• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping and validation of a dominant salt tolerance gene in the cultivated soybean(Glycine max) variety Tiefeng 8

    2014-03-13 05:51:02RongxiaGuanJiangangChenJinghanJiangGuangyuLiuYingLiuLeiTianLiliYuRuzhenChangLijuanQiu
    The Crop Journal 2014年6期

    Rongxia Guan,Jiangang Chen,Jinghan Jiang,Guangyu Liu,Ying Liu,Lei Tian,Lili Yu,Ruzhen Chang,Li-juan Qiu*

    The National Key Facility for Crop Gene Resources and Genetic Improvement(NFCRI),Key Laboratory of Germplasm&Biotechnology(MOA),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    1.Introduction

    Soybean(Glycine max[L.]Merr.)is classified as a salt-sensitive glycophyte [1].In soybean,salinity stress inhibits seed germination and seedling growth.Several salt-tolerant soybean accessions have been identified[2,3].To characterize the inheritance of salt tolerance,Abel [4] performed crosses of parents differing in chloride accumulation tolerance.The F2population segregated in a 3:1 ratio of non-necrotic plants(very low in chloride)to necrotic plants(very high in chloride),and the segregation ratio from a test cross was 1:1.From these results,it was concluded that exclusion and inclusion of chloride in soybean leaves and stems were controlled by a single dominant gene Ncl and a recessive gene ncl,respectively.Lee et al.[5]evaluated the salt tolerance of a F2:5population derived from the cross of salt-tolerant parent S-100 with salt-sensitive parent Tokyo.Salt tolerance was scored from 0(all plants dead)to 5(plants with normal green leaves).As a result,a major quantitative trait locus (QTL) for salt tolerance was mapped near the simple sequence repeat(SSR) marker Sat_091 on soybean linkage group N (chromosome 3),accounting for 41%,60%,and 79% variation of total genetic variation under three different conditions.The authors speculated that this QTL was the dominant gene Ncl reported by Abel [4].The major QTL in this genomic region was confirmed in the cultivated soybeans FT-Abyra and Jindou No.6 as well as a wild-type soybean,JWS156-1 [6,7].Another salt tolerance-associated QTL was identified in a Chinese cultivar Nannong 1138-2 and mapped between SSR markers Sat_164 and Sat_358 on chromosome 18 [8].Besides these QTLs,allelism testing showed that a wild soybean accession (Glycine soja) PI483463 carried a single dominant salt-tolerance gene,different from the one found in G.max S-100,but also mapping to soybean chromosome 3 [9,10].Recently,an ion transporter gene GmCHX1,located on soybean chromosome 3,was cloned from wild soybean by a combination of genome sequencing and QTL mapping[11].

    Thousands of Chinese soybean accessions have been screened for salt tolerance,and several Chinese cultivated soybeans cultivars have been identified as sources of salt tolerance at seedling and adult stages [3,12].Genetic analysis using F1hybrids and F2and F2:3populations constructed from crosses between tolerant varieties Wenfeng 7,Teifeng 8,and Jindou 33 and sensitive cultivars Union,Hark,and Zaoshu 6 revealed that salt tolerance in soybean at the seedling stage was controlled by a single dominant gene[13].Using the same crosses as those used by Shao and Chang [13],Guo et al.[14]found a codominant RAPD marker (a 600 bp product in the sensitive parent and a 700 bp product in the tolerant parent)closely linked to the salt-tolerance gene,but its location was not determined.In the present study,we mapped the dominant salt-tolerance gene on chromosome 3 and used salt tolerance-linked markers for determining the salt tolerance of soybean accessions.

    2.Materials and methods

    2.1.Development of mapping populations

    Soybean variety Tiefeng 8 had been determined to be salt-tolerant,whereas 85-140 was relatively sensitive[12,13,15].A segregating F2population (n = 392) was developed from the cross 85-140 × Tiefeng 8 in 2005.The F1plant was verified using SSR markers polymorphic between the parents [16],and a F2:3family (n = 239) with sufficient seed was used for mapping the salt tolerance gene.To confirm the gene detected in the F2:3population,an F5:6RIL mapping population (n = 230)developed by single-seed descent from the F2:3families was employed.

    2.2.Evaluation of salt tolerance

    Twelve seeds of each F2:3line were planted in a 100 ×80 × 80-mm pot filled with vermiculite and watered with tap water from the bottom every three days.The experiment was conducted under a rainout shelter under ambient weather conditions at the Chinese Academy of Agricultural Sciences in July 2009.The daily air temperature ranged from 33 (daily highest) to 21 °C (night lowest) with an average daily temperature of approximately 25 °C.Each of these experiments was conducted with two replications,and each pot had eight to ten plants.Twenty-two F2:3lines and the two parents were placed in 600 × 400 × 80-mm tanks.Ten days after planting,when the true leaves of plants were fully expanded,2 L of 200 mmol L-1NaCl was added twice within six days to each tank.Thereafter,2 L of tap water was added to each tank every three days.When the salt-sensitive parent 85-140 appeared salt-toxicity symptoms,about 2 weeks after treatment,the genotype of each family was scored for salt tolerance.Lines with no obvious salt toxicity were considered tolerant,whereas lines with obvious leaf scorch were considered sensitive.Lines appearing both symptomatic and asymptomatic were considered heterzygous.

    Salt-tolerance evaluation of the F5:6RIL population and 58 cultivated soybean accessions was performed in July of both 2011 and 2012,respectively,in two replications as described for F2:3families.After treatment for 2 weeks,the RILs(n = 8–10)were scored for salt tolerance.A salt-tolerance rating for each of the 58 soybean accessions was assigned according to the level of leaf chlorosis (Table S1).The salt-tolerance ratings ranged on a scale from 1 to 5,as follows:1)plants with normal green leaves; 2) less than 25% leaf area showing chlorosis; 3)less than 50% leaf area showing chlorosis; 4) more than 50%leaf area showing chlorosis,but plants not completely dead;5)all plants dead.The salt-tolerance evaluations of the RIL population and the 58 soybean accessions were both performed twice.

    2.3.DNA isolation,RAPD analysis,and SCAR marker development

    Leaf samples from all F2and F5individuals and the parents were collected and frozen in liquid nitrogen.For the germplasm used for marker-assisted selection and two parents,leaf samples were collected from ten plants of each accession.DNA was isolated with a Genomic DNA Purification kit(Fermentas,Burlington,Canada) and diluted to a final concentration of 20 ng μL-1.PCR was conducted in a 20-μL reaction mixture containing 40 ng DNA and 1 U Ex Taq(TaKaRa,Japan) using RAPD primer 5′-GGCACGTAAG-3′under the following conditions: 95 °C for 5 min,followed by 35 cycles of 95 °C for 30 s,37 °C for 30 s,and 72 °C for 1 min.The PCR products were separated on 2% agarose gel with 1× TAE buffer at 40 V for 3 h and stained with ethidium bromide.

    The RAPD polymorphic fragments present in the salttolerant and-sensitive parents were excised and purified from the agarose gel and then cloned into the pEASY-T1 Cloning Vector (TransGen Biotech,Beijing,China).The positive (white) colonies were verified by PCR and the insert was sequenced on an ABI 3730XL Capillary DNA Sequencer using the fluorescent dye terminator method.A sequencecharacterized amplified region (SCAR) marker was designed from the sequence information of the two fragments.The SCAR marker(QS08064),amplified by using forward 5′-ACGTAAGTGG TTGAAGGCGTT-3′and reverse 5′-GGGCAAGGGATATGAAAA-3′primers,was used to genotype from both parents and the individuals in both populations.PCR was performed in 20 μL reaction mixtures containing 1× PCR buffer,200 μmol L-1MgCl2,150 μmol L-1dNTPs,150 μmol L-1of each primer,40 ng DNA,and 1 U Taq-polymerase (Takara).PCR conditions were as follows: 94 °C for 5 min followed by 35 cycles of 94 °C for 30 s,55 °C for 30 s,72 °C for 45 s,and a final extension of 5 min at 72 °C.The PCR products were separated on 2% agarose gels with 1× Tris-acetate-EDTA(TAE) buffer at 100 V for 40 min and stained with ethidium bromide.

    2.4.SSR marker analysis

    Forty-two SSR markers from soybean chromosome 3 were tested for polymorphism between the two parents and nine polymorphic markers were identified.The SSR profile was the same as for the SCAR analysis.PCR products were then separated on 6% denaturing gels (19 acrylamide:1N,N′-methylene-bis-acrylamide) containing 7 mol L-1urea with 1× TBE for 1.5 h at 100 W,and the fragments were visualized with silver staining [17].

    2.5.Development of InDel markers for gene mapping

    The soybean reference sequence of Williams 82(http://www.phytozome.net/soybean) and information about insertions and deletions in wild soybean(ftp://147.46.250.193/gff/)were used for developing InDel markers(Table 1).A total of 9 pairs of primers flanking 3–9-bp insertion/deletions were designed with Primer 3 software (http://primer3.sourceforge.net/),with Tm values of 54–56 °C.Four of them were polymorphic InDel markers and were used for mapping the salt-tolerance locus.

    2.6.Genetic mapping of the salt-tolerance gene

    Thirteen polymorphic markers were used to screen the DNA from the individuals of the F2and RIL populations.The IciMapping software (v3.3; http://www.isbreeding.net/) was used to calculate genetic linkages and map distances[18].

    2.7.Phylogenetic analysis

    Phylogenetic analysis of 58 soybean accessions was done based on the neighbor-joining (NJ) method implemented in PowerMarker version 3.25 [19],and the neighbor-joining tree was viewed using MEGA 4.0[20].

    Table 1-Sequences of SCAR and InDel primer pairs and the sizes of PCR products generated by each primer pair.

    3.Results

    3.1.Phenotypic variation in F2:3 and RIL populations

    To characterize the variation for salt tolerance in the two populations derived from Tiefeng 8 and 85-140,the 239 and 230 lines of the F2:3segregating and RIL(F5:6)populations were evaluated for salt tolerance.Based on leaf chlorosis,the offspring in the F2:3family showed an expected segregation ratio of 1:2:1(χ2= 7.03 <χ2(2)0.01= 9.21)(tolerant,42;segregating,132; sensitive,65).In the RIL population,95 RILs showed salt tolerance and 114 RILs showed salt sensitivity,fitting a ratio of 1:1(tolerant: sensitive) (χ2= 1.55 <χ2(1)0.01= 3.84).

    3.2.Development of a codominant SCAR marker and mapping of the salt-tolerance gene

    The two polymorphic fragments amplified by the RAPD primer from cultivated soybeans Tiefeng 8 and 85-140 were cloned and sequenced[14].The allele size of the RAPD marker was 767 bp for the salt tolerance and 655 bp for the salt sensitive,respectively.The DNA sequence identity between tolerance and sensitive alleles was 80.8%,with 4 InDels (10,129,6,and 2 bp) and 2 single-nucleotide polymorphisms(SNPs) (Fig.1).The corresponding soybean sequences were searched with BLAST (Basic Local Alignment Search Tool)against the Phytozome soybean database (http://www.phytozome.net/).The two fragments from Tiefeng 8 and 85-140 showed identities of 92.2% and 88.4%,respectively,with a reference DNA fragment that is part of gene Glyma03g32920.1 between nucleotides 40,650,610 and 40,651,263 on chromosome 3.A pair of SCAR primers was designed according to the insertions and deletions in the sequences of Tiefeng 8 and 85-140,with expected fragments of 383 bp and 263 bp,respectively(Table 1,Fig.1).

    To map the salt-tolerance gene,42 SSR markers on soybean chromosome 3 were selected from SoyBase (http://soybase.org/) and used to identify polymorphism between Tiefeng 8 and 85-140,and nine of them showed polymorphism.The 239 F2plants were genotyped with the nine SSR markers and one SCAR marker QS08064.The salt-tolerance gene was closely linked with QS08064 and located between the SSR markers Barcsoyssr_3_1301 and Barcsoyssr_3_1315(Fig.2-A).

    For further narrow the mapping region for the salt-tolerance gene of the salt-tolerance locus,an additional four InDel markers(Table 1)between Barcsoyssr_3_1301 and Barcsoyssr_3_1315 were developed based on the insertion/deletion information of a deeply sequenced wild soybean [21] and used to genotype both the F2and RIL populations (Fig.2-A,B).Representative recombinant individuals and lines from F2and RIL populations displaying fragments differing in length between marker QS1112 and Barcsoyssr_3_1301 were shown in Fig.2-C.All lines displaying the fragment from Tiefeng 8 between markers Barcsoyssr_3_1301 and QS08064 were salt-tolerant.Accordingly,the salt-tolerance gene was assigned to the 209-kb interval between Barcsoyssr_3_1301 and QS08064.

    Fig.1-Alignment of DNA fragments from salt-tolerant and-sensitive parents.

    3.3.Salt tolerance of soybean germplasm and relationship between phenotype and genotype

    Under salt treatment,the phenotypes of soybean accessions were scored according to leaf chlorosis on a visual rating scale ranging from 1 to 5.The salt-tolerant variety Tiefeng 8(leaf scorch 1)and the sensitive line 85-140(leaf scorch 4)were used as references.As shown in Table S1,17 and 18 accessions showing superior salinity tolerance had leaf scorch ratings of 1 and 2,respectively,whereas 23 accessions showing different levels of salt sensitivity had leaf scorch ratings from 3 to 5.To evaluate the relationship between salt tolerance and allelic variation of markers associated with the salt tolerance gene,58 soybean accessions were screened with SCAR marker QS08064,two SSR markers,Barcssoysr_3_1306,Barcsoyssr_3_1310,and InDel marker QS080465,which cosegregated with the salt-tolerance gene (Fig.2-B).For SCAR marker QS08064,32 of the 35 tolerant accessions displayed the expected 383-bp allele.For the InDel marker QS080465,most (33 of 35) of the salt-tolerant accessions displayed the expected 152-bp allele(Table 2,Fig.3).Two salt-tolerant accessions,Cutler 71 and Franklin,carried salt sensitivity-related alleles of size 148 bp at locus QS080465 and 263 bp at locus QS08064,whereas the salt-sensitive accession Peking carried tolerance-associated alleles at both loci.Six and four alleles were detected at SSR loci Barcsoyssr_3_1310 and Barcsoyssr_3_1306,respectively,with one allele at locus Barcsoyssr_3_1310 and 3 alleles at locus Barcsoyssr_3_1306 being detected primarily in the salt-tolerant accessions and the other six alleles detected mainly in the salt-sensitive accessions (Table S1).The 58 accessions were clustered into three different major branches on a neighbor-joining tree based on SCAR marker QS08064,SSR markers Barcsoyssr_3_1310 and Barcsoyssr_3_1306 and InDel marker QS080465;two groups contained salt-sensitive soybeans and the third contained tolerant ones (Fig.4).These results indicate that markers closely linked to the salt-tolerance gene can be used for marker-assisted selection of salt-tolerant soybean.

    Fig.2-Linkage map of F2 population(A)and RIL population(B) for the cross of 85-140 × Tiefeng 8,showing the positions of molecular markers and salt-tolerance gene.Markers are shown to the right and distances in cM to the left of the chromosome;(C)Graphical genotypes of representative recombinant lines of F2 and RILs produced from 85-140 × Tiefeng 8 in the candidate region of chromosome 3.T,S,and H indicate that the recombinant line is salt-tolerant,salt-sensitive,or heterozygous(segregating),respectively.

    4.Discussion

    The salt-tolerance phenotype in varieties Tiefeng 8 and Wenfeng 7 is a monogenically controlled trait,and a codominant RAPD marker closely linked to the salt tolerance gene was identified [13,14].In this study,we sequenced specific fragments of RAPD marker from the salt-tolerant and-sensitive parents Tiefeng 8 and 85-140 and converted the RAPD marker into a codominant SCAR marker.BLAST search of the specific fragments showed that it was located on chromosome 3,on which a conserved salt-tolerance QTL has been mapped [5–8,10].Using F2:3and RIL populations derived from the cross of Tiefeng 8 and 85–140,we also mapped the dominant salt-tolerance gene on chromosome 3 in an interval of 209 kb,suggesting coincidence with the QTL located previously [5,6,15].The candidate region detected in PI 483463 was 658 kb,overlapping the interval of this study [10].The consistency of the mapping region of the salt-tolerance gene/QTL in different soybean backgrounds suggests that this gene/QTL is a major locus controlling salt tolerance in soybean.According to the annotation of the Williams 82 genome,22 genes are predicted to be located in the 209 kb region,including sodium/hydrogen exchanger (CHX) families (Glyma03g32890.1 and Glyma03g32900.1).In the Arabidopsis CHX family,several members including AtCHX13,AtCHX17,and AtCHX20 have been shown to play a role in potassium transport [22–24],and AtCHX21,expressed in root endodermal cells,has been shown to regulate Na+concentration in the xylem [25].Recently,a major QTL for salt tolerance in G.soja,W05,was mapped to a 388 kb region on soybean chromosome 3,and GmCHX1(Glyma03g32900.1) was confirmed as a novel gene conferring salt tolerance by use of a root-hair transformation system[11].In our previous study,the salt-tolerant parent Tiefeng 8 was found to accumulate significantly less Na+in the shoot than the salt sensitive parent 85-140[12,26].Valencia et al.observed that salt-sensitive soybean cultivars accumulated 2.64 and 1.96 times more Na+and Cl-in leaves than tolerant accessions[27].However,no DNA markers associated with Na+or Cl-content have been mapped on soybean chromosome 3 where the salt-tolerance gene has been mapped.Thus,further studies should be conducted to understand the mechanisms underlying salt tolerance in soybean.

    The identification of the salt-tolerance QTL/gene on chromosome 3 in different backgrounds suggests the possibility of marker-assisted selection for salt-tolerant soybean varieties using the markers associated with the salt-tolerance gene.We screened 58 diverse soybean accessions with three DNA markers,Barcsoyssr_3_1306,Barcsoyssr_3_1310 and QS080465,which cosegregated with the salt-tolerance locus.The InDel marker QS080465 was developed from the promoter region of a sodium/hydrogen exchanger gene,Glyma03g32890.1,whereas SSR marker Barcsoyssr_3_1310 was located in the intron region of Glyma03g32900.1.Of the 35 soybean accessions carrying the 152-bp tolerance allele at locus QS080465,33 were salt-tolerant,indicating a selection efficiency of 94.3%.The selection efficiencies of Barcsoyssr_3_1306 and Barcsoyssr_3_1310 were 76.2%and 90.1%,respectively (Table 2).We also tested the selection efficiency of SCAR marker QS08064 and found that 32 of 40 accessions with the 383-bp tolerance allele were salt-tolerant,corresponding to a selection efficiency of 80.0%.

    Table 2-Distribution of alleles of QS080465,QS08064,Barcsoyssr_3_1310,and Barcsoyssr_3_1306 in 58 soybean accessions with different salt-tolerance rating.

    Fig.3-Allelic patterns of SCAR marker QS08064(A)and InDel marker QS0465(B) in 12 of 58 soybean accessions.M,molecular-weight marker(100-bp ladder);Numbers above images are the codes of individuals in Table S1.

    In previous studies,Lee et al.[5]and Hamwieh et al.[7]tried to study the association between the salt-tolerance QTL and linked SSR markers (Sat_091 and Satt237) by tracing the pedigrees of S-100 and FT-Abyara,the parents used in QTL mapping.They found in both studies that the salt-tolerance alleles were always associated with the salt-tolerance phenotype in the descendants.However,they found different SSR marker alleles in S-100 and FT-Abyara.This finding may reflect the nature of SSR markers,which can amplify up to 34 alleles at one locus in different backgrounds [28–30],while the same allele may not always be associated with salt tolerance in different backgrounds,as we observed for Barcsoyssr_3_1306 and Barcsoyssr_3_1310 in the present study.Only two alleles for InDel marker QS080465 and SCAR marker QS08064 were identified among the 58 soybean accessions.QS080465 appeared to have a higher selection efficiency than did QS08064.The salt-sensitive variety Williams 82 carried the salt-sensitive allele at both QS08064 and QS080465(Table S1).Although six and four alleles were identified within the 58 soybean accessions at the SSR loci Barcsoyssr_3_1310 and Barcsoyssr_3_1306,an association between alleles and salt tolerance was observed.Most of the salt-tolerant and-sensitive soybeans were observed to cluster in different clades based on the data from the four markers linked with the salt-tolerance gene(Fig.4).Taking together the mapping of a salt-tolerance QTL/gene in the same interval of chromosome 3 in both wild and cultivated soybean and the high selection efficiency of markers located in the interval suggests that the salt-tolerance gene is relatively common in soybean germplasm and that all these QTLs or genes correspond to the Ncl locus initially reported by Abel [4].However,reliable evidence is needed to confirm that the same gene is responsible for salt tolerance in both wild and cultivated soybean.

    Fig.4-Neighbor-joining tree of 58 soybean accessions based on SCAR marker QS08064,InDel marker QS080465,and SSR markers Barcsoyssr_3_1310 and Barcsoyssr_3_1306.Taxon labels correspond to the accession names shown in Table S1.Salt-tolerance ratings are depicted as triangles color-coded as follows:red:rating 1,purple:rating 2,green:rating 3,blue:rating 4,and black:rating 5.Numbers at nodes represent subgroups.

    This work was financially supported by the National Natural Science Foundation of China (30971801,31271752,30490250-1),the National Key Technologies R&D Program in the 12th Five-Year Plan (2012AA101106),the National Foundation for Transgenic Species (2009ZX08009-088B),and the Agricultural Science and Technology Innovation Program.We thank Ben Averitt,Department of Crop and Soil Environmental Sciences at Virginia Tech,for editorial support.

    Supplementary material

    Supplementary table to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.09.001.

    [1] A.Lauchli,Salt exclusion:an adaptation of legumes for crops and pastures under saline conditions,in:R.C.Stapes (Ed.),Salinity Tolerance in Plants,John Wiley &Sons,New York,1984,pp.171–187.

    [2] G.H.Abel,A.J.MacKenzie,Salt tolerance of soybean varieties(Glycine max L.Merrill) during germination and later growth,Crop Sci.4(1964) 157–161.

    [3] G.Shao,J.Song,H.Liu,Preliminary studies on the evaluation of salt tolerance in soybean varieties,Sci.Agric.Sin.6 (1986)30–35(in Chinese with English abstract).

    [4] G.H.Abel,Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans,Crop Sci.9(1969)697–698.

    [5] G.J.Lee,T.E.Carter Jr.,M.R.Villagarcia,Z.Li,X.Zhou,M.O.Gibbs,H.R.Boerma,A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars,Theor.Appl.Genet.109 (2004) 1610–1619.

    [6] A.Hamwieh,D.H.Xu,Conserved salt tolerance quantitative trait locus(QTL) in wild and cultivated soybeans,Breed.Sci.58 (2008) 355–359.

    [7] A.Hamwieh,D.D.Tuyen,H.Cong,E.R.Benitez,R.Takahashi,D.H.Xu,Identification and validation of a major QTL for salt tolerance in soybean,Euphytica 179(2011)451–459.

    [8] H.T.Chen,S.Y.Cui,S.X.Fu,J.Y.Gai,D.Y.Yu,Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean(Glycine max L.),Aust.J.Agric.Res.59 (2008) 1086–1091.

    [9] J.D.Lee,J.G.Shannon,T.D.Vuong,H.T.Nguyen,Inheritance of salt tolerance in wild soybean(Glycine soja Sieb.and Zucc.)accession PI483463,J.Hered.(2009) esp027.

    [10] B.K.Ha,T.D.Vuong,V.Velusamy,H.T.Nguyen,J.G.Shannon,J.D.Lee,Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463,Euphytica 193 (2013) 79–88.

    [11] X.Qi,M.-W.Li,M.Xie,X.Liu,M.Ni,G.Shao,C.Song,A.K.-Y.Yim,Y.Tao,F.L.Wong,Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing,Nat.Commun.5 (2014) 4340.

    [12] G.Liu,R.Guan,R.Chang,L.Qiu,Correlation between Na+contents in different organs of soybean and salt tolerance at the seedling stage,Acta Agron.Sin.37(2011) 1266–1273(in Chinese with English abstract).

    [13] G.Shao,R.Chang,Study on inheritance of salt tolerance in soybean,Acta Agron.Sin.20(1994) 721–726 (in Chinese with English abstract).

    [14] B.Guo,L.Qiu,G.Shao,R.Chang,L.Liu,Z.Xu,X.Li,J.Sun,Tagging a salt tolerant gene using PCR markers in soybean,Sci.Agric.Sin.33(2000)10–16(in Chinese with English abstract).

    [15] J.Jiang,R.Guan,Y.Guo,R.Chang,L.Qiu,Simple evaluation method of tolerance to salt at seedling stage in soybean,Acta Agron.Sin.39(2013)1248–1256(in Chinese with English abstract).

    [16] L.Tian,R.X.Guan,Z.X.Liu,R.Z.Chang,L.J.Qiu,Verity identification of soybean hybrids using SSR markers,J.Plant Genet.Resour.9 (2009) 443–447.

    [17] B.J.Bassam,G.Caetano-Anollés,P.M.Gresshoff,Fast and sensitive silver staining of DNA in polyacrylamide gels,Anal.Biochem.196 (1991) 80–83.

    [18] J.Wang,H.Li,L.Zhang,L.Meng,Users' manual of QTL IciMapping.The Quantitative Genetics Group,Institute of Crop Science,Chinese Academy of Agricultural Sciences(CAAS),Beijing,China,and Genetic Resources Program,International Maize and Wheat Improvement Center(CIMMYT),Apdo,Mexico.,(2013).

    [19] K.Liu,S.V.Muse,PowerMarker: an integrated analysis environment for genetic marker analysis,Soybean Sci.21(2005) 2128–2129.

    [20] K.Tamura,J.Dudley,M.Nei,S.Kumar,MEGA4: molecular evolutionary genetics analysis (MEGA)software version 4.0,Mol.Biol.Evol.24 (2007) 1596–1599.

    [21] M.Y.Kim,S.Lee,K.Van,T.H.Kim,S.C.Jeong,I.Y.Choi,D.S.Kim,Y.S.Lee,D.Park,J.Ma,W.Y.Kim,B.C.Kim,S.Park,K.A.Lee,D.H.Kim,K.H.Kim,J.H.Shin,Y.E.Jang,K.D.Kim,W.X.Liu,T.Chaisan,Y.J.Kang,Y.H.Lee,J.K.Moon,J.Schmutz,S.A.Jackson,J.Bhak,S.H.Lee,Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb.and Zucc.)genome,Proc.Natl.Acad.Sci.U.S.A.107(2010) 22032–22037.

    [22] J.Zhao,N.H.Cheng,C.M.Motes,E.B.Blancaflor,M.Moore,N.Gonzales,S.Padmanaban,H.Sze,J.M.Ward,K.D.Hirschi,AtCHX13 is a plasma membrane K+transporter,Plant Physiol.148 (2008) 796–807.

    [23] F.Cellier,G.Conejero,L.Ricaud,D.T.Luu,M.Lepetit,F.Gosti,F.Casse,Characterization of AtCHX17,a member of the cation/H+exchangers,CHX family,from Arabidopsis thaliana suggests a role in K+homeostasis,Plant J.39(2004) 834–846.

    [24] S.Padmanaban,S.Chanroj,J.M.Kwak,X.Li,J.M.Ward,H.Sze,Participation of endomembrane cation/H+exchanger AtCHX20 in osmoregulation of guard cells,Plant Physiol.144(2007) 82–93.

    [25] D.Hall,A.R.Evans,H.J.Newbury,J.Pritchard,Functional analysis of CHX21: a putative sodium transporter in Arabidopsis,J.Exp.Bot.57(2006) 1201–1210.

    [26] J.Jiang,Y.Guo,R.Chang,R.Guan,L.Qiu,Simple evaluation method of tolerance to salt at seedling stage in soybean,Acta Agron.Sin.39(2013)1–9(in Chinese with English abstract).

    [27] R.Valencia,P.Y.Chen,T.Ishibashi,M.Conatser,A rapid and effective method for screening salt tolerance in soybean,Crop Sci.48(2008) 1773–1779.

    [28] M.S.Akkaya,A.A.Bhagwat,P.B.Cregan,Length polymorphisms of simple sequence repeat DNA in soybean,Genetics 132 (1992) 1131–1139.

    [29] N.Diwan,J.Bouton,G.Kochert,P.Cregan,Mapping of simple sequence repeat(SSR)DNA markers in diploid and tetraploid alfalfa,Theor.Appl.Genet.101 (2000) 165–172.

    [30] R.X.Guan,R.Z.Chang,Y.H.Li,L.X.Wang,Z.X.Liu,L.J.Qiu,Genetic diversity comparison between Chinese and Japanese soybeans (Glycine max (L.)Merr.) revealed by nuclear SSRs,Genet.Resour.Crop.Evol.57(2010) 229–242.

    亚洲一级一片aⅴ在线观看| 欧美性感艳星| 日本免费a在线| 一个人观看的视频www高清免费观看| 久久人人爽人人片av| 久久久久久久亚洲中文字幕| 三级男女做爰猛烈吃奶摸视频| 午夜福利高清视频| 草草在线视频免费看| 丰满乱子伦码专区| 成人av在线播放网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美,日韩| 看十八女毛片水多多多| 亚洲美女视频黄频| 美女内射精品一级片tv| 别揉我奶头 嗯啊视频| 两性午夜刺激爽爽歪歪视频在线观看| 男人舔奶头视频| 亚洲18禁久久av| 久久午夜福利片| 99久国产av精品| 久久久欧美国产精品| 身体一侧抽搐| 免费电影在线观看免费观看| 久久久久九九精品影院| 老女人水多毛片| 国内精品一区二区在线观看| 免费观看在线日韩| 神马国产精品三级电影在线观看| 亚洲国产精品sss在线观看| 亚洲成人中文字幕在线播放| 美女国产视频在线观看| 日本五十路高清| 精品国内亚洲2022精品成人| 久久久久国产网址| 国产三级中文精品| 亚洲av.av天堂| 九九热线精品视视频播放| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器| 国产精品熟女久久久久浪| 18禁动态无遮挡网站| 99热精品在线国产| 国产黄片美女视频| 日本五十路高清| 美女国产视频在线观看| 免费看美女性在线毛片视频| 午夜精品在线福利| 美女高潮的动态| 国产综合懂色| 亚洲av中文字字幕乱码综合| 伦理电影大哥的女人| 中文天堂在线官网| 亚洲精品日韩av片在线观看| 午夜a级毛片| 久久99热这里只有精品18| 青春草亚洲视频在线观看| 最后的刺客免费高清国语| 亚洲五月天丁香| 国产美女午夜福利| 午夜精品国产一区二区电影 | 日韩欧美在线乱码| 成人一区二区视频在线观看| 免费大片18禁| 视频中文字幕在线观看| 亚洲国产精品成人综合色| 亚洲四区av| 三级毛片av免费| 干丝袜人妻中文字幕| 观看免费一级毛片| 国产精品一区二区三区四区免费观看| 午夜福利高清视频| 国产成人91sexporn| 超碰av人人做人人爽久久| 亚洲四区av| 别揉我奶头 嗯啊视频| 色5月婷婷丁香| 亚洲av中文字字幕乱码综合| 十八禁国产超污无遮挡网站| 天天躁日日操中文字幕| 身体一侧抽搐| 国产精品久久久久久久久免| 亚洲精品色激情综合| 国产亚洲精品av在线| 好男人视频免费观看在线| 国产免费福利视频在线观看| 国产精品麻豆人妻色哟哟久久 | 天天躁日日操中文字幕| 男女视频在线观看网站免费| 天堂中文最新版在线下载 | 亚洲国产精品久久男人天堂| 97在线视频观看| 成人亚洲欧美一区二区av| 51国产日韩欧美| 亚洲av成人精品一二三区| 99久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 亚洲精品aⅴ在线观看| 亚洲成人中文字幕在线播放| 成人特级av手机在线观看| 久久午夜福利片| 亚洲av不卡在线观看| 最近最新中文字幕大全电影3| kizo精华| 22中文网久久字幕| 97超视频在线观看视频| 亚洲电影在线观看av| 亚洲欧美精品综合久久99| 麻豆国产97在线/欧美| 国产精品.久久久| 久久99热6这里只有精品| 亚洲av成人av| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 国产精品国产三级国产av玫瑰| 日本熟妇午夜| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 日本熟妇午夜| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区国产| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 国产极品天堂在线| 深爱激情五月婷婷| 一级黄片播放器| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 国产免费视频播放在线视频 | 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 少妇丰满av| 国产高清有码在线观看视频| 国产乱来视频区| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版 | 日本五十路高清| 国产极品精品免费视频能看的| h日本视频在线播放| 成人亚洲欧美一区二区av| 99久久精品热视频| 18禁在线无遮挡免费观看视频| 免费看av在线观看网站| 精品欧美国产一区二区三| av又黄又爽大尺度在线免费看 | 久久欧美精品欧美久久欧美| 免费一级毛片在线播放高清视频| 春色校园在线视频观看| 日韩三级伦理在线观看| 九九在线视频观看精品| 成年av动漫网址| 色播亚洲综合网| 热99在线观看视频| 亚洲av免费在线观看| 一夜夜www| 啦啦啦啦在线视频资源| 久久久久免费精品人妻一区二区| 亚洲精品自拍成人| 久久精品综合一区二区三区| 日韩高清综合在线| 国产淫片久久久久久久久| 国产精品电影一区二区三区| 一级黄片播放器| 赤兔流量卡办理| 亚洲av中文av极速乱| a级毛片免费高清观看在线播放| 国模一区二区三区四区视频| 亚洲国产欧美在线一区| 国产高潮美女av| 亚洲av中文字字幕乱码综合| 久久久久性生活片| 中国国产av一级| 亚洲精品,欧美精品| 熟妇人妻久久中文字幕3abv| 久久精品国产99精品国产亚洲性色| 乱人视频在线观看| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂 | 国产成人一区二区在线| 日本熟妇午夜| 高清毛片免费看| 国模一区二区三区四区视频| 七月丁香在线播放| 大话2 男鬼变身卡| 人人妻人人看人人澡| 麻豆av噜噜一区二区三区| 丝袜美腿在线中文| av免费在线看不卡| 国产精品一区二区在线观看99 | 国产成人精品婷婷| 在线观看av片永久免费下载| 日韩在线高清观看一区二区三区| 两个人视频免费观看高清| 色综合亚洲欧美另类图片| 国产成年人精品一区二区| 日本-黄色视频高清免费观看| 成人一区二区视频在线观看| 国产精品一二三区在线看| 久久99热这里只频精品6学生 | 变态另类丝袜制服| 国产精品福利在线免费观看| 不卡视频在线观看欧美| 欧美成人精品欧美一级黄| 观看美女的网站| 精品久久久久久电影网 | 天美传媒精品一区二区| 亚洲欧美成人综合另类久久久 | 久久综合国产亚洲精品| 看非洲黑人一级黄片| 日本黄色视频三级网站网址| 中文字幕av在线有码专区| 中文字幕亚洲精品专区| 午夜福利视频1000在线观看| 成人特级av手机在线观看| 99久久精品国产国产毛片| 99久久无色码亚洲精品果冻| 在线免费观看的www视频| 成人毛片a级毛片在线播放| 国产伦一二天堂av在线观看| 别揉我奶头 嗯啊视频| 人妻少妇偷人精品九色| 最近中文字幕高清免费大全6| 国产精品,欧美在线| 国产精品国产三级专区第一集| 久久久久久久久大av| 亚洲综合精品二区| av视频在线观看入口| 丰满人妻一区二区三区视频av| 老司机影院毛片| 久久久久久久久大av| 国产在视频线精品| 搡女人真爽免费视频火全软件| 欧美人与善性xxx| 中文字幕亚洲精品专区| 久久精品影院6| 99九九线精品视频在线观看视频| 国内揄拍国产精品人妻在线| 伊人久久精品亚洲午夜| 毛片女人毛片| 国产精品,欧美在线| 亚洲最大成人中文| 精品人妻熟女av久视频| 久久久久久久久中文| av专区在线播放| 女人十人毛片免费观看3o分钟| 国产乱人视频| 老女人水多毛片| 国产亚洲最大av| av.在线天堂| 天堂影院成人在线观看| 最后的刺客免费高清国语| 美女国产视频在线观看| 久久精品国产鲁丝片午夜精品| 国产高清视频在线观看网站| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影小说 | 久久久久久久久久黄片| 一个人看的www免费观看视频| 中国美白少妇内射xxxbb| 日本五十路高清| 永久免费av网站大全| 国产 一区精品| 欧美日本亚洲视频在线播放| 欧美日韩精品成人综合77777| 久久婷婷人人爽人人干人人爱| 能在线免费看毛片的网站| 毛片一级片免费看久久久久| 日韩欧美三级三区| 成人毛片60女人毛片免费| 看片在线看免费视频| a级毛色黄片| 少妇猛男粗大的猛烈进出视频 | 一级黄片播放器| 欧美一区二区国产精品久久精品| 国产精品国产三级专区第一集| 久久久久免费精品人妻一区二区| 国产白丝娇喘喷水9色精品| 国产精品一区二区在线观看99 | 国产伦精品一区二区三区四那| 两个人的视频大全免费| 男女国产视频网站| 国产麻豆成人av免费视频| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 我要搜黄色片| 国产美女午夜福利| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片| 大话2 男鬼变身卡| 一级毛片久久久久久久久女| 亚洲欧美一区二区三区国产| 国产 一区 欧美 日韩| 日产精品乱码卡一卡2卡三| 久久精品影院6| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 夜夜看夜夜爽夜夜摸| 精品国产三级普通话版| 两个人视频免费观看高清| 亚洲国产色片| 老司机福利观看| 日本黄大片高清| 亚洲欧洲国产日韩| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 欧美一级a爱片免费观看看| 国产精品.久久久| 国产极品天堂在线| 亚洲av电影在线观看一区二区三区 | 亚洲国产欧美在线一区| av国产久精品久网站免费入址| 国产久久久一区二区三区| 欧美+日韩+精品| 久久久久久久久大av| 亚洲国产精品成人综合色| av女优亚洲男人天堂| 久久这里有精品视频免费| 大话2 男鬼变身卡| 高清av免费在线| 亚洲人成网站在线播| 欧美日本视频| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 免费观看人在逋| 美女内射精品一级片tv| 中文资源天堂在线| 日本黄色视频三级网站网址| 三级男女做爰猛烈吃奶摸视频| 国产成人免费观看mmmm| 中文字幕熟女人妻在线| 男人舔女人下体高潮全视频| 精品一区二区三区视频在线| 国产午夜精品一二区理论片| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 两个人视频免费观看高清| 国产老妇伦熟女老妇高清| 久久精品国产亚洲网站| 久久午夜福利片| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩在线观看h| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 夜夜爽夜夜爽视频| 欧美区成人在线视频| 久久久久久久久久黄片| 干丝袜人妻中文字幕| videos熟女内射| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 国产精品久久电影中文字幕| 久久精品91蜜桃| 成人国产麻豆网| 国产一区亚洲一区在线观看| 免费在线观看成人毛片| 午夜免费男女啪啪视频观看| 成人毛片60女人毛片免费| 综合色丁香网| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 久久久精品大字幕| 少妇人妻一区二区三区视频| 久久综合国产亚洲精品| 亚洲av免费高清在线观看| 国产毛片a区久久久久| 美女国产视频在线观看| 一边亲一边摸免费视频| 免费看日本二区| 中国美白少妇内射xxxbb| 最近最新中文字幕免费大全7| 免费观看的影片在线观看| 久久久a久久爽久久v久久| 国产精品福利在线免费观看| 国产精品日韩av在线免费观看| 三级毛片av免费| 99视频精品全部免费 在线| 日本免费一区二区三区高清不卡| 色吧在线观看| 精品久久久精品久久久| tube8黄色片| 一级毛片黄色毛片免费观看视频| 成人漫画全彩无遮挡| 亚洲国产色片| 国产淫语在线视频| 一区二区三区精品91| 免费观看性生交大片5| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 国产精品偷伦视频观看了| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 精品酒店卫生间| 亚洲少妇的诱惑av| 国产精品国产av在线观看| 观看av在线不卡| 亚洲欧美一区二区三区国产| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看 | 久久久久人妻精品一区果冻| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 美女大奶头黄色视频| 国语对白做爰xxxⅹ性视频网站| 婷婷色av中文字幕| 国产精品不卡视频一区二区| 成人国产av品久久久| 美国免费a级毛片| 精品久久久精品久久久| 免费黄网站久久成人精品| 国产黄色免费在线视频| 国产精品女同一区二区软件| 青春草视频在线免费观看| 97精品久久久久久久久久精品| 色94色欧美一区二区| 2018国产大陆天天弄谢| 国产成人a∨麻豆精品| 最近中文字幕高清免费大全6| 久久久久久人人人人人| 国产精品一区www在线观看| 9热在线视频观看99| 九九在线视频观看精品| 夫妻午夜视频| 啦啦啦啦在线视频资源| 久久免费观看电影| 免费观看性生交大片5| av线在线观看网站| 99香蕉大伊视频| 人妻系列 视频| 一区在线观看完整版| 亚洲,一卡二卡三卡| 如何舔出高潮| 国产av一区二区精品久久| 欧美亚洲 丝袜 人妻 在线| 777米奇影视久久| 欧美成人午夜精品| 亚洲精品aⅴ在线观看| 欧美日韩视频精品一区| 亚洲,一卡二卡三卡| 免费在线观看完整版高清| 深夜精品福利| 欧美另类一区| 精品国产一区二区三区四区第35| 男女啪啪激烈高潮av片| 亚洲精品日本国产第一区| 久久精品国产a三级三级三级| 亚洲国产精品999| 男女国产视频网站| 亚洲欧美日韩另类电影网站| 十八禁网站网址无遮挡| 国产亚洲最大av| 日韩制服丝袜自拍偷拍| 国产熟女午夜一区二区三区| 在线观看美女被高潮喷水网站| 满18在线观看网站| xxx大片免费视频| 久久ye,这里只有精品| 亚洲精品456在线播放app| 亚洲丝袜综合中文字幕| 免费不卡的大黄色大毛片视频在线观看| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 看十八女毛片水多多多| 成人国语在线视频| 97人妻天天添夜夜摸| 免费观看在线日韩| 丰满迷人的少妇在线观看| 另类精品久久| 中文欧美无线码| 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂| 日韩制服骚丝袜av| 99热6这里只有精品| 成年美女黄网站色视频大全免费| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 亚洲精品第二区| 观看av在线不卡| 999精品在线视频| 99热网站在线观看| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| av福利片在线| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 亚洲av电影在线观看一区二区三区| 美女国产高潮福利片在线看| 精品熟女少妇av免费看| 9色porny在线观看| 久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 亚洲精品日本国产第一区| av.在线天堂| 丰满迷人的少妇在线观看| 亚洲伊人色综图| 国产精品国产三级专区第一集| 亚洲成人手机| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 久久人人爽人人片av| 国产精品国产三级专区第一集| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 日日爽夜夜爽网站| 日韩电影二区| 少妇的逼好多水| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 欧美3d第一页| 亚洲天堂av无毛| 国产一区有黄有色的免费视频| 99热网站在线观看| 老女人水多毛片| 久久午夜综合久久蜜桃| 人妻一区二区av| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 侵犯人妻中文字幕一二三四区| 大话2 男鬼变身卡| 建设人人有责人人尽责人人享有的| 伦理电影大哥的女人| av卡一久久| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 欧美日韩国产mv在线观看视频| 伦精品一区二区三区| 日本wwww免费看| 如何舔出高潮| 在线看a的网站| 中国国产av一级| 宅男免费午夜| 最近最新中文字幕免费大全7| 免费少妇av软件| 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 亚洲精华国产精华液的使用体验| 国产成人av激情在线播放| 在线观看免费视频网站a站| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 欧美激情极品国产一区二区三区 | 精品久久久久久电影网| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| 国产av精品麻豆| 免费大片18禁| 国产在线免费精品| 国产精品女同一区二区软件| 18禁国产床啪视频网站| 国产男人的电影天堂91| 免费黄网站久久成人精品| 色婷婷av一区二区三区视频| 久热久热在线精品观看| 久久精品久久久久久噜噜老黄| 久久人人爽人人片av| 国产免费福利视频在线观看| 美女福利国产在线| 97超碰精品成人国产| 人人澡人人妻人| 秋霞伦理黄片| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 亚洲av.av天堂| 日本91视频免费播放| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 免费人妻精品一区二区三区视频| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| 黄色配什么色好看| 视频中文字幕在线观看| av网站免费在线观看视频| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| 女人久久www免费人成看片| 日韩免费高清中文字幕av| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 中文字幕最新亚洲高清| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 日韩三级伦理在线观看| 成年动漫av网址| 日韩欧美精品免费久久| 91aial.com中文字幕在线观看| 丝瓜视频免费看黄片| 人人澡人人妻人| 国产成人精品在线电影| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃 | 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 亚洲综合色网址|