• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular detection of Xanthomonas oryzae pv.oryzae,Xanthomonas oryzae pv.oryzicola,and Burkholderia glumae in infected rice seeds and leaves

    2014-03-13 05:51:10WenLuLuqiPnHijunZhoYulinJiYnliWngXiopingYuXueynWng
    The Crop Journal 2014年6期

    Wen Lu,Luqi Pn,Hijun Zho,Yulin Ji,Ynli Wng ,Xioping Yu,Xueyn Wng,*

    aZhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine,College of Life Science,China Jiliang University,Hangzhou 310018,China

    bInstitute of Nuclear-Agricultural Science,Zhejiang University,Hangzhou 310029,China

    cUnited States Department of Agriculture,Agricultural Research Service,Dale Bumpers National Rice Research Center(USDA-ARS DB NRRC),Stuttgart,AR,USA

    dInstitute of Plant Protection and Microbe,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China

    1.Introduction

    Rice,one of the most important food crops,is constantly challenged by bacterial pathogens,such as those causing bacterial blight,leaf streak,and bacterial panicle blight.Bacterial blight,caused by Xanthomonas oryzae pv.oryzae,is a prevalent and destructive rice disease that causes annual yield losses ranging from 10 to 20% and up to 50% to 70% in severely infected fields [1,2].This disease also affects grain quality by interfering with the maturation process[3].Bacterial leaf streak caused by X.oryzae pv.oryzicola,the pathovar of X.oryzae pv.oryzae,usually results in the wilting of leaves andlosses as high as 32%in 1000-grain weight[4].It is important to note that hybrid rice varieties are more susceptible to this bacterial pathogen than non-hybrid varieties [5].Rice bacterial panicle blight(bacterial grain rot),caused by Burkholderia glumae was first reported in Japan in 1956 [6].Yield losses due to B.glumae can reach as high as 40%in the southern U.S.[7].Given that the optimal temperature for the growth of B.glumae ranges from 30 to 50 °C [7],warmer temperatures during the ricegrowing season increase the severity of the disease [8].The presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae in infected seeds may cause disease transmission,so that many countries have listed the three bacteria as quarantined

    organisms.Both conventional and real-time PCR have been widely used to detect or verify the presence of X.oryzae pv.

    Table 1-Sequences,annealing temperature,predicted product size,primers,and primer sources used in this study.

    Table 2-Bacterial and fungal strains used for specificity tests.

    oryzae[9–13],X.oryzae pv.oryzicola[14–16],and B.glumae[17–20]in recent decades.These molecular-based methods are rapid,accurate and sensitive for detecting pathogens.However,they can detect only one pathogen each.Several methods have been developed to distinguish highly similar pathovars of X.oryzae pv.oryzae and X.oryzae pv.oryzicola using multiplex or real-time PCR[21,22].

    In the present study,we used genome sequence information available in public databases to develop PCR primers for accurate identification of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.The objective of this study was to develop multiplex PCR and SYBR Green real-time PCR methods for simultaneous detection of the presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.

    2.Materials and methods

    2.1.Bacterial and fungal strains and culture conditions

    Strains of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae; the other closely related pathogens Xanthomonas campestris,Xanthomonas maltophilia,Burkholderia gladioli pv.alliicola,and Burkholderia cepacia;and the rice fungal pathogens Magnaporthe oryzae and Ustilaginoidea oryzae were used to develop specific primer sets.Bacterial strains were cultured on a Luria–Bertani medium (1% tryptone,0.5% yeast extract,1%NaCl,and 1.5%agar)at 28 °C for two days.Fungal isolates were cultured on corn meal medium(3%corn meal and 1.5%agar)at room temperature for four to five days[23].

    2.2.DNA preparation

    Genomic DNA of bacterial strains was extracted with a Genomic DNA Prep Kit (Sangon,Shanghai,China) following the manufacturer's protocol,except that DNA was eluted in 30 μL double-distilled water(ddH2O).Genomic DNA of fungal and leaf tissue was prepared using the CTAB method [24,25].DNA concentrations were measured with a Nanodrop 2000 instrument (Thermo Fisher Scientific,Wilmington,DE).The OD260:OD280 ratios of all samples were approximately 1.8.All samples were diluted to 1 ng μL-1in ddH2O.

    2.3.Development of specific DNA primers

    The sequence of the putative glycosyltransferase gene of X.oryzae pv.oryzae (AF169030.1) was identified in GenBank,and then aligned with the putative glycosyltransferase genes of X.oryzae pv.oryzicola (CP003057.1),X.campestris pv.campestris (AF204145.1),X.campestris pv.vesicatoria(AM039952.1),Xanthomonas axonopodis pv.citrumelo(CP002914.1),and Xanthomonas albilineans(FP565176)using BioEdit[26].Specific primers for X.oryzae pv.oryzae were designed from non-conserved regions (Table 2,Fig.S1).Using the same strategy,the AvrRxo gene of X.oryzae pv.oryzicola(AY395713.1) was used as a template for designing specific primers for X.oryzae pv.oryzicola (Fig.S2).Ribosomal internal transcribed spacers (ITSs) of B.glumae (D87080),B.plantarii(AB183680.1),B.gladioli (EF552066.1),B.gladioli pv.alliicola(D87082.1),B.gladioli pv.agricicola (EF552068.1),and B.cepalia(FJ870551.2)were aligned,after which the nonconserved regions were used to design specific primers(Fig.S3).The PCR product lengths ranged from 100 to 250 bp for both conventional and real-time PCR assays.

    2.4.Polymerase chain reaction (PCR)

    Conventional PCR assays were used to test the specificity and sensitivity of primers using a T100 Thermal Cycler (Bio-Rad,California,USA).The concentration of the sample used for testing the specificity of the primers was 1 ng μL-1.The pathogens X.oryzae pv.oryzae OS198,X.oryzae pv.oryzicola AHB4-75,and B.glumae LMG2196 were diluted to 5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4ng μL-1with ddH2O to test primer sensitivity.PCR reactions were performed in a final volume of 20 μL containing 10 μL of 2 × Taq master mix(Sangon,Shanghai,China),0.4 μL of each 10 μmol L-1primer,1 μL of genomic DNA,and 8.6 μL ddH2O,vortexed thoroughly.PCR amplification was as follows:initial denaturation for 3 min at 94 °C;35 cycles of 30 s at 94 °C,30 s at 58 °C,30 s at 72 °C,and final extension for 10 min at 72 °C.PCR products were separated on a 1%agarose gel(1 × TAE buffer)by electrophoresis at 100 V for 30 min and visualized with a Gene Genius Bio Imaging System (Syngene,Cambridge,UK).DNA templates were replaced with ddH2O as a negative control.

    Fig.1-Sensitivity tests of primer sets using conventional PCR.A:sensitivity test of JLXooF/R with the template OS198;B:sensitivity test of JLXocF/R with the template AHB4-75;C:sensitivity test of JLBgF/R with the template LMG2196.Lane M,DNA ladder(DL 2000,Takara,Shiga,Japan);lanes 1-9:1,5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4 ng μL-1;lane 10:negative control.The arrows point to the limiting detection concentrations of the primer sets.

    2.5.SYBR Green real-time PCR

    The SYBR Green real-time PCR assay was used to test the sensitivity of the primers with an IQ5 Multicolor real-time PCR Detection System (Bio-Rad,Hercules,CA).DNA of OS198,AHB4-75,and LMG2196 was 10-fold serially diluted from 1 to 1 × 10-6ng μL-1.Each PCR reaction contained 10 μL of 2 × SYBR Premix Ex Taq (TaKaRa,Shiga,Japan) and 0.4 μL of each 10 μmol L-1primer,1 μL template,and 8.6 μL ddH2O.Realtime PCR was performed with the following program: 45 s at 95 °C;40 cycles of 5 s at 95 °C,30 s at 61 °C for 30 s;and melting curve at 65 to 95 °C with increases of 0.5 °C.DNA templates were replaced by ddH2O as a negative control.

    2.6.Multiplex PCR

    To perform multiplex PCR,1 ng μL-1genomic DNA of OS198,AHB4-75 and LMG2196 was used as positive templates in three PCR tubes,respectively.The three genomes were mixed with different concentrations and proportions of DNA to test the primers' sensitivity in a multiplex PCR reaction.The total volume of multiplex PCR was 20 μL (10 μL of 2 × Taq master mix,0.4 μL of 10 μmol L-1of each primer,and 1 μL DNA mix).PCR products were separated on a 1.5%agarose gel (1 × TAE buffer) by electrophoresis at 90 V for 50 min and visualized with the Gene Genius Bio Imaging System.DNA templates were replaced by ddH2O as a negative control.

    Fig.2-Sensitivity tests of JLXooF/R primer set using SYBR Green RT-PCR.A: Standard curve.For each assay,templates (1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B: Melting-peak analysis.C: Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    2.7.Artificial inoculation of seeds with X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae

    Five grams(approximately 150 seeds)of rice cultivar Nipponbare were surface-disinfected in 75%ethanol for 10 min,incubated in approximately 0.5% chlorine solution for 30 min,and rinsed three times with sterilized distilled water.After disinfection,the seeds were transferred to Petri dishes containing sterilized filter paper and allowed to air-dry for 3 h in a laminar-flow chamber.The surface-disinfected seeds were inoculated with 5 mL g-1of bacterial suspensions of OS198 or AHB4-75 or LMG2196 or a mixture of OS198,AHB4-75,and LMG2196 with OD600equal to 0.01(×108CFU mL-1),respectively.OD600values were measured using a Nanodrop (ND 100 spectrophotometer,NanoDrop Technologies,Inc.).The inoculation was vacuum infiltrated for 60 min.After inoculation,the artificially infected seeds were allowed to air-dry in the laminar air flow chamber and stored at 4until use.

    2.8.The detection of pathogens on rice seeds

    Detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae in rice seed lots was performed by washing 1 g healthy and 1 g infected seeds infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae,or a mixture of the three bacteria in 5 mL sterile dH2O,shaking at 100 r min-1for 2 h at 4 °C.One microliter of suspension was used as the template for the multiplex PCR described above for detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.All experiments were repeated twice.

    3.Results

    3.1.Primer design and specificity

    The specific primers JLXooF/R for X.oryzae pv.oryzae,JLXocF/R for X.oryzae pv.oryzicola,and JLBgF/R for B.glumae were developed based on the polymorphic regions of the corresponding putative glycosyltransferase gene,AvrRxo gene and ITS sequence,respectively(Table 1,Figs.S1,S2,and S3).The 230 bp DNA fragments were amplified from all X.oryzae pv.oryzae strains using the JLXooF/R.However,the expected fragments were not amplified either from closely related bacterial strains,including X.oryzae pv.oryzicola and X.campestris,or from other bacterial or fungal strains(Table 2,Fig.S4).An expected 112 bp DNA product was amplified only from X.oryzae pv.oryzicola strains using the primer set JLXocF/R (Table 2,Fig.S5),and a product of 164 bp was amplified only from B.glumae using JLBgF/R (Table 2,Fig.S6).The results suggest that these primer sets were specific to the target pathogens tested.

    3.2.Sensitivity of PCR amplification

    The purified DNA was used to test the primers' sensitivity in both conventional PCR and real-time PCR assays.The primer sets JLXooF/R,JLXocF/R,and JLBgF/R detected as little as 1 pg μL-1DNA of OS198,0.5 pg μL-1DNA of AHB4-75,and 1 pg μL-1DNA of LMG2196 in the 20 μL PCR reactions(Fig.1).

    SYBR Green real-time PCR was also used to test the sensitivity of the primer sets.The amplification profiles of OS198,AHB4-75,and LMG2196 dilutions are shown in Figs.2,3,and 4,respectively.The R2values of JLXooF/R,JLXocF/R,and JLBgF/R were equal to 0.998,0.996,and 0.992,respectively,indicating a good linear response of each primer set.The linear regression slope gave coefficients of –3.359 for JLXooF/R,–3.426 for JLXocF/R,and –3.245 for JLBgF/R,corresponding to PCR efficiencies of 102.7%,95.8%,and 107.9%,respectively(Figs.2-A,3-A,4-A).Melting curve analysis showed a single peak for each primer at around 85 °C (Figs.2-B,3-B,4-B)suggesting the absence of primer dimers.The cycle threshold(Ct)in a real-time PCR assay is defined as the number of cycles required for the fluorescent signal to pass the threshold.The sample is considered to be negative or to represent environmental contamination when the Ct value is above 38.5.The detection limits of the genomic DNAs by SYBR Green PCR were 1 fg μL-1for OS198(Fig.2-C),1 fg μL-1for AHB4-75(Fig.3-C),and 10 fg μL-1for LMG2196(Fig.4-C).The primer sets developed in this study can be used to detect the presence of the target pathogens by both conventional and real-time PCR.

    Fig.3-Sensitivity assay of JLXocF/R primer set for X.oryzae pv.oryzicola using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    3.3.Multiplex PCR for detection of three pathogens and its sensitivity

    To test further whether the primer sets could be used to detect the three target bacterial organisms simultaneously,artificial genomic DNA mixtures of OS198,AHB4-75,and LMG2196 were prepared based on different concentrations displayed in Table 3.When mix 1–4 was used as template in multiplex PCRs,all of the products specific to the three pathogens were visible on the 1.5%agarose gel(Table 3 and Fig.5).However,the specific amplicon of B.glumae was not detectable when mix 5 was used as template.Only the amplicon of X.oryzae pv.oryzicola was detected when mix 6 was used as template in multiplex PCR.The detection limits for the multiplex PCR assay were 0.3 pg μL-1for X.oryzae pv.oryzae,0.167 pg μL-1for X.oryzae pv.oryzicola,and 16.7 pg μL-1for B.glumae in the 20 μL reaction.The detection limits of each pathogen in multiplex PCR were highly similar to those of the single pathogen in conventional PCR.

    Fig.4-Sensitivity assay of JLBgF/R primer set for B.glumae using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE(standard error).

    3.4.Pathogen detection in the artificial inoculated rice seeds

    To determine whether multiplex PCR could detect the target pathogens in infected rice seeds,rice seeds were artificially infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae and the mixture of the these three pathogens,respectively.If the seeds were infected by one pathogen,only the corresponding PCR product appeared on the gel using multiplex PCR assays.As a negative control,no amplification was observed from sterile distilled water-treated seeds.When the seeds were infected with a mixture of the three pathogens,the 230,164,and 112 bp fragments for X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae,respectively,were detected(Fig.6).

    Table 3-Sample mixtures for multiplex PCR.

    Fig.5-One-tube multiplex PCR for diagnosing three pathogens and its sensitivity.Lane M,DNA ladder(DL2000;TaKaRa);lanes 1-6 mixture of X.oryzae pv.oryzae strain OS225,X.oryzae pv.oryzicola AHB4-75,and B.glumae strain LMG2196,in concentrations 1 ng μL-1,5 × 10-1 ng μL-1,10 × 10-1 ng μL-1,5 × 10-2 ng μL-1,1 × 10-2 ng μL-1,5 × 10-3 ng μL-1.

    4.Discussion

    Conventionally,identification or detection of a plant pathogen requires pathogen isolation,cultivation,and verification based on bacteriological characteristics,colony morphology,electron microscopic observation,and other means–a timeconsuming process.In addition,the detection process requires much equipment and chemicals,increasing the cost.In the present study,an efficient multiplex PCR method was used to rapidly and accurately detect the rice bacterial pathogens X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae simultaneously in infected rice seeds,using new specific primer sets developed from specific sequence comparisons of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae against their closely related species.

    The bottleneck for PCR-based diagnostic or detection tools has been the availability of pathogen-specific primers.Sequence polymorphisms of 16S–23S ITS are often observed in strains of different species.In previous studies,specific DNA primers and probes have been designed based from 16S–23S ITS sequences for identification,separation and classification of some species of pathogens [6,9,17,27–32].16S–23S ITS of different species of Burkholderia were used to separate B.glumae from other Burkholderia species.However,it is difficult to separate pathovars using 16S–23S ITS [9].With advances in sequencing techniques,more and more bacterial genomic DNA sequences have been deposited in the GenBank database,allowing the development of specific primers using genomic comparisons[21].By genomic comparison among the X.oryzae pv.oryzae strains (PXO99A,MAFF311018,and KACC 10331),X.oryzae pv.oryzicola strains(BLS256),we identified the putative glycosyltransferase gene specific to X.oryzae pv.oryzae,and the AvrRxo gene specific to X.oryzae pv.Oryzicola (X.Wang,unpublished data).We then designed specific primers from the polymorphic DNA regions of these specific genes (Figs.S1,S2,S3).Although we used a limited number of strains of each pathogen,the primer sets we developed were specific.We amplified no sequences from the closely related bacterial pathogens X.campestris,X.maltophilia,B.gladioli pv.alliicola,or B.cepacia,or from the fungal pathogens,M.oryzae and U.oryzae.

    Fig.6-Pathogen detection in artificial inoculated rice seeds.One-tube multiplex PCR for diagnosing three pathogens.Lane M,DNA ladder(DL 2000;TaKaRa);lane 1:seeds infected by X.oryzae pv.oryzae strain OS198;lane 2:seeds infected by X.oryzae pv.oryzicola strain AHB4-75;lane 3:seeds infected by B.glumae strain LMG;lane 4:mixture of seeds infected by OS198,AHB4-75,and LMG;lane 5:negative control.

    For pathogen quarantine and inspection,primer sets are often required to be not only specific to the templates,but also sensitive to small quantities of the pathogens.Given that the amplified PCR fragments ranged from 112 to 230 bp in length,these primer sets can be used for both conventional and SYBR Green PCR.This knowledge will allow users to select the desired PCR platform to detect the pathogens.

    Multiplex PCR has been applied to detect several pathogens in one PCR tube.Given that the lengths of the amplicons were very different,they were clearly visible on the 1.5%agarose gel after 50 min of separation.When complex templates consisting of three mixed samples were used,the detection limits of each sample were highly similar to those when single samples was used as the PCR template,suggesting that the multiplex PCR developed in the study can be used for simultaneous detection of the three rice bacterial pathogens.One common problem is that the detection sensitivity of multiplex PCR is lower than that of real-time PCR.To determine whether each primer set could amplify the corresponding DNA fragment from mixed samples with multiple pathogens using SYBR Green real time PCR,we made the following DNA mixtures: 1.DNA of OS198,AHB4-75 and LMG2196 with 1 ng μL-1at equal volume;and 2.detection limits of OS198,AHB4-75,and LMG2196 at equal volume.We observed specific real-time PCR products using the complex genomic DNA as templates and with even tiny amounts of DNA(Fig.S7).These findings suggest that our primers are specific and sensitive for simultaneous use in both multiplex and real-time PCR.

    Sowing rice seeds containing the organisms of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae can cause severe yield and economic losses in rice production.Rice leaves naturally infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola were collected from rice fields in Hangzhou in 2013 and infections were verified by phenotypic examination.The mixture of primer sets was used to detect different pathogens in these diseased leaves using multiplex PCR.The PCR products expected from positive controls were amplified using DNA from diseased leaf tissue infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola (Fig.S8),suggesting that these primer sets are highly effective and specific.

    In conclusion,we have developed a user-friendly PCR based method to detect pathogens at extremely low levels in infected rice seeds and leaves.This method should be tested using diseased rice seeds from commercial fields before worldwide adoption for rapid pathogen inspection and quarantine.

    We thank Professor Guanlin Xie of Zhejiang University for supplying B.glumae strain,Dr.Zhen Zhang of Zhejiang Academy of Agricultural Sciences for supplying the strains of X.oryzae pv.oryzae and X.oryzae pv.oryzicola,Dr.Yuan Fang of Zhejiang Normal University for supplying B.gladioli pv.alliicola strain and B.cepacia strain,and Dr.Stefano Costanzo of USDA APHIS-PPQ and Tracy Bianco of USDA-ARS DB NRRC for the critical review.This work was performed with the support of the National 863 Project (2012AA021601) and the New Seedling program for graduate students of Zhejiang Province(2012R409012).USDA is an equal opportunity provider and employer.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.06.005.

    [1] T.W.Mew,Current status and future prospects of research on bacterial blight of rice,Annu.Rev.Phytopathol.25(1987)359–382.

    [2] T.W.Mew,A.M.Alvarez,J.E.Leach,J.Swings,Focus on bacterial blight of rice,Plant Dis.77(1993) 5–12.

    [3] M.Goto,Fundamentals of Bacterial Plant Pathology,Academic Press,San Diego,CA,1992.210–224.

    [4] S.H.Ou,Rice Diseases,2nd edn Commonwealth Mycological Institute,Kew,Surrey,England,1985.380.

    [5] A.P.K.Reddy,K.Krishnaiah,Z.T.Zhang,Y.Shen,Managing vulnerability of hybrid rice to biotic stresses in China and India,in:S.S.Virmani,E.A.Siddiq,K.Muralidharan (Eds.),Proceedings of the 3rd International Symposium on Hybrid Rice Technology: Advances in Hybrid Rice Technology,Hyderabad,India &International Rice Research Institute,Philippines,1998,pp.147–156.

    [6] K.Goto,K.Ohata,New bacterial disease of rice(brown stripe and grain rot),Ann.Phytopathol.Soc.Jpn.21(1956) 46–47.

    [7] R.Nandakumar,A.K.M.Shahjahan,X.L.Yuan,E.R.Dickstein,D.E.Groth,C.A.Clark,R.D.Cartwright,M.C.Rush,Burkholderia glumae and B.gladioli cause bacterial panicle blight in rice in the southern United States,Plant Dis.93(2009)896–905.

    [8] J.H.Ham,R.A.Melanson,M.C.Rush,Burkholderia glumae:next major pathogen of rice? Mol.Plant Pathol.12(2011)329–339.

    [9] N.Adachi,T.Oku,PCR-mediated detection of Xanthomonas oryzae pv.oryzae by amplification of the 16S–23S rDNA spacer region sequence,J.Gen.Plant Pathol.66(2000) 303–309.

    [10] N.Sakthivel,C.N.Mortensen,S.B.Mathur,Detection of Xanthomonas oryzae pv.oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques,Appl.Microbiol.Biotechnol.56(2001)435–441.

    [11] C.M.Vera Cruz,L.Halda-Alija,F.J.Louws,D.Z.Skinner,M.L.George,R.J.Nelson,F.J.DeBruijn,C.W.Rice,J.E.Leach,Repetitive sequence-based polymerase chain reaction of Xanthomonas oryzae pv.oryzae and Pseudomonas species,Int.Rice Res.Notes 20 (1995) 23–24.

    [12] M.S.Cho,M.J.Kang,C.K.Kim,Y.J.Seol,J.H.Hahn,S.C.Park,D.S.Park,Sensitive and specific detection of Xanthomonas oryzae pv.oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene,Plant Dis.95(2011)589–594.

    [13] W.J.Zhao,S.Zhu,X.L.Liao,H.Chen,T.W.Tan,Detection of Xanthomonas oryzae pv.oryzae in seeds using a specific TaqMan probe,Mol.Biotechnol.35 (2007) 119–127.

    [14] M.J.Kang,M.H.Kim,D.J.Hwang,M.S.Cho,Y.Seol,J.H.Hahn,D.S.Park,Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv.oryzicola using putative membrane protein based primer set,Crop.Prot.40 (2012)22–27.

    [15] M.J.Kang,J.K.Shim,M.S.Cho,Y.Seol,J.H.Hahn,D.J.Hwang,D.S.Park,Specific detection of Xanthomonas oryzae pv.oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene,J.Microb.Biotechnol.18(2008) 1492–1995.

    [16] H.Zhang,Y.H.Jiang,B.S.Hu,F.Q.Liu,Z.G.Xu,Specific detection of Xanthomonas oryzae pv.oryzicola by PCR techniques,Acta Phytopathol.Sin.38(2008) 1–5(in Chinese with English abstract).

    [17] N.Furuya,U.R.A.Hiroyuki,K.Iiyama,M.Matsumoto,M.Takeshita,Y.Takanami,Specific oligonucleotide primers based on sequences of the 16S–23S rDNA spacer region for the detection of Burkholderia gladioli by PCR,J.Gen.Plant Pathol.68(2002) 220–224.

    [18] Y.Maeda,H.Shinohara,A.Kiba,K.Ohnishi,N.Furuya,Y.Kawamura,Y.Hikichi,Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii,Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences,Int.J.Syst.Evol.Microbiol.56(2006) 1031–1038.

    [19] Y.Huai,L.H.Xu,S.H.Yu,G.L.Xie,Real-time fluorescence PCR method for detection of Burkholderia glumae from rice,Chin.J.Rice Sci.23(2009) 107–110 (in Chinese with English abstract).

    [20] R.J.Sayler,R.D.Cartwright,Y.Yang,Genetic characterization and real-time PCR detection of Burkholderia glumae,a newly emerging bacterial pathogen of rice in the United States,Plant Dis.90(2006) 603–610.

    [21] J.M.Lang,J.P.Hamilton,M.G.Q.Diaz,M.A.Van Sluys,M.R.G.Burgos,C.M.Vera Cruz,J.E.Leach,Genomics-based diagnostic marker development for Xanthomonas oryzae pv.oryzae and X.oryzae pv.Oryzicola,Plant Dis.94(2010)311–319.

    [22] X.L.Liao,S.F.Zhu,W.J.Zhao,K.Luo,Y.X.Qi,Detection and identification of Xanthomonas oryzae pv.oryzae and Xanthomonas oryzae pv.oryzicola by real-time fluorescent PCR,Acta Microbiol.Sin.43(2003) 626–634.

    [23] N.J.Talbot,D.J.Ebbole,J.E.Hamer,Identification and characterization of MPG1,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea,Plant Cell 5(1993) 1575–1590.

    [24] U.M.Csaikl,H.Bastian,R.Brettschneider,S.Gauch,A.Meir,M.Schauerte,B.Ziegenhagen,Comparative analysis of different DNA extraction protocols: a fast,universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies,Plant Mol.Biol.Rep.16(1998) 69–86.

    [25] W.K.Kim,W.Mauthe,G.Hausner,G.R.Klassen,Isolation of high molecular weight DNA and double-stranded RNAs from fungi,Can.J.Bot.68(1990) 1898–1902.

    [26] T.A.Hall,Bioedit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT,Nucleic Acids Symp.Ser.41(1999) 95–98.

    [27] J.Garcia-Martinez,S.G.Acinas,A.I.Anton,F.Rodriguez-Valera,Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity,J.Microbiol.Methods 36(1999)55–64.

    [28] J.García-Martínez,I.Bescós,J.J.Rodríguez-Sala,F.Rodríguez-Valera,RISSC:a novel database for ribosomal 16S–23S RNA genes spacer regions,Nucleic Acids Res.29(2001) 178–180.

    [29] E.R.Gon?alves,Y.B.Rosato,Phylogenetic analysis of Xanthomonas species based upon 16S–23S rDNA intergenic spacer sequences,Int.J.Syst.Evol.Microbiol.52(2002)355–361.

    [30] V.Gürtler,V.A.Stanisich,New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region,Microbiology 142 (1996) 3–16.

    [31] L.Hauben,L.Vauterin,J.Swings,E.R.B.Moore,Comparison of 16S ribosomal DNA sequences of all Xanthomonas species,Int.J.Syst.Bacteriol.47(1997) 328–335.

    [32] A.Roth,M.Fischer,M.E.Hamid,S.Michalke,W.Ludwig,H.Mauch,Differentiation of phylogenetically related slowly growing mycobacteria based on 16S–23S rRNA gene internal transcribed spacer sequences,J.Clin.Microbiol.36 (1998)139–147.

    波多野结衣巨乳人妻| 亚洲国产高清在线一区二区三| 亚洲av中文字字幕乱码综合| 欧美 日韩 精品 国产| 亚洲av免费高清在线观看| 国产免费视频播放在线视频 | 一级毛片我不卡| 欧美精品国产亚洲| 亚洲美女视频黄频| 美女主播在线视频| 高清午夜精品一区二区三区| 青春草国产在线视频| 亚洲最大成人av| 26uuu在线亚洲综合色| 91午夜精品亚洲一区二区三区| 久久久久久久久久久免费av| 成人午夜精彩视频在线观看| 日本三级黄在线观看| 男人狂女人下面高潮的视频| 亚洲最大成人手机在线| 久久精品久久精品一区二区三区| 欧美精品国产亚洲| 精品久久久久久久久亚洲| 免费无遮挡裸体视频| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲网站| 一区二区三区四区激情视频| 综合色av麻豆| 日日摸夜夜添夜夜爱| 国产av国产精品国产| 边亲边吃奶的免费视频| 少妇被粗大猛烈的视频| 精品一区在线观看国产| 久久久久九九精品影院| 婷婷色av中文字幕| 国产探花在线观看一区二区| 日韩在线高清观看一区二区三区| 黄色配什么色好看| 欧美精品一区二区大全| 国产av在哪里看| 亚洲欧美精品自产自拍| 亚洲精品国产成人久久av| 亚洲国产av新网站| av网站免费在线观看视频 | 欧美人与善性xxx| 女人久久www免费人成看片| 内射极品少妇av片p| 久久久a久久爽久久v久久| 久久人人爽人人片av| 欧美日韩国产mv在线观看视频 | 欧美高清性xxxxhd video| 午夜激情欧美在线| 亚洲欧美中文字幕日韩二区| 春色校园在线视频观看| 超碰av人人做人人爽久久| 丰满人妻一区二区三区视频av| 欧美bdsm另类| 2021天堂中文幕一二区在线观| 日本-黄色视频高清免费观看| 精品国产露脸久久av麻豆 | 成人毛片a级毛片在线播放| 可以在线观看毛片的网站| 久久草成人影院| 在线免费观看不下载黄p国产| 亚洲婷婷狠狠爱综合网| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品专区欧美| 日本与韩国留学比较| 久久久久久九九精品二区国产| 欧美区成人在线视频| 高清午夜精品一区二区三区| 亚洲欧美日韩东京热| 中文字幕久久专区| 久久精品国产鲁丝片午夜精品| 欧美成人午夜免费资源| 婷婷色av中文字幕| 99热全是精品| 男人和女人高潮做爰伦理| 国模一区二区三区四区视频| 综合色丁香网| 激情五月婷婷亚洲| 亚洲欧洲国产日韩| 亚洲国产av新网站| av网站免费在线观看视频 | 国产单亲对白刺激| 九色成人免费人妻av| 欧美日本视频| 亚洲国产最新在线播放| 看非洲黑人一级黄片| 人人妻人人看人人澡| 男女视频在线观看网站免费| 精华霜和精华液先用哪个| 免费观看精品视频网站| 精品久久久久久久末码| 国产 一区精品| 国产高清三级在线| 2018国产大陆天天弄谢| 直男gayav资源| 婷婷色综合www| 亚洲精品久久午夜乱码| 舔av片在线| 2018国产大陆天天弄谢| xxx大片免费视频| 高清日韩中文字幕在线| 黄片wwwwww| 日韩欧美精品v在线| 国产av在哪里看| 2022亚洲国产成人精品| 免费观看在线日韩| 免费看光身美女| 欧美高清成人免费视频www| 亚洲精品一区蜜桃| 国产乱来视频区| 午夜爱爱视频在线播放| 婷婷色综合www| 午夜免费激情av| 国模一区二区三区四区视频| 国产黄片视频在线免费观看| 偷拍熟女少妇极品色| 国产黄a三级三级三级人| 高清av免费在线| 国产精品国产三级国产av玫瑰| 日日撸夜夜添| 久久精品久久久久久噜噜老黄| 午夜日本视频在线| 身体一侧抽搐| 欧美日韩一区二区视频在线观看视频在线 | 亚洲丝袜综合中文字幕| 亚洲在线自拍视频| 久久久欧美国产精品| 国产一区有黄有色的免费视频 | 一级毛片aaaaaa免费看小| 亚洲av成人精品一区久久| 亚洲图色成人| 午夜精品国产一区二区电影 | 日韩三级伦理在线观看| 精品久久久久久电影网| 热99在线观看视频| 亚洲欧美精品专区久久| 欧美三级亚洲精品| 波野结衣二区三区在线| 不卡视频在线观看欧美| 真实男女啪啪啪动态图| 亚洲精品一区蜜桃| 国产精品一二三区在线看| 欧美三级亚洲精品| 2021天堂中文幕一二区在线观| av免费在线看不卡| 成人无遮挡网站| 亚洲av成人精品一区久久| 中文字幕制服av| 久热久热在线精品观看| 能在线免费观看的黄片| 美女内射精品一级片tv| 综合色av麻豆| 夫妻午夜视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产视频内射| 乱系列少妇在线播放| 成年人午夜在线观看视频 | 99热6这里只有精品| 三级毛片av免费| 久99久视频精品免费| 久久久久网色| 久久久久精品性色| 亚洲欧美中文字幕日韩二区| 国产人妻一区二区三区在| 日本欧美国产在线视频| 亚洲最大成人手机在线| 国产老妇伦熟女老妇高清| 99久久精品国产国产毛片| 日本一二三区视频观看| 国语对白做爰xxxⅹ性视频网站| 久久午夜福利片| 亚洲欧美日韩卡通动漫| 啦啦啦中文免费视频观看日本| 一级二级三级毛片免费看| 国产精品爽爽va在线观看网站| 久久久久久国产a免费观看| av又黄又爽大尺度在线免费看| 五月玫瑰六月丁香| 在线观看美女被高潮喷水网站| 一级片'在线观看视频| 久久久国产一区二区| 精品久久久久久久久av| 中文精品一卡2卡3卡4更新| 日韩制服骚丝袜av| 高清日韩中文字幕在线| 日韩伦理黄色片| 国产黄频视频在线观看| 日产精品乱码卡一卡2卡三| 国产爱豆传媒在线观看| 国产老妇女一区| 国产精品1区2区在线观看.| 国产高清不卡午夜福利| h日本视频在线播放| 黄色日韩在线| 久久久久久久久久人人人人人人| 国产精品一区二区三区四区免费观看| 亚洲精华国产精华液的使用体验| 国产在线男女| 欧美变态另类bdsm刘玥| 赤兔流量卡办理| 日韩在线高清观看一区二区三区| kizo精华| 黄色配什么色好看| av在线亚洲专区| 日日摸夜夜添夜夜添av毛片| 黄色一级大片看看| 久久鲁丝午夜福利片| 黄色一级大片看看| 免费av不卡在线播放| 欧美日韩综合久久久久久| 九九在线视频观看精品| 国产av码专区亚洲av| 在线天堂最新版资源| 亚洲国产高清在线一区二区三| 亚洲欧美精品自产自拍| 午夜福利网站1000一区二区三区| 亚洲av成人精品一二三区| 中文精品一卡2卡3卡4更新| 中文精品一卡2卡3卡4更新| av一本久久久久| 日本爱情动作片www.在线观看| 女人十人毛片免费观看3o分钟| 嫩草影院入口| 一区二区三区乱码不卡18| 五月天丁香电影| 国产麻豆成人av免费视频| a级毛色黄片| 久久草成人影院| av线在线观看网站| 精品久久久噜噜| 中文字幕av在线有码专区| 97超碰精品成人国产| 大香蕉久久网| 国产午夜福利久久久久久| 亚洲精品亚洲一区二区| 日韩中字成人| 99久久精品热视频| 亚洲国产欧美人成| 国产av国产精品国产| 美女cb高潮喷水在线观看| 久久久久性生活片| 久久精品国产鲁丝片午夜精品| 联通29元200g的流量卡| 免费大片黄手机在线观看| 一级毛片黄色毛片免费观看视频| 22中文网久久字幕| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 国产综合精华液| 一本久久精品| 免费在线观看成人毛片| 如何舔出高潮| 丝袜喷水一区| 久久久久久久久中文| 亚洲最大成人中文| av网站免费在线观看视频 | 国产av不卡久久| 亚洲av电影在线观看一区二区三区 | www.av在线官网国产| 成年女人看的毛片在线观看| 国产永久视频网站| 久久久久久伊人网av| 日日摸夜夜添夜夜爱| 精品一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 69av精品久久久久久| 亚洲综合精品二区| 成年人午夜在线观看视频 | 国产精品嫩草影院av在线观看| 一本一本综合久久| 国产免费视频播放在线视频 | 大陆偷拍与自拍| 日韩av在线免费看完整版不卡| 国产伦精品一区二区三区视频9| 国产男人的电影天堂91| 国产高清有码在线观看视频| 一级毛片我不卡| 永久网站在线| 男女边摸边吃奶| 国产爱豆传媒在线观看| av国产免费在线观看| 精品久久久久久久久av| 91精品伊人久久大香线蕉| 国产精品一区www在线观看| 丝瓜视频免费看黄片| 午夜免费观看性视频| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 亚洲av一区综合| 国产成人a∨麻豆精品| 在现免费观看毛片| 99热全是精品| 一级爰片在线观看| 99re6热这里在线精品视频| 亚洲国产高清在线一区二区三| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 五月玫瑰六月丁香| av在线播放精品| 乱系列少妇在线播放| 国产91av在线免费观看| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 亚洲精品,欧美精品| xxx大片免费视频| 一个人观看的视频www高清免费观看| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 免费看av在线观看网站| 亚洲av中文字字幕乱码综合| 夫妻性生交免费视频一级片| 少妇人妻一区二区三区视频| 丰满人妻一区二区三区视频av| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 国产一区二区三区综合在线观看 | 成人美女网站在线观看视频| 91久久精品电影网| 免费播放大片免费观看视频在线观看| 久久久久久国产a免费观看| 国产69精品久久久久777片| 免费看不卡的av| 国产真实伦视频高清在线观看| 久久97久久精品| av女优亚洲男人天堂| 欧美+日韩+精品| 国产伦精品一区二区三区视频9| 嫩草影院精品99| 国产综合懂色| 麻豆久久精品国产亚洲av| 五月玫瑰六月丁香| 乱系列少妇在线播放| 91狼人影院| 国产成人91sexporn| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 美女大奶头视频| 一夜夜www| 观看免费一级毛片| 天天一区二区日本电影三级| 一级毛片aaaaaa免费看小| 久久鲁丝午夜福利片| 少妇熟女aⅴ在线视频| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 久热久热在线精品观看| 亚洲精品一二三| 夫妻性生交免费视频一级片| 日本午夜av视频| 嫩草影院新地址| 免费看av在线观看网站| 国产在线男女| 国内精品美女久久久久久| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 亚洲人成网站高清观看| 亚洲成色77777| 哪个播放器可以免费观看大片| 国产综合精华液| 韩国av在线不卡| 国产伦精品一区二区三区四那| 免费观看在线日韩| 久久久久久伊人网av| 日韩av在线大香蕉| 超碰97精品在线观看| 国产成人精品一,二区| 波野结衣二区三区在线| 亚洲乱码一区二区免费版| 一级毛片电影观看| 毛片女人毛片| 国产大屁股一区二区在线视频| 久久久久国产网址| 黄片无遮挡物在线观看| 中国国产av一级| 午夜激情欧美在线| 精品一区二区三卡| 亚洲色图av天堂| 国产爱豆传媒在线观看| 国产成人免费观看mmmm| 国产高清有码在线观看视频| 欧美成人精品欧美一级黄| 中文字幕av在线有码专区| av网站免费在线观看视频 | 精品久久久久久久久亚洲| 午夜亚洲福利在线播放| 少妇熟女欧美另类| 欧美高清成人免费视频www| 精品国产三级普通话版| 午夜精品在线福利| 一级爰片在线观看| 国产成人一区二区在线| 亚洲欧美日韩东京热| 午夜福利高清视频| 精品一区在线观看国产| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频 | av在线播放精品| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 欧美日韩精品成人综合77777| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 国产精品1区2区在线观看.| 色综合亚洲欧美另类图片| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 老司机影院毛片| 色吧在线观看| 毛片一级片免费看久久久久| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区| 99久久精品热视频| 久久久久九九精品影院| 天堂影院成人在线观看| 国产午夜福利久久久久久| 亚洲内射少妇av| 亚洲最大成人手机在线| 亚洲在线观看片| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 久久精品久久久久久久性| 亚洲性久久影院| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 又爽又黄a免费视频| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 成人性生交大片免费视频hd| 成人综合一区亚洲| 肉色欧美久久久久久久蜜桃 | 欧美成人午夜免费资源| 一级av片app| 久久久久精品性色| 午夜免费激情av| 亚洲图色成人| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 久久久久性生活片| 免费av不卡在线播放| 精品久久久久久电影网| 性色avwww在线观看| 国产淫语在线视频| 国产一区二区三区av在线| 精品久久久精品久久久| 国产探花在线观看一区二区| 日本与韩国留学比较| 国产精品久久视频播放| 精品一区二区三卡| 街头女战士在线观看网站| 一个人免费在线观看电影| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 国产av国产精品国产| 久久精品国产亚洲网站| 80岁老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 激情 狠狠 欧美| 日韩欧美国产在线观看| 日韩人妻高清精品专区| 精品久久久久久久末码| 国产免费又黄又爽又色| 2021天堂中文幕一二区在线观| 欧美成人一区二区免费高清观看| 免费人成在线观看视频色| 国产真实伦视频高清在线观看| 一个人观看的视频www高清免费观看| 国产日韩欧美在线精品| 中文天堂在线官网| 深爱激情五月婷婷| 老女人水多毛片| 亚洲精品自拍成人| 观看美女的网站| 免费黄频网站在线观看国产| 日韩av不卡免费在线播放| 一夜夜www| 国产精品麻豆人妻色哟哟久久 | 免费观看无遮挡的男女| 欧美一级a爱片免费观看看| 久久99蜜桃精品久久| 亚洲精品影视一区二区三区av| av专区在线播放| 国内揄拍国产精品人妻在线| 能在线免费观看的黄片| 亚洲国产欧美人成| 黑人高潮一二区| 女人被狂操c到高潮| 精品酒店卫生间| 国产亚洲91精品色在线| 建设人人有责人人尽责人人享有的 | 亚洲图色成人| 亚洲精品自拍成人| 国产精品久久视频播放| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 老司机影院毛片| 亚洲18禁久久av| 亚洲精品中文字幕在线视频 | 大香蕉久久网| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 男人爽女人下面视频在线观看| 国产成人a区在线观看| 美女脱内裤让男人舔精品视频| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx在线观看| 中文乱码字字幕精品一区二区三区 | 毛片女人毛片| 伊人久久国产一区二区| 三级男女做爰猛烈吃奶摸视频| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久| 国产成人aa在线观看| 日韩欧美一区视频在线观看 | 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 亚洲av一区综合| 欧美3d第一页| 天天一区二区日本电影三级| 2022亚洲国产成人精品| 国产黄a三级三级三级人| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 国模一区二区三区四区视频| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| 日韩欧美国产在线观看| 亚洲国产av新网站| 国产一级毛片在线| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 一个人免费在线观看电影| a级一级毛片免费在线观看| 97超视频在线观看视频| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说 | 国产免费福利视频在线观看| 在线观看免费高清a一片| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 九九爱精品视频在线观看| 亚洲国产精品sss在线观看| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 日韩精品青青久久久久久| 成年人午夜在线观看视频 | 国产一区二区三区av在线| 乱系列少妇在线播放| 亚洲av日韩在线播放| 97热精品久久久久久| 三级经典国产精品| 国产高清有码在线观看视频| 一级毛片 在线播放| 成人鲁丝片一二三区免费| 国产黄色免费在线视频| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站 | 国产老妇伦熟女老妇高清| 精品国产露脸久久av麻豆 | 三级毛片av免费| 91久久精品电影网| 淫秽高清视频在线观看| 晚上一个人看的免费电影| 国产成人精品久久久久久| 久久久精品94久久精品| 国产伦精品一区二区三区视频9| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 国产中年淑女户外野战色| 免费看光身美女| 欧美精品国产亚洲| 我的女老师完整版在线观看| 男女国产视频网站| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99 | 国产不卡一卡二| 国产精品熟女久久久久浪| 三级男女做爰猛烈吃奶摸视频| 国产成人福利小说| 中文在线观看免费www的网站| 国产三级在线视频| 99热这里只有是精品在线观看| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 汤姆久久久久久久影院中文字幕 | 在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 欧美精品国产亚洲| av在线老鸭窝| 国产av在哪里看| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 丰满乱子伦码专区| 丝袜喷水一区| 亚洲怡红院男人天堂| 日韩av在线大香蕉| 欧美97在线视频| 最新中文字幕久久久久|