain Boundary Migration,Recrystallization,

    Grain Growth and Texture,ASM Metals Park,Ohio,1966.

    [17]B.Rath,H.Hu,Met.Trans.1(1970)3181–3184.

    [18]S.Sengupta,B.P.Kashyap,J.Mater.Sci.Let.10(1991)139–140.

    [19]E.Hornbogen,U.Koster,Recrystallization of Metallic Materials,In F.Haessner,(Ed.,)1978.

    [20]P.K.Bakshi,B.P.Kashyap,J.Mater.Sci.29(1994)2063–2070.

    [21]P.Beck,J.Appl.Phys.19(1948)507–509.

    [22]M.M.Avedesian,H.Baker,Magnesium and Magnesium Alloys,ASM Specialty Handbook,ASM International,1999.

    [23]H.Gleiter,B.Chalmers,HighAngle Grain Boundaries,Prog.Mater.Sci., Pergamon Press,1972.

    [24]V.Sursaeva,S.Protasova,W.Lojkowski,J.Jun,Textur.Microstruct.32 (1999)175–185.

    [25]E.O.Hall,Proc.Phys.Soc.London B64(1951)747–753.

    [26]N.J.Petch,J.Iron Steel Inst.174(1953)25–28.

    [27]C.S.Barrett,T.B.Massalski,Structure of Metals,third ed.,Pergamon Press,Oxford,UK,1980.

    [28]N.Afrin,D.Chen,X.Cao,M.Jahazi,Mater.Sci.Eng.A 472(2008) 179–186.

    [29]L.Guo,Z.Chen,L.Gao,Mater.Sci.Eng.A 528(2011)8537–8545.

    [30]A.Jain,O.Duygulu,D.Brown,C.Tome’,S.Agnew,Mater.Sci.Eng.A 486(2008)545–555.

    [31]B.P.Kashyap,Acta Mater.50(2002)2413–2427.

    [32]S.Sangal,K.Tangri,Mater.Trans.A 20(1989)479–484.

    [33]R.L.Doiphode,S.V.S.N.Murty,N.Prabhu,B.P.Kashyap,Trans.Indian Inst.Met.68(2015)317–321.

    Received 7 September 2014;revised 10 November 2015;accepted 12 November 2015 Available online 7 December 2015

    *Corresponding author.Department of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076, India.Tel.:+91 2225767622;fax:+91 2225723480.

    E-mail address:bpk@iitb.ac.in(B.P.Kashyap).

    http://dx.doi.org/10.1016/j.jma.2015.11.003

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    国产免费男女视频| www.999成人在线观看| 国产一区二区三区在线臀色熟女| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看| 亚洲 欧美 日韩 在线 免费| 一a级毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 嫩草影院精品99| 国产av又大| 亚洲av电影不卡..在线观看| 欧美日本视频| 久久久久亚洲av毛片大全| 天堂√8在线中文| 日韩大码丰满熟妇| 欧美久久黑人一区二区| 国产99白浆流出| 国产主播在线观看一区二区| 18美女黄网站色大片免费观看| 老司机午夜福利在线观看视频| 啦啦啦韩国在线观看视频| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 一夜夜www| 亚洲成a人片在线一区二区| 亚洲中文日韩欧美视频| av中文乱码字幕在线| 日韩三级视频一区二区三区| 午夜精品久久久久久毛片777| 最新美女视频免费是黄的| 欧美精品亚洲一区二区| 一进一出好大好爽视频| 青草久久国产| 中文字幕av电影在线播放| 亚洲精品在线美女| 99在线人妻在线中文字幕| 后天国语完整版免费观看| 91大片在线观看| 国产精品99久久99久久久不卡| 一级a爱片免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 女人被狂操c到高潮| 国产熟女xx| 乱人伦中国视频| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| 天堂影院成人在线观看| 又紧又爽又黄一区二区| 人人妻人人爽人人添夜夜欢视频| www.www免费av| av天堂久久9| 又紧又爽又黄一区二区| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影免费在线| 国产伦一二天堂av在线观看| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 欧美国产精品va在线观看不卡| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 国产激情久久老熟女| 欧美日韩瑟瑟在线播放| 一区二区日韩欧美中文字幕| 午夜福利视频1000在线观看 | 国产亚洲欧美在线一区二区| 免费在线观看黄色视频的| 一级毛片精品| 91成人精品电影| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区免费| 国产野战对白在线观看| cao死你这个sao货| 91大片在线观看| 国产99白浆流出| 日韩三级视频一区二区三区| 操美女的视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 亚洲专区中文字幕在线| 91av网站免费观看| 十分钟在线观看高清视频www| 在线观看舔阴道视频| 人人妻人人澡欧美一区二区 | 在线观看66精品国产| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻在线不人妻| а√天堂www在线а√下载| 日韩有码中文字幕| 国产单亲对白刺激| 亚洲在线自拍视频| 久久精品亚洲精品国产色婷小说| 欧美精品亚洲一区二区| 午夜精品国产一区二区电影| 日韩欧美一区二区三区在线观看| 免费看十八禁软件| 久久这里只有精品19| 午夜久久久在线观看| 成人精品一区二区免费| 9热在线视频观看99| 大型黄色视频在线免费观看| 99在线人妻在线中文字幕| 三级毛片av免费| 国产亚洲精品一区二区www| 亚洲自拍偷在线| 18禁美女被吸乳视频| 人妻久久中文字幕网| 欧美日韩精品网址| 亚洲国产毛片av蜜桃av| 午夜影院日韩av| 精品久久久久久久人妻蜜臀av | 久久精品亚洲精品国产色婷小说| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 国产成+人综合+亚洲专区| 国产成人系列免费观看| 给我免费播放毛片高清在线观看| 国产1区2区3区精品| 97碰自拍视频| 中亚洲国语对白在线视频| 久久久久精品国产欧美久久久| 亚洲中文字幕一区二区三区有码在线看 | 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 欧美激情 高清一区二区三区| 99riav亚洲国产免费| 欧美一级a爱片免费观看看 | 久久久久久人人人人人| videosex国产| 国产av一区在线观看免费| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 丁香六月欧美| 午夜免费成人在线视频| 国产精品影院久久| 1024香蕉在线观看| 村上凉子中文字幕在线| 男女做爰动态图高潮gif福利片 | 极品人妻少妇av视频| 国产精品永久免费网站| 一边摸一边抽搐一进一出视频| 亚洲 国产 在线| 国产精品二区激情视频| 99国产综合亚洲精品| 午夜福利在线观看吧| 少妇的丰满在线观看| 亚洲色图综合在线观看| 国产精品98久久久久久宅男小说| 搡老岳熟女国产| 亚洲av电影在线进入| 大香蕉久久成人网| √禁漫天堂资源中文www| 国产熟女xx| 好男人电影高清在线观看| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 成人永久免费在线观看视频| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 99久久久亚洲精品蜜臀av| 欧美激情高清一区二区三区| www.精华液| 色哟哟哟哟哟哟| 日韩视频一区二区在线观看| 最近最新中文字幕大全电影3 | 国产又爽黄色视频| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 亚洲全国av大片| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 一区二区三区精品91| 亚洲国产欧美网| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色成人免费大全| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区av网在线观看| 亚洲国产看品久久| 国产成人一区二区三区免费视频网站| 日本黄色视频三级网站网址| 国产精品精品国产色婷婷| 国产激情久久老熟女| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 日日夜夜操网爽| 国产三级在线视频| 波多野结衣一区麻豆| 91九色精品人成在线观看| 国产一区在线观看成人免费| 日韩有码中文字幕| 一区二区三区激情视频| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 涩涩av久久男人的天堂| 波多野结衣一区麻豆| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 可以在线观看的亚洲视频| 美国免费a级毛片| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 久久国产精品影院| 免费观看人在逋| 人人澡人人妻人| 动漫黄色视频在线观看| 久久中文字幕一级| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产| 精品一区二区三区四区五区乱码| 久久影院123| 亚洲成人久久性| 露出奶头的视频| 嫁个100分男人电影在线观看| 日韩三级视频一区二区三区| 国产精品 国内视频| 日本 欧美在线| 变态另类丝袜制服| 久久天躁狠狠躁夜夜2o2o| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 久久精品影院6| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 999久久久国产精品视频| 变态另类丝袜制服| 久久这里只有精品19| 韩国av一区二区三区四区| 国产亚洲精品第一综合不卡| 亚洲av熟女| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 一区二区三区精品91| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| 欧美激情极品国产一区二区三区| 两个人看的免费小视频| 午夜影院日韩av| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品91蜜桃| 俄罗斯特黄特色一大片| 正在播放国产对白刺激| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 欧美黑人欧美精品刺激| 久久中文字幕一级| 性欧美人与动物交配| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 亚洲国产欧美一区二区综合| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 国产午夜精品久久久久久| 午夜老司机福利片| 黑人操中国人逼视频| 久久久国产欧美日韩av| 免费观看人在逋| 免费久久久久久久精品成人欧美视频| 亚洲色图av天堂| 亚洲成人国产一区在线观看| 国产av又大| 国产亚洲精品综合一区在线观看 | 亚洲在线自拍视频| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 久久精品亚洲熟妇少妇任你| 一级a爱片免费观看的视频| 视频在线观看一区二区三区| 黑人欧美特级aaaaaa片| 国产主播在线观看一区二区| 亚洲avbb在线观看| 美女免费视频网站| 日本vs欧美在线观看视频| 日韩精品中文字幕看吧| 美女午夜性视频免费| 少妇粗大呻吟视频| 国产三级黄色录像| 99精品久久久久人妻精品| 中文字幕av电影在线播放| 久久人人精品亚洲av| 亚洲五月天丁香| 亚洲欧洲精品一区二区精品久久久| av免费在线观看网站| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 妹子高潮喷水视频| 90打野战视频偷拍视频| 成人三级做爰电影| 久久香蕉精品热| 久久久水蜜桃国产精品网| av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 久久亚洲真实| 亚洲情色 制服丝袜| 男人舔女人的私密视频| 色播亚洲综合网| 免费观看精品视频网站| 免费看a级黄色片| 色精品久久人妻99蜜桃| 少妇 在线观看| 免费人成视频x8x8入口观看| 中文字幕精品免费在线观看视频| 国内毛片毛片毛片毛片毛片| 无限看片的www在线观看| 一个人免费在线观看的高清视频| 黄色a级毛片大全视频| 日韩欧美一区二区三区在线观看| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 国产亚洲欧美98| 国产精品影院久久| 欧美色欧美亚洲另类二区 | 两性夫妻黄色片| 国产亚洲精品久久久久久毛片| 亚洲国产欧美一区二区综合| 在线观看66精品国产| 亚洲国产精品成人综合色| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 亚洲 欧美一区二区三区| 欧美老熟妇乱子伦牲交| 久久影院123| 精品国产美女av久久久久小说| 午夜成年电影在线免费观看| 少妇被粗大的猛进出69影院| 欧美大码av| 丰满的人妻完整版| 级片在线观看| 精品人妻在线不人妻| 999久久久国产精品视频| 波多野结衣一区麻豆| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久精品久久久| 国产亚洲精品久久久久5区| 搡老熟女国产l中国老女人| 国产成人精品在线电影| 好看av亚洲va欧美ⅴa在| 露出奶头的视频| 亚洲中文日韩欧美视频| 99国产综合亚洲精品| 咕卡用的链子| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 午夜免费观看网址| 美女 人体艺术 gogo| 久久影院123| 色av中文字幕| 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| АⅤ资源中文在线天堂| 首页视频小说图片口味搜索| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 欧美大码av| 精品久久久久久,| 真人一进一出gif抽搐免费| 欧美国产精品va在线观看不卡| 亚洲精品粉嫩美女一区| 国产精品久久电影中文字幕| 999久久久国产精品视频| 午夜福利在线观看吧| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 成人手机av| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 亚洲精品在线观看二区| 如日韩欧美国产精品一区二区三区| 国产精品乱码一区二三区的特点 | av网站免费在线观看视频| 亚洲欧美日韩高清在线视频| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 国产精品九九99| 久久国产亚洲av麻豆专区| 淫秽高清视频在线观看| 超碰成人久久| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美激情在线| 午夜精品在线福利| 国语自产精品视频在线第100页| 丝袜美腿诱惑在线| 亚洲国产中文字幕在线视频| 大码成人一级视频| 亚洲电影在线观看av| 亚洲成人国产一区在线观看| 99久久国产精品久久久| 久热爱精品视频在线9| 露出奶头的视频| 制服人妻中文乱码| 午夜福利18| 欧美日韩福利视频一区二区| av免费在线观看网站| 18禁美女被吸乳视频| 真人做人爱边吃奶动态| 亚洲,欧美精品.| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩无卡精品| 很黄的视频免费| 精品久久久久久,| 校园春色视频在线观看| 亚洲第一青青草原| 欧美最黄视频在线播放免费| 成人免费观看视频高清| 亚洲一区二区三区不卡视频| 18禁美女被吸乳视频| av免费在线观看网站| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 国产一区在线观看成人免费| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 精品日产1卡2卡| 免费av毛片视频| 亚洲情色 制服丝袜| 国产一区二区在线av高清观看| 久久精品国产综合久久久| 两个人视频免费观看高清| 侵犯人妻中文字幕一二三四区| 香蕉国产在线看| 日韩精品青青久久久久久| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 黄色丝袜av网址大全| 天堂√8在线中文| 久久精品国产综合久久久| 满18在线观看网站| 欧美精品亚洲一区二区| 久久九九热精品免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品秋霞免费鲁丝片| 无遮挡黄片免费观看| 国产精品 欧美亚洲| 天堂动漫精品| netflix在线观看网站| 男女下面插进去视频免费观看| 亚洲欧美激情在线| 在线观看免费午夜福利视频| 村上凉子中文字幕在线| √禁漫天堂资源中文www| 日本精品一区二区三区蜜桃| 亚洲av成人一区二区三| 亚洲av熟女| 久久精品91蜜桃| 国产麻豆69| 一a级毛片在线观看| 9色porny在线观看| 国产三级黄色录像| 欧美性长视频在线观看| 十八禁人妻一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区| avwww免费| 国产日韩一区二区三区精品不卡| 亚洲av日韩精品久久久久久密| 少妇熟女aⅴ在线视频| 最近最新免费中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 脱女人内裤的视频| 免费观看人在逋| 国产视频一区二区在线看| 好男人在线观看高清免费视频 | 国产精品久久久久久精品电影 | 乱人伦中国视频| 亚洲avbb在线观看| 99国产精品免费福利视频| 亚洲av片天天在线观看| 亚洲黑人精品在线| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 国语自产精品视频在线第100页| 久久久久久久久久久久大奶| 一二三四在线观看免费中文在| 久久精品91无色码中文字幕| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区| 国产欧美日韩一区二区三| 99国产精品99久久久久| cao死你这个sao货| 免费在线观看影片大全网站| 亚洲免费av在线视频| 免费av毛片视频| 丝袜美足系列| 日本 欧美在线| 亚洲专区中文字幕在线| 欧美另类亚洲清纯唯美| 天堂动漫精品| 搞女人的毛片| 两性夫妻黄色片| 色在线成人网| 亚洲精品国产色婷婷电影| 亚洲精品国产精品久久久不卡| 欧美国产精品va在线观看不卡| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 亚洲精品国产色婷婷电影| 国产成人精品在线电影| av免费在线观看网站| 欧美日韩黄片免| 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 久久精品成人免费网站| 午夜视频精品福利| 一卡2卡三卡四卡精品乱码亚洲| 久热这里只有精品99| 窝窝影院91人妻| 亚洲av第一区精品v没综合| 亚洲一区二区三区色噜噜| 成年女人毛片免费观看观看9| 中文字幕人妻丝袜一区二区| 国产亚洲精品综合一区在线观看 | 最近最新中文字幕大全免费视频| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲av一区麻豆| 99精品欧美一区二区三区四区| 亚洲自偷自拍图片 自拍| 人成视频在线观看免费观看| 日韩免费av在线播放| 亚洲成国产人片在线观看| 国产不卡一卡二| av天堂久久9| 国产真人三级小视频在线观看| 免费高清视频大片| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 一进一出抽搐动态| 自线自在国产av| 国产区一区二久久| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 日韩欧美一区二区三区在线观看| 欧美久久黑人一区二区| 黄色视频不卡| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 色老头精品视频在线观看| 欧美成人一区二区免费高清观看 | 亚洲 国产 在线| 女人被狂操c到高潮| 久久精品aⅴ一区二区三区四区| 欧美大码av| 久久久久久国产a免费观看| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 在线国产一区二区在线| 亚洲欧美一区二区三区黑人| 欧美精品亚洲一区二区| 国产av又大| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 欧美黑人欧美精品刺激| 色播在线永久视频| 51午夜福利影视在线观看| 亚洲欧美精品综合一区二区三区| 免费少妇av软件| 美女 人体艺术 gogo| 乱人伦中国视频| www国产在线视频色| 亚洲三区欧美一区| 午夜精品在线福利| 色哟哟哟哟哟哟| 日本vs欧美在线观看视频| 一a级毛片在线观看| 精品第一国产精品| av有码第一页| 国产成+人综合+亚洲专区| 久久精品91无色码中文字幕| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 午夜a级毛片| 久久热在线av| 免费高清在线观看日韩| 午夜激情av网站| tocl精华| 91成人精品电影| 97超级碰碰碰精品色视频在线观看| av在线播放免费不卡| 黄片播放在线免费| 国产精品日韩av在线免费观看 | 国产高清激情床上av| 久久人妻av系列| 女生性感内裤真人,穿戴方法视频| 欧美 亚洲 国产 日韩一| 色播亚洲综合网| 丝袜在线中文字幕| 亚洲成国产人片在线观看|