• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of SNPs in barley(Hordeum vulgare L.) by deep sequencing of six reduced representation libraries

    2014-02-24 07:50:31*
    The Crop Journal 2014年6期

    *

    aKey Laboratory ofCrop Germplasm Resources and Utilization(MOA),The NationalKey Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bTibet Academy of Agriculturaland Animal Husbandry Sciences,Lhasa 850032,China

    Identification of SNPs in barley(Hordeum vulgare L.) by deep sequencing of six reduced representation libraries

    GanggangGuoa,DawaDondupa,b,LishaZhanga,ShaHua,XingmiaoYuana,JingZhanga,*

    aKey Laboratory ofCrop Germplasm Resources and Utilization(MOA),The NationalKey Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bTibet Academy of Agriculturaland Animal Husbandry Sciences,Lhasa 850032,China

    A R T I C L E I N F O

    Article history:

    Received 21 February 2014

    Received in revised form

    11 June 2014

    Accepted 3 July 2014

    Available online 14 July 2014

    Barley

    SNP discovery

    Reduced representation libraries

    Allele-specific PCR

    High-density genetic markers are required for genotyping and linkage mapping in identifying genes from crops with complex genomes,such as barley.As the most common variation,single nucleotide polymorphisms(SNPs)are suitable for accurate genotyping by using the next-generation sequencing(NGS)technology.Reduced representation libraries (RRLs)of five barley accessions and one mutant were sequenced using NGS technology for SNP discovery.Twenty million short reads were generated and the proportion of repetitive sequences was reduced by more than 56%.A total of 6061 SNPs were identified,and 451 were mapped to the draft sequence of the barley genome with pairing reads.Eleven SNPs were validated using length polymorphic allele-specific PCR markers.

    ?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Newly developed high-throughput SNP genotyping platforms have revolutionized genetic mapping and genome-wide association studies(GWAS)in plants[1,2]and animals[3].Biparental and association mapping populations are powerful genetic materials to study induced mutation and natural variation[4].SNPs are highly abundant genetic markers and are ideal for GWAS and genetic fine mapping[5].Genome re-sequencing-based SNP discovery relies on low-coverage sequencing of individual samples as well as the presence of a high-quality draft genome sequence[5].However,the cost of complete genome re-sequencing for SNP discovery is prohibitive,especially for species with large genomes.In order to meet this challenge genotyping methods based on next generation sequencing(NGS)have been developed and widely used,such as Complexity Reduction of Polymorphic Sequences(CRoPS) [6],Restriction site Associated DNA(RAD)[7],genotyping by sequencing(GBS)-narrow sense[8],and Multiplex Shotgun Genotyping(MSG)[9].It is particularly noteworthy that GBS has become a powerful tool for association studies and genomics-assisted breeding in a range of species including

    those with complex genomes.As a popular GBS tool,the strategy of a restriction enzyme-based reduced representation library(RRL)is feasible and flexible for SNP identification because it reduces the complexity of the genome by orders of magnitude[10].RRLs were used for SNP discovery first in human genomics by Sanger sequencing[11].Later,as an efficient and cost-effective method,RRL was used in maize[12]and cattle[13] for SNP discovery by deep sequencing.

    Barley,one of the first crops to be cultivated by humans,is the world's fourth-largest widely grown cereal.Its genome was sequenced in 2012[14].Among the sequenced genomes of major crops,high-density SNPs were developed from rice and maize by the re-sequencing method[2,15].However,SNP discovery in barley was limited to ESTs and unigene fragments in relevant germplasms or array-based transcriptome analysis [16–18].Development of genotyping by sequencing(GBS) technology was gradually optimized and adopted in barley for SNP identification and QTL mapping.Recently,a novel twoenzyme GBS protocol was developed and bi-parental populations were genotyped with GBS to develop SNPs in barley and wheat[19].To test new semiconductor sequencing platforms for GBS,Mascher et al.genotyped a recombinant inbred line (RIL)population of barley and concluded that GBS technology can easily be modified as an advanced sequencing technology and genomic analysis tool[20].A procedure for constructing GBS libraries by reducing genome complexity using restriction enzymes(REs)was reported.This procedure is simple,quick, highly reproducible with high specificity,and may reach important regions of the genome that are inaccessible by sequence capture approaches[8].In addition,a high-density consensus genetic map in barley was available and GWAS of morphological traits had been performed.A short awn gene, Breviaristatum-e(ari-e),was mapped to a smallgenetic intervalon chromosome 5H[21],and a master switch gene for anthocyanin production,ANTHOCYANINLESS 2(ANT2),encoding a basic helix–loop–helix protein(HvbHLH1)was also fine mapped[22]. The gene HvCEN,a homolog of Antirrhinum CENTRORADIALIS contributing to spring growth habit and environmental adaptation was identified in cultivated barley by the use of the 9K iSelect platform and GWAS[23].A highly specific in-solution hybridization-based whole exome capture platform was developed and it provides a powerful tool for re-sequencing the genomes of other accessions of barley and its relatives[24].In this study,we used the restriction enzyme-based RRL method and a parallel sequencing platform to discover de novo SNPs in six barley accessions.Some of the SNPs were converted into allele-specific PCR(AS-PCR)markers for marker validation. These converted markers have advantages of low cost per sample and ease of use,thus making them suitable for genetic diversity analysis of barley germplasm resources and markerassisted breeding.They can also be used in fine mapping of genes controlling important traits in barley.

    2.Materials and methods

    2.1.PlantgrowthandDNApreparation

    Four barley germplasm accessions from China(ZDM01159, ZDM01467,ZDM00014,ZDM08324),one accession from Mexico (ZDM08233),and one mutant(93–597)with multi-node and stem branching,obtained byγ-irradiation ofthe accession ZDM08324, and selfing for fifteen generations,were used for RRL construction.Seeds of the six accessions were sterilized with 3%H2O2for 5 min,and washed three times for 5 min with purified water. Subsequently,they were germinated and grown in darkness at 18±2°C for 14 days.Etiolated seedlings were individually harvested and frozen in liquid nitrogen and then stored at -80°C for DNAextraction.DNA was extracted and purified with a DNeasy plant mini kit(Qiagen,Hilden,Germany).

    2.2.RRLconstructionanddeepsequencing

    Tenμg of DNA from each sample was digested with 100 units Mse I(New England Biolabs,Beverly,MA,USA)in a 200μL reaction system.In order to digest the sample completely,the reaction was carried out overnight at 37°C.The digested DNA was fractionated on a 3.0%agarose gel.Digestion products between 350 and 450 bp were recovered with a MinElute Gel Extraction Kit(Qiagen)according to the manufacturer's protocol.

    Sequences were generated from the six barley RRLs on the Illumina GA IIDNA sequencing platform(Illumina,San Diego, CA,USA).Raw data were assigned to individual samples using the barcode sequence and trimmed to 40 bp at each end.For the sequencing of barcode ligation,ligation product amplification and sequencing were completed by the BIOMARKER Company(http://www.biomarker.com.cn/).

    2.3.SNPdiscoveryandphylogeneticanalysis

    The raw reads were firstly blasted against the Triticeae Repeat Sequence Database[25](TREP,http://wheat.pw.usda.gov/ITMI/ Repeats/).The matched sequences were filtered,and proportions of repetitive elements were evaluated.Non-repetitive reads were mapped against the whole genome shotgun assembly of barley cultivar Morex[14]with the CLC Genomics Workbench 6.02(http://www.clcbio.com/),and reads in pairs,or in broken pairs,and the average length of pairing reads were counted. Finally,the reads with>3×coverage were used for polymorphism analysis and SNP discovery.All of the identified SNPs and their reference sequences(20 bp flanking sequence of mapped pairing reads)are listed in Supplemental Table S1. SNPs identified in at least four to six RRLs were used for phylogenetic analysis.The phylogenetic tree was constructed by the Dnapars program using PHYLIP software[26].

    2.4.SNPvalidation

    Twenty one SNPs distributed evenly on all7 barley chromosomes were randomly selected and converted to AS-PCR markers for SNP validation.Two pairs of primers were designed for identification and genotyping of each SNP as described previously[27]. The SNP is present at the 3′end of the allele-specific PCR primer to ensure specificity of amplification.Primer design was performed using WASP software[28](http://bioinfo.biotec.or.th/ WASP)with default parameters.The two primer pairs were multiplexed in a single-tube PCR assay to assess the allelic status at each SNP locus.Two AS-PCR products of different lengths were generated.The PCR products were electrophoresed on 1.5%agarose geland visualized under UV light.

    Table 1–Summary of RRL sequence production and filtering.

    3.Results

    3.1.SNPdiscovery

    The RRLs were sequenced from six representative barley accessions,and a total of 20 million raw reads were obtained by pair-end sequencing on an Illumina GA II.Raw data were assigned to individual samples using the barcode sequence and trimmed to 40-nucleotide high-quality sequences for further analysis.The number of raw sequence reads ranged from 2.38 million(for 93–597)to 4.18 million(ZDM00014),with an average of 3.3 million reads for the six barley genotypes. The proportions of repetitive sequences varied from 11.74% (ZDM08233)to 44.77%(ZDM08324),and the ratio of the genomic mapped reads varied from 15.26%(ZDM08233)to 36.93% (ZDM08324).The average length of pairing reads ranged from 344.23 bp(ZDM01467)to 411.52 bp(ZDM08324)among the six accessions.After removal of the repetitive and low quality reads,a total of 1.56 million high-quality reads(with over 3×depth)from 6 RRLs were used for polymorphism analysis and SNP discovery.Finally,6061 SNPs with a 4.82×average coverage were identified.The RRL library of ZDM08324 generatedthe most number of SNPs(4508)and ZDM08233 did the fewest (2045)(Table 1).Among which,451 SNPs can be mapped by paired-end reads to the draft sequence of the barley genome (Table S1).

    Table 2–Repeat sequence content and composition in RRLs.

    About 21%of reads contained repetitive elements,including 2.14%simple repeats,1.03%internal repeats,16.42%retroelements and 1.17%of DNA transposon.The content and frequency of repeats were examined and compared with previously reported data[29].The frequencies of all categories of repeats were reduced;in particular,the major class of repeat elements was reduced by more than 51%,and class IIrepetitive elements were reduced by about 5%,resulting in a total reduction in repetitive elements of 56%(Table 2).

    The 1595 SNPs present in at least four libraries were used for phylogenetic analysis and construction of a phylogenetic tree(Fig.1).The six barley accessions clustered into two groups based on a genetic distance scale.One was a Chinese group,and the other was an introduced line.Although in the same cluster as the other three Chinese accessions,mutant 93–597 and its parent,ZDM08324,had the closest relationship as expected and clustered into a distinct sub-group.The other three Chinese accessions grouped together in a separate branch.

    Fig.1–Diversity analysis of the 6 barley accessions.An extended majority rule consensus tree calculated using the Dnapars program from the Phylip package[18].Numbers on branches indicate bootstrap values.

    3.2.SNPvalidation

    Pair-end sequencing allowed us to perform further experimental validation.AS-PCR and agarose gelelectrophoresis were used for SNP marker detection.Since 7 of 21 SNPs did not satisfy the default parameter of primer design software,and 3 SNP markers did not generate specific products in multiplexed PCR amplification,only 11 AS-PCR markers(ICS_B1H_S0003, ICS_B2H_S0058,ICS_B3H_S0134,ICS_B3H_S0152,ICS_B3H_S0155, ICS_B4H_S0202,ICS_B5H_S0249,ICS_B5H_S0270,ICS_B7H_S0382, ICS_B7H_S0389,and ICS_B7H_S0400)were validated(Table 3). Different genotypes were clearly separated by length polymorphismofthe 11 SNP markers(Fig.2).These markers not only can be used to validate the SNP genotypes ofthe six sequenced barley accessions,butalso can be applied to identify genotypes ofbarley germplasm resources(Table 3).

    4.Discussion

    Reduced representation library(RRL)technology can reduce redundant parts of plant genomes for sequencing.In the present study,six RRLs were constructed and sequenced from six barley accessions for SNP discovery.Over 56%of the repetitive elements were reduced,indicating that RRLs were effective in the removalof repetitive sequences.Read mappingand SNP calling were performed against the draft genome sequence of cv.Morex.In comparison to the previous report of RAD sequencing in barley[30],similar numbers of SNPs were anchored to the barley genome.

    Table 3–Sequences of allele-specific PCR primer pairs used for SNP validation.

    Fig.2–Agarose gelbanding patterns for 11 AS-PCR markers.M:DL2000 DNA ladder.A–F:Accession IDs correspond to Table 3.

    Because of the double impact of primer design and multiplex PCR amplification efficiency,the marker development success rate of length polymorphic AS-PCR was restricted,but,compared to other PCR-based SNP genotyping methods,such as TaqMan and KASP,AS-PCR is simple and cheap because it has no requirement for special detection instruments and fluorescent probes.Moreover,length polymorphic AS-PCR markers can be examined easily in the validation of SNPs. AS-PCR genotyping results also confirmed that depth sequencing ensures accurate of SNP calling.Furthermore, phylogenic analysis based on calling SNP markers revealed that ion mutant 93–597 and its parent(ZDM08324)had the closest relationship whereas the introduced showed the most distant genetic relationship.Our results proved that

    the GBS method was a reliable and cost-effective approach for SNP identification and genotyping.

    By combining deep sequencing and RRLs,we can focus on the non-repeated portion of the barley genome for SNP identification.Our results demonstrated that this approach can be used as a powerful genotyping platform for costeffective linkage analysis and GWAS instead of whole genome sequencing in cereals with large genomes.

    5.Conclusion

    High proportions of repetitive sequences increase the cost of SNP discovery by deep sequencing in barley and its relatives. The present study indicated that reduced representation libraries significantly reduce repetitive redundant DNA,thus reducing sequencing costs and enhancing the efficiency of SNP discovery.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(31000711,31370032),China Agriculture Research System(CARS-05)and the Agricultural Science and Technology Innovation Program.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.06.008.Table S1-List of SNPs identified in the six barley RRLs.

    [1]F.Tian,P.J.Bradbury,P.J.Brown,H.Hung,Q.Sun, S.Flint-Garcia,T.R.Rocheford,M.D.McMullen,J.B.Holland, E.S.Buckler,Genome-wide association study of leaf architecture in the maize nested association mapping population,Nat.Genet.43(2011)159–162.

    [2]X.Huang,X.Wei,T.Sang,Q.Zhao,Q.Feng,Y.Zhao,C.Li, C.Zhu,T.Lu,Z.Zhang,M.Li,D.Fan,Y.Guo,A.Wang, L.Wang,L.Deng,W.Li,Y.Lu,Q.Weng,K.Liu,T.Huang, T.Zhou,Y.Jing,W.Li,Z.Lin,E.S.Buckler,Q.Qian,Q.-F.Zhang, J.Li,B.Han,Genome-wide association studies of 14 agronomic traits in rice landraces,Nat.Genet.42(2010)961–967.

    [3]L.A.Hindorff,P.Sethupathy,H.A.Junkins,E.M.Ramos,J.P.Mehta, F.S.Collins,T.A.Manolio,Potentialetiologic and functional implications of genome-wide association locifor human diseases and traits,Proc.Natl.Acad.Sci.U.S.A.106(2009)9362.

    [4]S.Myles,J.Peiffer,P.J.Brown,E.S.Ersoz,Z.Zhang,D.E.Costich, E.S.Buckler,Association mapping:criticalconsiderations shift from genotyping to experimental design,Plant Cell 21(2009) 2194–2202.

    [5]M.W.Ganal,T.Altmann,M.S.R?der,SNP identification in crop plants,Curr.Opin.Plant Biol.12(2009)211–217.

    [6]N.J.Van Orsouw,R.C.J.Hogers,A.Janssen,F.Yalcin, S.Snoeijers,E.Verstege,H.Schneiders,H.Van Der Poel,J.Van Oeveren,H.Verstegen,M.J.T.Van Eijk,Complexity reduction of polymorphic sequences(CRoPS?):a novel approach for large-scale polymorphism discovery in complex genomes, PLoS One 2(2007)e1172.

    [7]N.A.Baird,P.D.Etter,T.S.Atwood,M.C.Currey,A.L.Shiver, Z.A.Lewis,E.U.Selker,W.A.Cresko,E.A.Johnson,Rapid SNP discovery and genetic mapping using sequenced RAD markers,PLoS One 3(2008)e3376.

    [8]R.J.Elshire,J.C.Glaubitz,Q.Sun,J.A.Poland,K.Kawamoto, E.S.Buckler,S.E.Mitchell,A robust,simple genotyping-by-sequencing(GBS)approach for high diversity species,PLoS One 6(2011)e19379.

    [9]P.Andolfatto,D.Davison,D.Erezyilmaz,T.T.Hu,J.Mast, T.Sunayama-Morita,D.L.Stern,Multiplexed shotgun genotyping for rapid and efficient genetic mapping,Genome Res.21(2011)610–617.

    [10]Y.Du,H.Jiang,Y.Chen,C.Li,M.Zhao,J.Wu,Y.Qiu,Q.Li, X.Zhang,Comprehensive evaluation of SNP identification with the restriction enzyme-based reduced representation library(RRL)method,BMC Genomics 13(2012)77.

    [11]D.Altshuler,V.J.Pollara,C.R.Cowles,W.J.Van Etten, J.Baldwin,L.Linton,E.S.Lander,An SNP map of the human genome generated by reduced representation shotgun sequencing,Nature 407(6803)(2000)513–516.

    [12]W.B.Barbazuk,S.J.Emrich,H.D.Chen,L.Li,P.S.Schnable,SNP discovery via 454 transcriptome sequencing,Plant J.51(2007) 910–918.

    [13]C.P.Van Tassell,T.P.L.Smith,L.K.Matukumalli,J.F.Taylor, R.D.Schnabel,C.T.Lawley,C.D.Haudenschild,S.S.Moore, W.C.Warren,T.S.Sonstegard,SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries,Nat.Methods 5(2008)247–252.

    [14]The International Barley Genome Sequencing Consortium,A physical,genetic and functionalsequence assembly of the barley genome,Nature 491(2012)711–716.

    [15]M.A.Gore,J.-M.Chia,R.J.Elshire,Q.Sun,E.S.Ersoz, B.L.Hurwitz,J.A.Peiffer,M.D.McMullen,G.S.Grills, J.Ross-Ibarra,D.H.Ware,E.S.Buckler,A first-generation haplotype map of maize,Science 326(2009)1115–1117.

    [16]N.Rostoks,S.Mudie,L.Cardle,J.Russell,L.Ramsay,A.Booth, J.T.Svensson,S.I.Wanamaker,H.Walia,E.M.Rodriguez, Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress,Mol.Genet. Genomics 274(2005)515–527.

    [17]R.Kota,S.Rudd,A.Facius,G.Kolesov,T.Thiel,H.Zhang, N.Stein,K.Mayer,A.Graner,Snipping polymorphisms from large EST collections in barley(Hordeum vulgare L.).Mol. Genet,Genomics 270(2003)24–33.

    [18]T.J.Close,P.R.Bhat,S.Lonardi,Y.Wu,N.Rostoks,L.Ramsay, A.Druka,N.Stein,J.T.Svensson,S.Wanamaker,Development and implementation of high-throughput SNP genotyping in barley,BMC Genomics 10(2009)582.

    [19]J.A.Poland,P.J.Brown,M.E.Sorrells,J.L.Jannink,Development ofhigh-density genetic maps for barley and wheat using a noveltwo-enzyme genotyping-by-sequencing approach,PLoS One 7(2012)e32253.

    [20]M.Mascher,S.Wu,P.S.Amand,N.Stein,J.Poland,Application ofgenotyping-by-sequencing on semiconductor sequencing platforms:a comparison ofgenetic and reference-based marker ordering in barley,PLoS One 8(2013)e76925.

    [21]H.Liu,M.Bayer,A.Druka,J.R.Russell,C.A.Hackett,J.Poland, L.Ramsay,P.E.Hedley,R.Waugh,An evaluation ofgenotyping by sequencing(GBS)to map the Breviaristatum-e(ari-e)locus in cultivated barley,BMC Genomics 15(2014)104.

    [22]J.Cockram,J.White,D.L.Zuluaga,D.Smith,J.Comadran, M.Macaulay,Z.Luo,M.J.Kearsey,P.Werner,D.Harrap, C.Tapsell,H.Liu,P.E.Hedley,N.Stein,D.Schulte, B.Steuernagel,D.F.Marshall,W.T.B.Thomas,L.Ramsay, I.Mackay,D.J.Balding,R.Waugh,D.M.O'sullivan,C.Booer, S.Pike,G.Hamilton,G.Jellis,N.Davies,A.Ross,P.Bury, R.Habgood,S.Klose,D.Vequaud,T.Christerson,J.Brosnan,

    A.Newton,J.Russell,P.Shaw,R.Bayles,M.Wang,Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome,Proc.Natl.Acad.Sci.U.S.A. 107(2010)21611–21616.

    [23]J.Comadran,B.Kilian,J.Russell,L.Ramsay,N.Stein, M.Ganal,P.Shaw,M.Bayer,W.Thomas,D.Marshall, P.Hedley,A.Tondelli,N.Pecchioni,E.Francia,V.Korzun, A.Walther,R.Waugh,Naturalvariation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habitand environmentaladaptation in cultivated barley,Nat. Genet.44(2012)1388–1392.

    [24]M.Mascher,T.A.Richmond,D.J.Gerhardt,A.Himmelbach, L.Clissold,D.Sampath,S.Ayling,B.Steuernagel,M.Pfeifer, M.D'ascenzo,E.D.Akhunov,P.E.Hedley,A.M.Gonzales, P.L.Morrell,B.Kilian,F.R.Blattner,U.Scholz,K.F.Mayer, A.J.Flavell,G.J.Muehlbauer,R.Waugh,J.A.Jeddeloh,N.Stein, Barley whole exome capture:a tool for genomic research in the genus Hordeum and beyond,Plant J.76(2013)494–505.

    [25]T.Wicker,D.E.Matthews,B.Keller,TREP:a database for Triticeae repetitive elements,Trends Plant Sci.7(2002)561–562.

    [26]J.Felsenstein,PHYLIP-phylogeny inference package(version 3.2),Cladistics 5(1989)164–166.

    [27]M.Gaudet,A.G.Fara,I.Beritognolo,M.Sabatti,Allele-specific PCR in SNP genotyping,Methods Mol.Biol.578(2009)415–424.

    [28]P.Wangkumhang,K.Chaichoompu,C.Ngamphiw, U.Ruangrit,J.Chanprasert,A.Assawamakin,S.Tongsima, WASP:a web-based allele-specific PCR assay designing toolfor detecting SNPs and mutations,BMC Genomics 8(2007)275.

    [29]K.F.X.Mayer,S.Taudien,M.Martis,H.Simkova,P. Suchankova,H.Gundlach,T.Wicker,A.Petzold,M.Felder, B.Steuernagel,U.Scholz,A.Graner,M.Platzer,J.Dolezel, N.Stein,Gene content and virtualgene order of barley chromosome 1H,Plant Physiol.151(2009)496–505.

    [30]Y.Chutimanitsakun,R.Nipper,A.Cuesta-Marcos,L.Cistue, A.Corey,T.Filichkina,E.Johnson,P.Hayes,Construction and application for QTL analysis of a Restriction Site Associated DNA(RAD)linkage map in barley,BMC Genomics 12(2011)4.

    *Corresponding author.Tel.:+86 10 62189624.

    E-mail address:zhangjing03@caas.cn(J.Zhang).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2014.06.008

    2214-5141/?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.

    欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 69人妻影院| 国产人妻一区二区三区在| 一卡2卡三卡四卡精品乱码亚洲| 国产探花在线观看一区二区| 国产精品综合久久久久久久免费| 波多野结衣高清作品| 色播亚洲综合网| 可以在线观看的亚洲视频| 国产精品久久久久久久久免| 亚洲,欧美,日韩| 91久久精品电影网| 国产一区二区亚洲精品在线观看| 最近在线观看免费完整版| 高清在线国产一区| 欧美日韩综合久久久久久 | 中国美女看黄片| 国产单亲对白刺激| 色5月婷婷丁香| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 亚洲av电影不卡..在线观看| 亚洲,欧美,日韩| 97碰自拍视频| 国产精品精品国产色婷婷| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 国内精品美女久久久久久| 午夜a级毛片| 一个人免费在线观看电影| 在线免费观看不下载黄p国产 | 欧美一区二区亚洲| 麻豆精品久久久久久蜜桃| av在线老鸭窝| 日本-黄色视频高清免费观看| 国产精品av视频在线免费观看| 午夜亚洲福利在线播放| 婷婷丁香在线五月| h日本视频在线播放| 国产精品无大码| 国产一区二区三区在线臀色熟女| 亚洲欧美激情综合另类| 麻豆一二三区av精品| 国产高清视频在线播放一区| 久久精品综合一区二区三区| x7x7x7水蜜桃| 午夜日韩欧美国产| 亚洲专区中文字幕在线| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 少妇的逼水好多| 国产高潮美女av| 久久精品影院6| 午夜老司机福利剧场| 日韩欧美在线二视频| 亚洲国产精品合色在线| 久久这里只有精品中国| 久久国内精品自在自线图片| 精品久久久久久久久久免费视频| 免费在线观看影片大全网站| or卡值多少钱| 性欧美人与动物交配| 日本黄色片子视频| 一本精品99久久精品77| 国产精品国产高清国产av| 美女大奶头视频| 久久久久久久午夜电影| 制服丝袜大香蕉在线| 波野结衣二区三区在线| 亚洲专区中文字幕在线| 欧美日韩精品成人综合77777| 亚洲自偷自拍三级| 极品教师在线免费播放| 男人的好看免费观看在线视频| 国内精品久久久久久久电影| 亚洲国产精品久久男人天堂| 欧美一级a爱片免费观看看| 午夜日韩欧美国产| av中文乱码字幕在线| 噜噜噜噜噜久久久久久91| 成年免费大片在线观看| 国产毛片a区久久久久| 18禁黄网站禁片免费观看直播| 观看美女的网站| 久久久国产成人精品二区| 国产伦在线观看视频一区| av在线观看视频网站免费| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区 | 久久天躁狠狠躁夜夜2o2o| 国产久久久一区二区三区| 国产黄片美女视频| 美女高潮喷水抽搐中文字幕| 精品人妻熟女av久视频| 看黄色毛片网站| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 男女啪啪激烈高潮av片| 国产精品爽爽va在线观看网站| 51国产日韩欧美| 国产在线男女| 97人妻精品一区二区三区麻豆| 日本爱情动作片www.在线观看 | 欧美激情久久久久久爽电影| 国产91精品成人一区二区三区| 亚洲va在线va天堂va国产| av在线老鸭窝| 欧美又色又爽又黄视频| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 免费看a级黄色片| 校园人妻丝袜中文字幕| 日本三级黄在线观看| 女同久久另类99精品国产91| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 国产伦一二天堂av在线观看| 国产免费av片在线观看野外av| 日韩高清综合在线| 真人做人爱边吃奶动态| 97人妻精品一区二区三区麻豆| 久久久久久久精品吃奶| 久久久久久久亚洲中文字幕| 日日啪夜夜撸| 成人午夜高清在线视频| av在线老鸭窝| 日日啪夜夜撸| 午夜福利在线观看吧| 久久人妻av系列| av在线蜜桃| 成年女人永久免费观看视频| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 香蕉av资源在线| 亚洲va在线va天堂va国产| 窝窝影院91人妻| 国产午夜精品久久久久久一区二区三区 | 国产精品99久久久久久久久| 亚洲av.av天堂| 在现免费观看毛片| 中文字幕高清在线视频| 国产不卡一卡二| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 亚洲精品一区av在线观看| av视频在线观看入口| 老女人水多毛片| 嫩草影视91久久| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 亚洲精品成人久久久久久| 久久久久国内视频| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 久久久国产成人免费| av在线亚洲专区| 国产高清激情床上av| 成年人黄色毛片网站| 在线国产一区二区在线| 国产91精品成人一区二区三区| 国产美女午夜福利| 又紧又爽又黄一区二区| 免费观看人在逋| av黄色大香蕉| 国产三级在线视频| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 女同久久另类99精品国产91| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片 | 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 丰满乱子伦码专区| 亚洲天堂国产精品一区在线| 精品人妻1区二区| 久久亚洲真实| 在线观看舔阴道视频| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 国产黄片美女视频| 国产一区二区激情短视频| 极品教师在线视频| 国产乱人视频| 国产精品久久久久久av不卡| 国产成人一区二区在线| 精品久久国产蜜桃| 99热这里只有精品一区| 精品人妻1区二区| 欧美成人a在线观看| 日韩一区二区视频免费看| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 国产精品爽爽va在线观看网站| 在线免费十八禁| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 九色国产91popny在线| 在线天堂最新版资源| 哪里可以看免费的av片| 成人二区视频| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 午夜影院日韩av| 在线观看午夜福利视频| 成人永久免费在线观看视频| 国产精品,欧美在线| 久久久久性生活片| 99久久久亚洲精品蜜臀av| 18禁在线播放成人免费| 天堂网av新在线| 午夜影院日韩av| 国产精华一区二区三区| 色5月婷婷丁香| 色吧在线观看| 亚洲欧美精品综合久久99| 久久香蕉精品热| 亚洲狠狠婷婷综合久久图片| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 三级毛片av免费| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| bbb黄色大片| 在线观看66精品国产| 国产一区二区三区在线臀色熟女| 99精品在免费线老司机午夜| 国产精品一及| 女的被弄到高潮叫床怎么办 | 日日撸夜夜添| 国产精品久久电影中文字幕| 成人三级黄色视频| 美女 人体艺术 gogo| av福利片在线观看| 亚洲国产精品成人综合色| 日韩一区二区视频免费看| 精品一区二区免费观看| 老司机午夜福利在线观看视频| 三级国产精品欧美在线观看| 成人无遮挡网站| 亚洲无线观看免费| 国国产精品蜜臀av免费| 高清在线国产一区| 午夜影院日韩av| 国产真实乱freesex| 在线观看66精品国产| 久久久久久大精品| 黄色欧美视频在线观看| 免费av毛片视频| 国产亚洲欧美98| 日韩欧美 国产精品| 在线观看午夜福利视频| 国产精品98久久久久久宅男小说| 在线观看美女被高潮喷水网站| 欧美潮喷喷水| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 亚洲av中文av极速乱 | 欧美+亚洲+日韩+国产| 一区二区三区免费毛片| 国产免费男女视频| 日韩强制内射视频| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 日韩亚洲欧美综合| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 黄色配什么色好看| 国产高清有码在线观看视频| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 国产真实伦视频高清在线观看 | 男女下面进入的视频免费午夜| 久久精品国产亚洲网站| 91午夜精品亚洲一区二区三区 | 国产男靠女视频免费网站| 精品人妻熟女av久视频| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 亚洲在线自拍视频| 亚洲精品色激情综合| 午夜精品久久久久久毛片777| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 国产精品三级大全| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 精品久久久噜噜| 国产一区二区在线观看日韩| 精品日产1卡2卡| 国产三级中文精品| 午夜福利视频1000在线观看| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放| 中国美白少妇内射xxxbb| 九九热线精品视视频播放| 黄色欧美视频在线观看| 少妇的逼好多水| 成人性生交大片免费视频hd| 1000部很黄的大片| 高清毛片免费观看视频网站| 一级黄色大片毛片| 色精品久久人妻99蜜桃| 亚洲人成网站在线播放欧美日韩| 成人无遮挡网站| av福利片在线观看| 性色avwww在线观看| 亚洲专区国产一区二区| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 男女做爰动态图高潮gif福利片| 干丝袜人妻中文字幕| 国产男靠女视频免费网站| 很黄的视频免费| 国产三级中文精品| 最新在线观看一区二区三区| 午夜影院日韩av| 国产69精品久久久久777片| 亚洲av中文av极速乱 | 精品国产三级普通话版| 国产精品永久免费网站| 在线观看一区二区三区| 色尼玛亚洲综合影院| 黄色女人牲交| 久久精品国产鲁丝片午夜精品 | 99久久精品一区二区三区| 深夜精品福利| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 国产 一区 欧美 日韩| avwww免费| 一级av片app| 一级a爱片免费观看的视频| 日韩 亚洲 欧美在线| 亚洲专区中文字幕在线| 无人区码免费观看不卡| 色在线成人网| 老司机午夜福利在线观看视频| www日本黄色视频网| 精品日产1卡2卡| 日韩精品有码人妻一区| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 午夜久久久久精精品| 国产私拍福利视频在线观看| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 亚洲av.av天堂| 国产av一区在线观看免费| 久久久久久久久大av| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 日韩国内少妇激情av| 成人午夜高清在线视频| 少妇高潮的动态图| 中国美女看黄片| 亚洲国产高清在线一区二区三| 日本欧美国产在线视频| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 国产真实伦视频高清在线观看 | 国产高清视频在线观看网站| 成人欧美大片| 欧美一区二区亚洲| 国产乱人伦免费视频| 一区二区三区免费毛片| av.在线天堂| 久9热在线精品视频| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 一区福利在线观看| 国产高清三级在线| 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 欧美zozozo另类| 婷婷亚洲欧美| 日韩高清综合在线| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 午夜影院日韩av| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 有码 亚洲区| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 少妇高潮的动态图| 中国美女看黄片| 亚洲中文字幕一区二区三区有码在线看| 人妻少妇偷人精品九色| 日本五十路高清| 女的被弄到高潮叫床怎么办 | 精品久久久久久久人妻蜜臀av| 99九九线精品视频在线观看视频| 99久久九九国产精品国产免费| 日韩高清综合在线| 亚洲专区中文字幕在线| 99久国产av精品| 国产蜜桃级精品一区二区三区| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 欧美人与善性xxx| 天美传媒精品一区二区| 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 亚洲av中文av极速乱 | 亚洲一级一片aⅴ在线观看| 美女被艹到高潮喷水动态| 男女之事视频高清在线观看| 人妻制服诱惑在线中文字幕| 中国美女看黄片| 成人av一区二区三区在线看| 成人鲁丝片一二三区免费| 男女下面进入的视频免费午夜| 老女人水多毛片| 麻豆国产97在线/欧美| 欧美日韩国产亚洲二区| 欧美xxxx黑人xx丫x性爽| 免费在线观看影片大全网站| 美女高潮的动态| 国产精品av视频在线免费观看| 久久久久久久亚洲中文字幕| 极品教师在线免费播放| 看免费成人av毛片| 99riav亚洲国产免费| 精品人妻偷拍中文字幕| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 九色国产91popny在线| 久久久久久大精品| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 日韩欧美国产一区二区入口| 欧美高清性xxxxhd video| 国产男人的电影天堂91| 亚洲性久久影院| 天天躁日日操中文字幕| 一区福利在线观看| 国产v大片淫在线免费观看| 午夜免费男女啪啪视频观看 | 国产熟女欧美一区二区| videossex国产| 国产高清不卡午夜福利| 亚洲精品久久国产高清桃花| av福利片在线观看| 欧美成人a在线观看| 亚洲色图av天堂| 观看美女的网站| 亚洲,欧美,日韩| 成人特级av手机在线观看| 国产激情偷乱视频一区二区| 国产av不卡久久| 日韩欧美国产在线观看| 黄片wwwwww| 欧美成人免费av一区二区三区| 亚洲精品日韩av片在线观看| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 久久久久性生活片| 婷婷精品国产亚洲av在线| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 可以在线观看的亚洲视频| 悠悠久久av| 亚洲成人久久爱视频| 日韩一本色道免费dvd| 国产麻豆成人av免费视频| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 国产三级中文精品| 性欧美人与动物交配| 日本色播在线视频| 美女高潮的动态| 国产免费av片在线观看野外av| 日日摸夜夜添夜夜添小说| 99国产精品一区二区蜜桃av| 免费在线观看影片大全网站| 啦啦啦啦在线视频资源| 国产成年人精品一区二区| 欧美+日韩+精品| 免费观看的影片在线观看| 人人妻,人人澡人人爽秒播| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 最近在线观看免费完整版| 美女免费视频网站| 99精品在免费线老司机午夜| 69av精品久久久久久| 国产免费一级a男人的天堂| 成人二区视频| 国产男人的电影天堂91| 成人高潮视频无遮挡免费网站| 高清在线国产一区| 亚洲精品色激情综合| 国产免费男女视频| 久久九九热精品免费| 亚洲国产精品sss在线观看| 天堂网av新在线| 91在线精品国自产拍蜜月| 悠悠久久av| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久影院| 国产探花极品一区二区| 99在线视频只有这里精品首页| 亚洲成人中文字幕在线播放| 联通29元200g的流量卡| 一个人观看的视频www高清免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲美女搞黄在线观看 | 亚洲四区av| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 欧美成人性av电影在线观看| 午夜福利高清视频| 国产av一区在线观看免费| 欧美性感艳星| 999久久久精品免费观看国产| 99久国产av精品| 精品久久国产蜜桃| 在线观看66精品国产| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 亚洲成av人片在线播放无| 91在线精品国自产拍蜜月| 麻豆成人av在线观看| 一级毛片久久久久久久久女| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 2021天堂中文幕一二区在线观| 性欧美人与动物交配| 日本 av在线| 天堂影院成人在线观看| 亚洲av美国av| 欧美一级a爱片免费观看看| 国产av不卡久久| 午夜免费男女啪啪视频观看 | 国产av在哪里看| 麻豆av噜噜一区二区三区| 国产 一区精品| 亚洲人成伊人成综合网2020| 亚洲乱码一区二区免费版| 99久国产av精品| 一a级毛片在线观看| 亚洲第一电影网av| 少妇丰满av| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 美女黄网站色视频| 99热这里只有是精品50| 国产男人的电影天堂91| 国产av麻豆久久久久久久| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 嫁个100分男人电影在线观看| 国产免费一级a男人的天堂| 亚洲欧美激情综合另类| 最新中文字幕久久久久| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 免费人成在线观看视频色| 99九九线精品视频在线观看视频| 亚洲色图av天堂| 在现免费观看毛片| 亚洲真实伦在线观看|