• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular detection of Xanthomonas oryzae pv.oryzae,Xanthomonas oryzae pv.oryzicola,and Burkholderia glumae in infected rice seeds and leaves

    2014-03-13 05:51:10WenLuLuqiPnHijunZhoYulinJiYnliWngXiopingYuXueynWng
    The Crop Journal 2014年6期

    Wen Lu,Luqi Pn,Hijun Zho,Yulin Ji,Ynli Wng ,Xioping Yu,Xueyn Wng,*

    aZhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine,College of Life Science,China Jiliang University,Hangzhou 310018,China

    bInstitute of Nuclear-Agricultural Science,Zhejiang University,Hangzhou 310029,China

    cUnited States Department of Agriculture,Agricultural Research Service,Dale Bumpers National Rice Research Center(USDA-ARS DB NRRC),Stuttgart,AR,USA

    dInstitute of Plant Protection and Microbe,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China

    1.Introduction

    Rice,one of the most important food crops,is constantly challenged by bacterial pathogens,such as those causing bacterial blight,leaf streak,and bacterial panicle blight.Bacterial blight,caused by Xanthomonas oryzae pv.oryzae,is a prevalent and destructive rice disease that causes annual yield losses ranging from 10 to 20% and up to 50% to 70% in severely infected fields [1,2].This disease also affects grain quality by interfering with the maturation process[3].Bacterial leaf streak caused by X.oryzae pv.oryzicola,the pathovar of X.oryzae pv.oryzae,usually results in the wilting of leaves andlosses as high as 32%in 1000-grain weight[4].It is important to note that hybrid rice varieties are more susceptible to this bacterial pathogen than non-hybrid varieties [5].Rice bacterial panicle blight(bacterial grain rot),caused by Burkholderia glumae was first reported in Japan in 1956 [6].Yield losses due to B.glumae can reach as high as 40%in the southern U.S.[7].Given that the optimal temperature for the growth of B.glumae ranges from 30 to 50 °C [7],warmer temperatures during the ricegrowing season increase the severity of the disease [8].The presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae in infected seeds may cause disease transmission,so that many countries have listed the three bacteria as quarantined

    organisms.Both conventional and real-time PCR have been widely used to detect or verify the presence of X.oryzae pv.

    Table 1-Sequences,annealing temperature,predicted product size,primers,and primer sources used in this study.

    Table 2-Bacterial and fungal strains used for specificity tests.

    oryzae[9–13],X.oryzae pv.oryzicola[14–16],and B.glumae[17–20]in recent decades.These molecular-based methods are rapid,accurate and sensitive for detecting pathogens.However,they can detect only one pathogen each.Several methods have been developed to distinguish highly similar pathovars of X.oryzae pv.oryzae and X.oryzae pv.oryzicola using multiplex or real-time PCR[21,22].

    In the present study,we used genome sequence information available in public databases to develop PCR primers for accurate identification of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.The objective of this study was to develop multiplex PCR and SYBR Green real-time PCR methods for simultaneous detection of the presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.

    2.Materials and methods

    2.1.Bacterial and fungal strains and culture conditions

    Strains of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae; the other closely related pathogens Xanthomonas campestris,Xanthomonas maltophilia,Burkholderia gladioli pv.alliicola,and Burkholderia cepacia;and the rice fungal pathogens Magnaporthe oryzae and Ustilaginoidea oryzae were used to develop specific primer sets.Bacterial strains were cultured on a Luria–Bertani medium (1% tryptone,0.5% yeast extract,1%NaCl,and 1.5%agar)at 28 °C for two days.Fungal isolates were cultured on corn meal medium(3%corn meal and 1.5%agar)at room temperature for four to five days[23].

    2.2.DNA preparation

    Genomic DNA of bacterial strains was extracted with a Genomic DNA Prep Kit (Sangon,Shanghai,China) following the manufacturer's protocol,except that DNA was eluted in 30 μL double-distilled water(ddH2O).Genomic DNA of fungal and leaf tissue was prepared using the CTAB method [24,25].DNA concentrations were measured with a Nanodrop 2000 instrument (Thermo Fisher Scientific,Wilmington,DE).The OD260:OD280 ratios of all samples were approximately 1.8.All samples were diluted to 1 ng μL-1in ddH2O.

    2.3.Development of specific DNA primers

    The sequence of the putative glycosyltransferase gene of X.oryzae pv.oryzae (AF169030.1) was identified in GenBank,and then aligned with the putative glycosyltransferase genes of X.oryzae pv.oryzicola (CP003057.1),X.campestris pv.campestris (AF204145.1),X.campestris pv.vesicatoria(AM039952.1),Xanthomonas axonopodis pv.citrumelo(CP002914.1),and Xanthomonas albilineans(FP565176)using BioEdit[26].Specific primers for X.oryzae pv.oryzae were designed from non-conserved regions (Table 2,Fig.S1).Using the same strategy,the AvrRxo gene of X.oryzae pv.oryzicola(AY395713.1) was used as a template for designing specific primers for X.oryzae pv.oryzicola (Fig.S2).Ribosomal internal transcribed spacers (ITSs) of B.glumae (D87080),B.plantarii(AB183680.1),B.gladioli (EF552066.1),B.gladioli pv.alliicola(D87082.1),B.gladioli pv.agricicola (EF552068.1),and B.cepalia(FJ870551.2)were aligned,after which the nonconserved regions were used to design specific primers(Fig.S3).The PCR product lengths ranged from 100 to 250 bp for both conventional and real-time PCR assays.

    2.4.Polymerase chain reaction (PCR)

    Conventional PCR assays were used to test the specificity and sensitivity of primers using a T100 Thermal Cycler (Bio-Rad,California,USA).The concentration of the sample used for testing the specificity of the primers was 1 ng μL-1.The pathogens X.oryzae pv.oryzae OS198,X.oryzae pv.oryzicola AHB4-75,and B.glumae LMG2196 were diluted to 5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4ng μL-1with ddH2O to test primer sensitivity.PCR reactions were performed in a final volume of 20 μL containing 10 μL of 2 × Taq master mix(Sangon,Shanghai,China),0.4 μL of each 10 μmol L-1primer,1 μL of genomic DNA,and 8.6 μL ddH2O,vortexed thoroughly.PCR amplification was as follows:initial denaturation for 3 min at 94 °C;35 cycles of 30 s at 94 °C,30 s at 58 °C,30 s at 72 °C,and final extension for 10 min at 72 °C.PCR products were separated on a 1%agarose gel(1 × TAE buffer)by electrophoresis at 100 V for 30 min and visualized with a Gene Genius Bio Imaging System (Syngene,Cambridge,UK).DNA templates were replaced with ddH2O as a negative control.

    Fig.1-Sensitivity tests of primer sets using conventional PCR.A:sensitivity test of JLXooF/R with the template OS198;B:sensitivity test of JLXocF/R with the template AHB4-75;C:sensitivity test of JLBgF/R with the template LMG2196.Lane M,DNA ladder(DL 2000,Takara,Shiga,Japan);lanes 1-9:1,5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4 ng μL-1;lane 10:negative control.The arrows point to the limiting detection concentrations of the primer sets.

    2.5.SYBR Green real-time PCR

    The SYBR Green real-time PCR assay was used to test the sensitivity of the primers with an IQ5 Multicolor real-time PCR Detection System (Bio-Rad,Hercules,CA).DNA of OS198,AHB4-75,and LMG2196 was 10-fold serially diluted from 1 to 1 × 10-6ng μL-1.Each PCR reaction contained 10 μL of 2 × SYBR Premix Ex Taq (TaKaRa,Shiga,Japan) and 0.4 μL of each 10 μmol L-1primer,1 μL template,and 8.6 μL ddH2O.Realtime PCR was performed with the following program: 45 s at 95 °C;40 cycles of 5 s at 95 °C,30 s at 61 °C for 30 s;and melting curve at 65 to 95 °C with increases of 0.5 °C.DNA templates were replaced by ddH2O as a negative control.

    2.6.Multiplex PCR

    To perform multiplex PCR,1 ng μL-1genomic DNA of OS198,AHB4-75 and LMG2196 was used as positive templates in three PCR tubes,respectively.The three genomes were mixed with different concentrations and proportions of DNA to test the primers' sensitivity in a multiplex PCR reaction.The total volume of multiplex PCR was 20 μL (10 μL of 2 × Taq master mix,0.4 μL of 10 μmol L-1of each primer,and 1 μL DNA mix).PCR products were separated on a 1.5%agarose gel (1 × TAE buffer) by electrophoresis at 90 V for 50 min and visualized with the Gene Genius Bio Imaging System.DNA templates were replaced by ddH2O as a negative control.

    Fig.2-Sensitivity tests of JLXooF/R primer set using SYBR Green RT-PCR.A: Standard curve.For each assay,templates (1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B: Melting-peak analysis.C: Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    2.7.Artificial inoculation of seeds with X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae

    Five grams(approximately 150 seeds)of rice cultivar Nipponbare were surface-disinfected in 75%ethanol for 10 min,incubated in approximately 0.5% chlorine solution for 30 min,and rinsed three times with sterilized distilled water.After disinfection,the seeds were transferred to Petri dishes containing sterilized filter paper and allowed to air-dry for 3 h in a laminar-flow chamber.The surface-disinfected seeds were inoculated with 5 mL g-1of bacterial suspensions of OS198 or AHB4-75 or LMG2196 or a mixture of OS198,AHB4-75,and LMG2196 with OD600equal to 0.01(×108CFU mL-1),respectively.OD600values were measured using a Nanodrop (ND 100 spectrophotometer,NanoDrop Technologies,Inc.).The inoculation was vacuum infiltrated for 60 min.After inoculation,the artificially infected seeds were allowed to air-dry in the laminar air flow chamber and stored at 4until use.

    2.8.The detection of pathogens on rice seeds

    Detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae in rice seed lots was performed by washing 1 g healthy and 1 g infected seeds infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae,or a mixture of the three bacteria in 5 mL sterile dH2O,shaking at 100 r min-1for 2 h at 4 °C.One microliter of suspension was used as the template for the multiplex PCR described above for detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.All experiments were repeated twice.

    3.Results

    3.1.Primer design and specificity

    The specific primers JLXooF/R for X.oryzae pv.oryzae,JLXocF/R for X.oryzae pv.oryzicola,and JLBgF/R for B.glumae were developed based on the polymorphic regions of the corresponding putative glycosyltransferase gene,AvrRxo gene and ITS sequence,respectively(Table 1,Figs.S1,S2,and S3).The 230 bp DNA fragments were amplified from all X.oryzae pv.oryzae strains using the JLXooF/R.However,the expected fragments were not amplified either from closely related bacterial strains,including X.oryzae pv.oryzicola and X.campestris,or from other bacterial or fungal strains(Table 2,Fig.S4).An expected 112 bp DNA product was amplified only from X.oryzae pv.oryzicola strains using the primer set JLXocF/R (Table 2,Fig.S5),and a product of 164 bp was amplified only from B.glumae using JLBgF/R (Table 2,Fig.S6).The results suggest that these primer sets were specific to the target pathogens tested.

    3.2.Sensitivity of PCR amplification

    The purified DNA was used to test the primers' sensitivity in both conventional PCR and real-time PCR assays.The primer sets JLXooF/R,JLXocF/R,and JLBgF/R detected as little as 1 pg μL-1DNA of OS198,0.5 pg μL-1DNA of AHB4-75,and 1 pg μL-1DNA of LMG2196 in the 20 μL PCR reactions(Fig.1).

    SYBR Green real-time PCR was also used to test the sensitivity of the primer sets.The amplification profiles of OS198,AHB4-75,and LMG2196 dilutions are shown in Figs.2,3,and 4,respectively.The R2values of JLXooF/R,JLXocF/R,and JLBgF/R were equal to 0.998,0.996,and 0.992,respectively,indicating a good linear response of each primer set.The linear regression slope gave coefficients of –3.359 for JLXooF/R,–3.426 for JLXocF/R,and –3.245 for JLBgF/R,corresponding to PCR efficiencies of 102.7%,95.8%,and 107.9%,respectively(Figs.2-A,3-A,4-A).Melting curve analysis showed a single peak for each primer at around 85 °C (Figs.2-B,3-B,4-B)suggesting the absence of primer dimers.The cycle threshold(Ct)in a real-time PCR assay is defined as the number of cycles required for the fluorescent signal to pass the threshold.The sample is considered to be negative or to represent environmental contamination when the Ct value is above 38.5.The detection limits of the genomic DNAs by SYBR Green PCR were 1 fg μL-1for OS198(Fig.2-C),1 fg μL-1for AHB4-75(Fig.3-C),and 10 fg μL-1for LMG2196(Fig.4-C).The primer sets developed in this study can be used to detect the presence of the target pathogens by both conventional and real-time PCR.

    Fig.3-Sensitivity assay of JLXocF/R primer set for X.oryzae pv.oryzicola using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    3.3.Multiplex PCR for detection of three pathogens and its sensitivity

    To test further whether the primer sets could be used to detect the three target bacterial organisms simultaneously,artificial genomic DNA mixtures of OS198,AHB4-75,and LMG2196 were prepared based on different concentrations displayed in Table 3.When mix 1–4 was used as template in multiplex PCRs,all of the products specific to the three pathogens were visible on the 1.5%agarose gel(Table 3 and Fig.5).However,the specific amplicon of B.glumae was not detectable when mix 5 was used as template.Only the amplicon of X.oryzae pv.oryzicola was detected when mix 6 was used as template in multiplex PCR.The detection limits for the multiplex PCR assay were 0.3 pg μL-1for X.oryzae pv.oryzae,0.167 pg μL-1for X.oryzae pv.oryzicola,and 16.7 pg μL-1for B.glumae in the 20 μL reaction.The detection limits of each pathogen in multiplex PCR were highly similar to those of the single pathogen in conventional PCR.

    Fig.4-Sensitivity assay of JLBgF/R primer set for B.glumae using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE(standard error).

    3.4.Pathogen detection in the artificial inoculated rice seeds

    To determine whether multiplex PCR could detect the target pathogens in infected rice seeds,rice seeds were artificially infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae and the mixture of the these three pathogens,respectively.If the seeds were infected by one pathogen,only the corresponding PCR product appeared on the gel using multiplex PCR assays.As a negative control,no amplification was observed from sterile distilled water-treated seeds.When the seeds were infected with a mixture of the three pathogens,the 230,164,and 112 bp fragments for X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae,respectively,were detected(Fig.6).

    Table 3-Sample mixtures for multiplex PCR.

    Fig.5-One-tube multiplex PCR for diagnosing three pathogens and its sensitivity.Lane M,DNA ladder(DL2000;TaKaRa);lanes 1-6 mixture of X.oryzae pv.oryzae strain OS225,X.oryzae pv.oryzicola AHB4-75,and B.glumae strain LMG2196,in concentrations 1 ng μL-1,5 × 10-1 ng μL-1,10 × 10-1 ng μL-1,5 × 10-2 ng μL-1,1 × 10-2 ng μL-1,5 × 10-3 ng μL-1.

    4.Discussion

    Conventionally,identification or detection of a plant pathogen requires pathogen isolation,cultivation,and verification based on bacteriological characteristics,colony morphology,electron microscopic observation,and other means–a timeconsuming process.In addition,the detection process requires much equipment and chemicals,increasing the cost.In the present study,an efficient multiplex PCR method was used to rapidly and accurately detect the rice bacterial pathogens X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae simultaneously in infected rice seeds,using new specific primer sets developed from specific sequence comparisons of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae against their closely related species.

    The bottleneck for PCR-based diagnostic or detection tools has been the availability of pathogen-specific primers.Sequence polymorphisms of 16S–23S ITS are often observed in strains of different species.In previous studies,specific DNA primers and probes have been designed based from 16S–23S ITS sequences for identification,separation and classification of some species of pathogens [6,9,17,27–32].16S–23S ITS of different species of Burkholderia were used to separate B.glumae from other Burkholderia species.However,it is difficult to separate pathovars using 16S–23S ITS [9].With advances in sequencing techniques,more and more bacterial genomic DNA sequences have been deposited in the GenBank database,allowing the development of specific primers using genomic comparisons[21].By genomic comparison among the X.oryzae pv.oryzae strains (PXO99A,MAFF311018,and KACC 10331),X.oryzae pv.oryzicola strains(BLS256),we identified the putative glycosyltransferase gene specific to X.oryzae pv.oryzae,and the AvrRxo gene specific to X.oryzae pv.Oryzicola (X.Wang,unpublished data).We then designed specific primers from the polymorphic DNA regions of these specific genes (Figs.S1,S2,S3).Although we used a limited number of strains of each pathogen,the primer sets we developed were specific.We amplified no sequences from the closely related bacterial pathogens X.campestris,X.maltophilia,B.gladioli pv.alliicola,or B.cepacia,or from the fungal pathogens,M.oryzae and U.oryzae.

    Fig.6-Pathogen detection in artificial inoculated rice seeds.One-tube multiplex PCR for diagnosing three pathogens.Lane M,DNA ladder(DL 2000;TaKaRa);lane 1:seeds infected by X.oryzae pv.oryzae strain OS198;lane 2:seeds infected by X.oryzae pv.oryzicola strain AHB4-75;lane 3:seeds infected by B.glumae strain LMG;lane 4:mixture of seeds infected by OS198,AHB4-75,and LMG;lane 5:negative control.

    For pathogen quarantine and inspection,primer sets are often required to be not only specific to the templates,but also sensitive to small quantities of the pathogens.Given that the amplified PCR fragments ranged from 112 to 230 bp in length,these primer sets can be used for both conventional and SYBR Green PCR.This knowledge will allow users to select the desired PCR platform to detect the pathogens.

    Multiplex PCR has been applied to detect several pathogens in one PCR tube.Given that the lengths of the amplicons were very different,they were clearly visible on the 1.5%agarose gel after 50 min of separation.When complex templates consisting of three mixed samples were used,the detection limits of each sample were highly similar to those when single samples was used as the PCR template,suggesting that the multiplex PCR developed in the study can be used for simultaneous detection of the three rice bacterial pathogens.One common problem is that the detection sensitivity of multiplex PCR is lower than that of real-time PCR.To determine whether each primer set could amplify the corresponding DNA fragment from mixed samples with multiple pathogens using SYBR Green real time PCR,we made the following DNA mixtures: 1.DNA of OS198,AHB4-75 and LMG2196 with 1 ng μL-1at equal volume;and 2.detection limits of OS198,AHB4-75,and LMG2196 at equal volume.We observed specific real-time PCR products using the complex genomic DNA as templates and with even tiny amounts of DNA(Fig.S7).These findings suggest that our primers are specific and sensitive for simultaneous use in both multiplex and real-time PCR.

    Sowing rice seeds containing the organisms of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae can cause severe yield and economic losses in rice production.Rice leaves naturally infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola were collected from rice fields in Hangzhou in 2013 and infections were verified by phenotypic examination.The mixture of primer sets was used to detect different pathogens in these diseased leaves using multiplex PCR.The PCR products expected from positive controls were amplified using DNA from diseased leaf tissue infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola (Fig.S8),suggesting that these primer sets are highly effective and specific.

    In conclusion,we have developed a user-friendly PCR based method to detect pathogens at extremely low levels in infected rice seeds and leaves.This method should be tested using diseased rice seeds from commercial fields before worldwide adoption for rapid pathogen inspection and quarantine.

    We thank Professor Guanlin Xie of Zhejiang University for supplying B.glumae strain,Dr.Zhen Zhang of Zhejiang Academy of Agricultural Sciences for supplying the strains of X.oryzae pv.oryzae and X.oryzae pv.oryzicola,Dr.Yuan Fang of Zhejiang Normal University for supplying B.gladioli pv.alliicola strain and B.cepacia strain,and Dr.Stefano Costanzo of USDA APHIS-PPQ and Tracy Bianco of USDA-ARS DB NRRC for the critical review.This work was performed with the support of the National 863 Project (2012AA021601) and the New Seedling program for graduate students of Zhejiang Province(2012R409012).USDA is an equal opportunity provider and employer.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.06.005.

    [1] T.W.Mew,Current status and future prospects of research on bacterial blight of rice,Annu.Rev.Phytopathol.25(1987)359–382.

    [2] T.W.Mew,A.M.Alvarez,J.E.Leach,J.Swings,Focus on bacterial blight of rice,Plant Dis.77(1993) 5–12.

    [3] M.Goto,Fundamentals of Bacterial Plant Pathology,Academic Press,San Diego,CA,1992.210–224.

    [4] S.H.Ou,Rice Diseases,2nd edn Commonwealth Mycological Institute,Kew,Surrey,England,1985.380.

    [5] A.P.K.Reddy,K.Krishnaiah,Z.T.Zhang,Y.Shen,Managing vulnerability of hybrid rice to biotic stresses in China and India,in:S.S.Virmani,E.A.Siddiq,K.Muralidharan (Eds.),Proceedings of the 3rd International Symposium on Hybrid Rice Technology: Advances in Hybrid Rice Technology,Hyderabad,India &International Rice Research Institute,Philippines,1998,pp.147–156.

    [6] K.Goto,K.Ohata,New bacterial disease of rice(brown stripe and grain rot),Ann.Phytopathol.Soc.Jpn.21(1956) 46–47.

    [7] R.Nandakumar,A.K.M.Shahjahan,X.L.Yuan,E.R.Dickstein,D.E.Groth,C.A.Clark,R.D.Cartwright,M.C.Rush,Burkholderia glumae and B.gladioli cause bacterial panicle blight in rice in the southern United States,Plant Dis.93(2009)896–905.

    [8] J.H.Ham,R.A.Melanson,M.C.Rush,Burkholderia glumae:next major pathogen of rice? Mol.Plant Pathol.12(2011)329–339.

    [9] N.Adachi,T.Oku,PCR-mediated detection of Xanthomonas oryzae pv.oryzae by amplification of the 16S–23S rDNA spacer region sequence,J.Gen.Plant Pathol.66(2000) 303–309.

    [10] N.Sakthivel,C.N.Mortensen,S.B.Mathur,Detection of Xanthomonas oryzae pv.oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques,Appl.Microbiol.Biotechnol.56(2001)435–441.

    [11] C.M.Vera Cruz,L.Halda-Alija,F.J.Louws,D.Z.Skinner,M.L.George,R.J.Nelson,F.J.DeBruijn,C.W.Rice,J.E.Leach,Repetitive sequence-based polymerase chain reaction of Xanthomonas oryzae pv.oryzae and Pseudomonas species,Int.Rice Res.Notes 20 (1995) 23–24.

    [12] M.S.Cho,M.J.Kang,C.K.Kim,Y.J.Seol,J.H.Hahn,S.C.Park,D.S.Park,Sensitive and specific detection of Xanthomonas oryzae pv.oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene,Plant Dis.95(2011)589–594.

    [13] W.J.Zhao,S.Zhu,X.L.Liao,H.Chen,T.W.Tan,Detection of Xanthomonas oryzae pv.oryzae in seeds using a specific TaqMan probe,Mol.Biotechnol.35 (2007) 119–127.

    [14] M.J.Kang,M.H.Kim,D.J.Hwang,M.S.Cho,Y.Seol,J.H.Hahn,D.S.Park,Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv.oryzicola using putative membrane protein based primer set,Crop.Prot.40 (2012)22–27.

    [15] M.J.Kang,J.K.Shim,M.S.Cho,Y.Seol,J.H.Hahn,D.J.Hwang,D.S.Park,Specific detection of Xanthomonas oryzae pv.oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene,J.Microb.Biotechnol.18(2008) 1492–1995.

    [16] H.Zhang,Y.H.Jiang,B.S.Hu,F.Q.Liu,Z.G.Xu,Specific detection of Xanthomonas oryzae pv.oryzicola by PCR techniques,Acta Phytopathol.Sin.38(2008) 1–5(in Chinese with English abstract).

    [17] N.Furuya,U.R.A.Hiroyuki,K.Iiyama,M.Matsumoto,M.Takeshita,Y.Takanami,Specific oligonucleotide primers based on sequences of the 16S–23S rDNA spacer region for the detection of Burkholderia gladioli by PCR,J.Gen.Plant Pathol.68(2002) 220–224.

    [18] Y.Maeda,H.Shinohara,A.Kiba,K.Ohnishi,N.Furuya,Y.Kawamura,Y.Hikichi,Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii,Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences,Int.J.Syst.Evol.Microbiol.56(2006) 1031–1038.

    [19] Y.Huai,L.H.Xu,S.H.Yu,G.L.Xie,Real-time fluorescence PCR method for detection of Burkholderia glumae from rice,Chin.J.Rice Sci.23(2009) 107–110 (in Chinese with English abstract).

    [20] R.J.Sayler,R.D.Cartwright,Y.Yang,Genetic characterization and real-time PCR detection of Burkholderia glumae,a newly emerging bacterial pathogen of rice in the United States,Plant Dis.90(2006) 603–610.

    [21] J.M.Lang,J.P.Hamilton,M.G.Q.Diaz,M.A.Van Sluys,M.R.G.Burgos,C.M.Vera Cruz,J.E.Leach,Genomics-based diagnostic marker development for Xanthomonas oryzae pv.oryzae and X.oryzae pv.Oryzicola,Plant Dis.94(2010)311–319.

    [22] X.L.Liao,S.F.Zhu,W.J.Zhao,K.Luo,Y.X.Qi,Detection and identification of Xanthomonas oryzae pv.oryzae and Xanthomonas oryzae pv.oryzicola by real-time fluorescent PCR,Acta Microbiol.Sin.43(2003) 626–634.

    [23] N.J.Talbot,D.J.Ebbole,J.E.Hamer,Identification and characterization of MPG1,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea,Plant Cell 5(1993) 1575–1590.

    [24] U.M.Csaikl,H.Bastian,R.Brettschneider,S.Gauch,A.Meir,M.Schauerte,B.Ziegenhagen,Comparative analysis of different DNA extraction protocols: a fast,universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies,Plant Mol.Biol.Rep.16(1998) 69–86.

    [25] W.K.Kim,W.Mauthe,G.Hausner,G.R.Klassen,Isolation of high molecular weight DNA and double-stranded RNAs from fungi,Can.J.Bot.68(1990) 1898–1902.

    [26] T.A.Hall,Bioedit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT,Nucleic Acids Symp.Ser.41(1999) 95–98.

    [27] J.Garcia-Martinez,S.G.Acinas,A.I.Anton,F.Rodriguez-Valera,Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity,J.Microbiol.Methods 36(1999)55–64.

    [28] J.García-Martínez,I.Bescós,J.J.Rodríguez-Sala,F.Rodríguez-Valera,RISSC:a novel database for ribosomal 16S–23S RNA genes spacer regions,Nucleic Acids Res.29(2001) 178–180.

    [29] E.R.Gon?alves,Y.B.Rosato,Phylogenetic analysis of Xanthomonas species based upon 16S–23S rDNA intergenic spacer sequences,Int.J.Syst.Evol.Microbiol.52(2002)355–361.

    [30] V.Gürtler,V.A.Stanisich,New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region,Microbiology 142 (1996) 3–16.

    [31] L.Hauben,L.Vauterin,J.Swings,E.R.B.Moore,Comparison of 16S ribosomal DNA sequences of all Xanthomonas species,Int.J.Syst.Bacteriol.47(1997) 328–335.

    [32] A.Roth,M.Fischer,M.E.Hamid,S.Michalke,W.Ludwig,H.Mauch,Differentiation of phylogenetically related slowly growing mycobacteria based on 16S–23S rRNA gene internal transcribed spacer sequences,J.Clin.Microbiol.36 (1998)139–147.

    狠狠狠狠99中文字幕| 久久天堂一区二区三区四区| 大片免费播放器 马上看| 超碰成人久久| 在线观看免费高清a一片| 欧美日韩国产mv在线观看视频| 国产极品粉嫩免费观看在线| 一个人免费在线观看的高清视频| 精品人妻熟女毛片av久久网站| 国产成人精品在线电影| 国产精品av久久久久免费| 肉色欧美久久久久久久蜜桃| 国产精品自产拍在线观看55亚洲 | 国产91精品成人一区二区三区 | 在线观看舔阴道视频| 午夜激情av网站| 国产精品亚洲一级av第二区| 久久人人97超碰香蕉20202| 国产真人三级小视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| 深夜精品福利| 天天添夜夜摸| 国产精品成人在线| 一级片'在线观看视频| 国产成人精品久久二区二区免费| 日韩免费高清中文字幕av| 999精品在线视频| 在线永久观看黄色视频| 国产一区二区激情短视频| 天天操日日干夜夜撸| 久9热在线精品视频| 大码成人一级视频| 亚洲 欧美一区二区三区| 色综合婷婷激情| 欧美日韩黄片免| 精品一品国产午夜福利视频| 久久av网站| 国产亚洲精品久久久久5区| 一区在线观看完整版| 狂野欧美激情性xxxx| 国产aⅴ精品一区二区三区波| 老司机深夜福利视频在线观看| 国产精品久久久久久精品古装| 一区二区三区激情视频| 建设人人有责人人尽责人人享有的| 亚洲精品在线观看二区| 99精品欧美一区二区三区四区| 捣出白浆h1v1| 黄频高清免费视频| 国产熟女午夜一区二区三区| 国产97色在线日韩免费| 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 男男h啪啪无遮挡| 日韩一区二区三区影片| 水蜜桃什么品种好| 国产真人三级小视频在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲五月婷婷丁香| 国产麻豆69| 国产成人av激情在线播放| 九色亚洲精品在线播放| 午夜免费成人在线视频| 亚洲熟妇熟女久久| 亚洲国产精品一区二区三区在线| 老司机午夜十八禁免费视频| 搡老乐熟女国产| 五月天丁香电影| 波多野结衣av一区二区av| 天堂动漫精品| 久久久久久久精品吃奶| 久久久精品国产亚洲av高清涩受| 男女高潮啪啪啪动态图| 不卡av一区二区三区| 热re99久久精品国产66热6| 国产又爽黄色视频| 老司机影院毛片| 欧美日韩视频精品一区| 欧美黄色淫秽网站| 一级毛片精品| 手机成人av网站| 男女午夜视频在线观看| 80岁老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美精品济南到| 午夜久久久在线观看| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影| 亚洲全国av大片| 亚洲第一av免费看| 国产精品二区激情视频| 日韩欧美三级三区| 亚洲久久久国产精品| 亚洲精品国产精品久久久不卡| 日本a在线网址| 欧美日韩视频精品一区| 色综合欧美亚洲国产小说| 看免费av毛片| 麻豆成人av在线观看| 日韩欧美国产一区二区入口| avwww免费| 成人免费观看视频高清| 久久天躁狠狠躁夜夜2o2o| 亚洲人成电影免费在线| 高清av免费在线| 日本av手机在线免费观看| 757午夜福利合集在线观看| 另类精品久久| 久久狼人影院| 露出奶头的视频| 国产av又大| 国产aⅴ精品一区二区三区波| 亚洲欧美激情在线| 精品一品国产午夜福利视频| 两个人免费观看高清视频| 国产欧美亚洲国产| 母亲3免费完整高清在线观看| av福利片在线| 夫妻午夜视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久成人av| 国产成人欧美| 日韩 欧美 亚洲 中文字幕| 大香蕉久久网| 嫁个100分男人电影在线观看| 极品人妻少妇av视频| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品一区二区www | 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 一本—道久久a久久精品蜜桃钙片| 岛国在线观看网站| 黄色视频不卡| 十分钟在线观看高清视频www| 国产精品久久久久久精品电影小说| 91麻豆精品激情在线观看国产 | 亚洲精品自拍成人| 中文字幕高清在线视频| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 久久中文看片网| 国产极品粉嫩免费观看在线| 国产成+人综合+亚洲专区| 免费在线观看影片大全网站| 极品教师在线免费播放| 国产亚洲午夜精品一区二区久久| 亚洲全国av大片| 一个人免费在线观看的高清视频| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 悠悠久久av| 宅男免费午夜| 在线av久久热| 丰满饥渴人妻一区二区三| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 成人影院久久| 精品人妻1区二区| 亚洲黑人精品在线| 少妇猛男粗大的猛烈进出视频| 欧美精品高潮呻吟av久久| 色精品久久人妻99蜜桃| 午夜91福利影院| 欧美黑人精品巨大| 性少妇av在线| 亚洲av成人一区二区三| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 一二三四在线观看免费中文在| 99国产精品免费福利视频| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 免费在线观看影片大全网站| 国产成人精品无人区| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| 成人黄色视频免费在线看| 一本综合久久免费| 亚洲成av片中文字幕在线观看| 桃花免费在线播放| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 国产成人免费无遮挡视频| 天天影视国产精品| 国产黄色免费在线视频| 操美女的视频在线观看| 日韩大码丰满熟妇| www.精华液| 黄色视频在线播放观看不卡| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品人妻al黑| 日韩大码丰满熟妇| 久久久久久亚洲精品国产蜜桃av| 少妇猛男粗大的猛烈进出视频| 久久久久久人人人人人| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 桃花免费在线播放| 精品国产国语对白av| 亚洲全国av大片| 国产av一区二区精品久久| 大陆偷拍与自拍| 操出白浆在线播放| 人人澡人人妻人| 超碰97精品在线观看| 18禁国产床啪视频网站| 满18在线观看网站| 大码成人一级视频| 王馨瑶露胸无遮挡在线观看| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| 少妇的丰满在线观看| 国产亚洲av高清不卡| 日韩视频一区二区在线观看| 国产精品一区二区在线不卡| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡 | 成人国产一区最新在线观看| 久久久水蜜桃国产精品网| 一级片免费观看大全| 午夜老司机福利片| 一本大道久久a久久精品| 18禁观看日本| 午夜福利欧美成人| 人人妻人人爽人人添夜夜欢视频| 狠狠婷婷综合久久久久久88av| 国产黄频视频在线观看| 国产高清国产精品国产三级| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩精品久久久久久密| 日本av免费视频播放| 黑人欧美特级aaaaaa片| 999精品在线视频| 自线自在国产av| 99精国产麻豆久久婷婷| 欧美黄色淫秽网站| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲乱码少妇综合久久| 亚洲第一青青草原| av福利片在线| 午夜福利视频精品| 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 国产精品国产高清国产av | 男女午夜视频在线观看| 久久99一区二区三区| 亚洲人成伊人成综合网2020| 欧美精品av麻豆av| 在线观看66精品国产| kizo精华| 最新的欧美精品一区二区| 久久午夜综合久久蜜桃| 我的亚洲天堂| 久久久精品区二区三区| 亚洲精品一二三| 制服诱惑二区| 国产一区二区 视频在线| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人爽人人夜夜| 国产成人一区二区三区免费视频网站| 午夜成年电影在线免费观看| 久热爱精品视频在线9| 人妻一区二区av| 操出白浆在线播放| 热re99久久国产66热| 国产高清激情床上av| av超薄肉色丝袜交足视频| 久久影院123| 91字幕亚洲| 亚洲人成电影观看| 岛国在线观看网站| 最近最新中文字幕大全免费视频| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 两个人看的免费小视频| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 视频区欧美日本亚洲| 黄色怎么调成土黄色| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 色在线成人网| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡| av片东京热男人的天堂| 97在线人人人人妻| 精品久久久久久电影网| 久久精品国产a三级三级三级| 91国产中文字幕| 亚洲色图av天堂| 香蕉丝袜av| 一区二区三区国产精品乱码| 五月开心婷婷网| 亚洲欧美日韩高清在线视频 | 窝窝影院91人妻| 国产精品国产av在线观看| 成人国语在线视频| 亚洲成人免费av在线播放| 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 中亚洲国语对白在线视频| www日本在线高清视频| 久久人妻福利社区极品人妻图片| 精品久久久精品久久久| 国产成人精品在线电影| 99九九在线精品视频| 亚洲av日韩精品久久久久久密| 久久青草综合色| 亚洲av美国av| 天堂8中文在线网| 欧美午夜高清在线| av天堂久久9| 久久毛片免费看一区二区三区| 亚洲精品国产一区二区精华液| 国产日韩欧美在线精品| 高清av免费在线| 国产xxxxx性猛交| 少妇的丰满在线观看| 国产野战对白在线观看| 成人国语在线视频| tube8黄色片| 欧美黄色淫秽网站| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 国产成人系列免费观看| 精品午夜福利视频在线观看一区 | 国产成人av教育| 老汉色∧v一级毛片| 中文欧美无线码| 天堂俺去俺来也www色官网| 18在线观看网站| 亚洲精品成人av观看孕妇| 中亚洲国语对白在线视频| 午夜激情av网站| 夜夜爽天天搞| 侵犯人妻中文字幕一二三四区| 夜夜爽天天搞| 国产日韩欧美视频二区| 制服诱惑二区| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 涩涩av久久男人的天堂| 91麻豆av在线| 80岁老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 蜜桃在线观看..| 最近最新中文字幕大全电影3 | 久久久国产精品麻豆| 在线观看免费高清a一片| av有码第一页| 精品久久久精品久久久| 满18在线观看网站| 一级a爱视频在线免费观看| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| 久久久久久久精品吃奶| 精品少妇一区二区三区视频日本电影| 青草久久国产| 999久久久国产精品视频| 香蕉国产在线看| 美女视频免费永久观看网站| 视频区图区小说| 亚洲精品国产区一区二| 后天国语完整版免费观看| 飞空精品影院首页| 性少妇av在线| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 国产人伦9x9x在线观看| 一二三四社区在线视频社区8| 我的亚洲天堂| 91成年电影在线观看| netflix在线观看网站| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 三上悠亚av全集在线观看| av福利片在线| 亚洲成人免费av在线播放| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看 | 老司机影院毛片| 国产在视频线精品| av网站免费在线观看视频| 一级黄色大片毛片| 波多野结衣一区麻豆| 久久久久久人人人人人| 女人精品久久久久毛片| 成年动漫av网址| 久久ye,这里只有精品| 另类亚洲欧美激情| 精品国内亚洲2022精品成人 | 天天操日日干夜夜撸| 国产精品免费视频内射| 波多野结衣一区麻豆| 自线自在国产av| 桃花免费在线播放| 午夜两性在线视频| 亚洲一区二区三区欧美精品| 精品一区二区三区视频在线观看免费 | 午夜激情久久久久久久| 热99久久久久精品小说推荐| 免费在线观看日本一区| 黄色视频,在线免费观看| 久久精品亚洲熟妇少妇任你| 18在线观看网站| 美女视频免费永久观看网站| 99久久精品国产亚洲精品| 亚洲欧美色中文字幕在线| 亚洲欧洲日产国产| www.999成人在线观看| 中文字幕高清在线视频| 国产免费现黄频在线看| 中文字幕av电影在线播放| 国产精品一区二区在线观看99| 高清欧美精品videossex| 夜夜爽天天搞| 久久婷婷成人综合色麻豆| 精品一区二区三区四区五区乱码| 巨乳人妻的诱惑在线观看| 欧美国产精品一级二级三级| 久久久久精品人妻al黑| av电影中文网址| 久久亚洲真实| 每晚都被弄得嗷嗷叫到高潮| 欧美黄色淫秽网站| 一进一出好大好爽视频| 啦啦啦在线免费观看视频4| 视频区欧美日本亚洲| 丝袜美足系列| 亚洲黑人精品在线| 黄色 视频免费看| 久久午夜亚洲精品久久| 国产在线一区二区三区精| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 久久人人爽av亚洲精品天堂| 天天添夜夜摸| 一二三四在线观看免费中文在| 国产精品98久久久久久宅男小说| 制服诱惑二区| 麻豆乱淫一区二区| 男女下面插进去视频免费观看| 老司机深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 美国免费a级毛片| 五月开心婷婷网| 精品高清国产在线一区| 五月开心婷婷网| av国产精品久久久久影院| 国产高清视频在线播放一区| 久久久欧美国产精品| 夫妻午夜视频| 日韩欧美一区视频在线观看| 成人手机av| 在线观看www视频免费| 桃红色精品国产亚洲av| 在线观看www视频免费| 国产色视频综合| 精品国产亚洲在线| 青草久久国产| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 精品福利观看| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 久久午夜亚洲精品久久| 国产精品久久久久久精品古装| 一区二区三区精品91| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕一二三四区 | 亚洲,欧美精品.| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲| e午夜精品久久久久久久| 欧美+亚洲+日韩+国产| 女警被强在线播放| www.自偷自拍.com| 亚洲人成伊人成综合网2020| av天堂在线播放| 精品一区二区三区四区五区乱码| 日韩欧美国产一区二区入口| 精品国产一区二区久久| 黑人巨大精品欧美一区二区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产a三级三级三级| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 欧美黄色淫秽网站| 免费黄频网站在线观看国产| 一本色道久久久久久精品综合| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| h视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 他把我摸到了高潮在线观看 | 深夜精品福利| 看免费av毛片| 亚洲av日韩精品久久久久久密| 精品国产国语对白av| 欧美激情高清一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲av第一区精品v没综合| 色老头精品视频在线观看| 亚洲国产欧美一区二区综合| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密| 久久精品国产综合久久久| 91av网站免费观看| 亚洲一区中文字幕在线| 中国美女看黄片| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 国产成人系列免费观看| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 91九色精品人成在线观看| 免费看十八禁软件| 涩涩av久久男人的天堂| 91老司机精品| 久久精品国产亚洲av高清一级| 久久婷婷成人综合色麻豆| 欧美成人免费av一区二区三区 | 免费观看人在逋| 热re99久久精品国产66热6| 日韩中文字幕视频在线看片| 午夜福利,免费看| 99国产精品一区二区三区| 久久久国产成人免费| 国产精品香港三级国产av潘金莲| 在线观看免费高清a一片| 一级,二级,三级黄色视频| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 露出奶头的视频| 国产日韩欧美视频二区| 中文字幕色久视频| 日本黄色日本黄色录像| 777久久人妻少妇嫩草av网站| 国产麻豆69| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 国产不卡一卡二| 中文字幕高清在线视频| 18在线观看网站| 日韩成人在线观看一区二区三区| 看免费av毛片| av超薄肉色丝袜交足视频| 午夜免费成人在线视频| 国产精品一区二区免费欧美| 亚洲一码二码三码区别大吗| www.自偷自拍.com| 两个人看的免费小视频| 高清黄色对白视频在线免费看| 大型黄色视频在线免费观看| 亚洲精品国产色婷婷电影| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 成人手机av| av在线播放免费不卡| 国产免费视频播放在线视频| 色精品久久人妻99蜜桃| 午夜福利视频在线观看免费| 日日夜夜操网爽| 国产黄色免费在线视频| 国产成人系列免费观看| 久久国产亚洲av麻豆专区| a在线观看视频网站| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜添小说| 丝袜人妻中文字幕| 免费少妇av软件| 热re99久久国产66热| 91国产中文字幕| 精品一品国产午夜福利视频| 丰满少妇做爰视频| 69精品国产乱码久久久| 国产精品久久久人人做人人爽| 我要看黄色一级片免费的| 国产极品粉嫩免费观看在线| 亚洲精品一二三| 色老头精品视频在线观看| 亚洲伊人久久精品综合| 精品人妻熟女毛片av久久网站| 国产精品1区2区在线观看. | 黄片播放在线免费| 亚洲av欧美aⅴ国产| 亚洲美女黄片视频| 免费一级毛片在线播放高清视频 | 日韩成人在线观看一区二区三区| 久久99热这里只频精品6学生|