• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat

    2014-02-24 07:50:24*
    The Crop Journal 2014年6期

    *

    aCollege of Resources and Environment Science,Pingdingshan University,Pingdingshan 467000,China

    bState Key Laboratory for Agrobiotechnology/Department of Plant Genetics&Breeding,China Agricultural University,Beijing 100193,China

    A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat

    JingtingLia,b,ZhenzhongWangb,HuiruPengb,ZhiyongLiub,*

    aCollege of Resources and Environment Science,Pingdingshan University,Pingdingshan 467000,China

    bState Key Laboratory for Agrobiotechnology/Department of Plant Genetics&Breeding,China Agricultural University,Beijing 100193,China

    A R T I C L E I N F O

    Article history:

    Received 18 June 2014

    Received in revised form 22 July 2014 Accepted 29 July 2014

    Available online 22 August 2014

    MITE

    sHSP

    3′-UTR

    Gene transcription

    Common wheat

    Miniature inverted-repeat transposable elements(MITEs)are a type of DNA transposon frequently inserted into promoters,untranslated regions(UTR),introns,or coding sequences of genes.We found a 276-bp tourist-like MITE insertion in the 3′-UTR of a 16.9 kDa small heat shock protein gene(TaHSP16.9-3A)on chromosome 3A of common wheat.Haplotype analysis revealed two haplotypes,sHSP-W(wild type without MITE insertion)and sHSP-M(mutantwith MITE insertion),present in wheat germplasm.Both semiquantitative PCR and quantitative real-time PCR analyses showed increased transcription levels of TaHSP16.9-3A in sHSP-M compared with those of sHSP-W after heat treatment at 42°C.It appeared that the MITE insertion into the 3′-UTR enhances the transcription of TaHSP16.9-3A.

    ?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.Allrights reserved.

    1.Introduction

    All living organisms can be induced to produce heat-shock proteins(HSPs)in response to heat stress.However,plant HSPs are more complex than HSPs in other organisms.Plant HSPs can be classified into five major classes:HSP60,HSP70, HSP90,HSP100,and small heat shock proteins(sHSPs)[1]. Plant sHSPs can also be divided into six classes according to their cellular localization and similarity.Three classes(CI,CII, and CIII)are present in the cytosol or in the nucleus,and the other three are present in the plastid,endoplasmic reticulum, and mitochondria,respectively[1–4].Ta HSP16.9 in wheat belongs to class Iand is the first eukaryotic s HSP for which a high-resolution structure has been described[5].In vitro analysis of the chaperone activity of Ta HSP16.9 has indicated substrate specificity for sHSP[6].In plants,abundant sHSPs are induced to be synthesized in response to environmental stresses and developmentalstimuli,whereas most sHSPs are restricted to low expression levels at certain development stages under normal environmental conditions,indicating that sHSPs play an important role in stress tolerance[2,3].It has been suggested that sHSPs act as molecular chaperones that selectively bind non-native proteins to prevent aggregation in an ATP-independent manner[3].

    Transposable genetic elements(TEs)are repeated DNA sequences that are able to move from one site in the genome to another and replicate during mobilization.TEs are essential components of many eukaryotic genomes and may play important roles in size,structure,polymorphism,genome evolution,and regulation of gene expression[7–9].According to

    their mode of transposition,TEs are divided into two classes, retrotransposons and DNA transposons.Retrotransposons transpose indirectly through an RNA intermediate and consist of two principal groups,long terminal repeat(LTR)and non-LTR retrotransposons.DNA transposons transpose directly as DNA that is excised from the original site in the genome and inserted into a new site.DNA transposons may also be divided into two classes.Autonomous DNA transposons contain genes encoding transposases that mediate DNA transposition,such as Ac transposons in maize.Although nonautonomous DNA transposons lack genes encoding transposases,they can transpose by mediation of transposases encoded by autonomous transposons such as the Ds transposons in maize[7,8,10].

    Miniature inverted-repeat transposable elements(MITEs) are a particular class of DNA transposons that have typical structures of non-autonomous DNA transposons,containing target site duplications(TSD)and terminal inverted repeats (TIR)[10,11].In plant,MITEs are divided into tourist-like, stowaway-like and pogo-like groups,according to the similarity of their terminal inverted repeat and target site duplication sequences[11–13].However,MITEs differ from classic DNA transposons by their small size(usually less than 500 bp),large copy number(usually hundreds or thousands),and consistency of related elements,which are the features ofretrotransposons. The small size and large copy number of MITEs lead to their frequent insertion into promoters,untranslated regions,introns,or coding sequences ofplantgenes[14–18].The proximity between MITEs and adjacent genes promotes the hypothesis that MITEs play an important role in regulating gene expression.

    Researchers continue to investigate the function of MITEs in gene regulation.Earlier studies discovered two types of rice ubiquitin2(rubq2)promoter in rice lines,with two nested MITEs(Kiddo and MDM1)inserted in IR24 and only MDM1 inserted in T309[15].The insertion of Kiddo increased the transcription rate of rubq2 in rice,but methylation of Kiddo neutralized this enhancement effect[19].MITE insertion into the coding region of an oleoyl-PC desaturase gene(ahFAD2B) resulted in a premature stop codon with a putatively truncated protein,leading to a reduced transcript level of ahFAD2B and high oleate content[18].A MITE-like insertion close to the start codon of the water-stress tolerance gene Hsdr4 in barley regulated the transcription of Hsdr4 by forming a hairpin-like secondary structure[20].The size of a repeated structure harboring a tourist-like MITE insertion in the upstream region of the SbMATE gene(multidrug and toxic compound extrusion)positively corresponded with aluminum tolerance in sorghum.The results suggested that the MITEs act as cis-acting elements to multiplicatively enhance the expression of SbMATE,explaining the positive correlation between the repeat structure and aluminumtolerance[21].Recent research in the Solanaceae showed that MITEs generated small RNA by a TE-derived siRNA pathway as described in Arabidopsis,and supported the hypothesis that a MITE-derived siRNA targeted the gene with MITE insertion in post-transcriptional silencing pathway[22].In rapeseed(Brassica napus L.),haplotype analysis revealed a tourist-like MITE insertion/deletion polymorphismin the upstream region of BnFLC.A10 distinguishing most winter types(insertion)from spring types (deletion).The polymorphism was positively associated with the difference in BnFLC.A10 expression between Tapidor(insertion) and Ningyou 7(deletion).Association analysis among two types of rapeseed showed that the MITE insertion was significantly associated with vernalization requirement[23].

    Common wheat(Triticum aestivum L.)is one of the most important food crops.Owing to its large genome size,hexaploidy,and highly repetitive DNA sequence,regulation by MITEs of wheat gene expression has been poorly investigated.Here we report the identification and transcription regulation effects ofa 276-bp tourist-like MITE insertion into the 3′-UTR of TaHSP16.9, a 16.9-kDa smallheat shock protein in common wheat.

    2.Materials and methods

    2.1.Plant materials

    Two hexaploid bread wheat genotypes,the heat-tolerantcultivar TAM107 and the heat-susceptible landrace Chinese Spring[24], were used as materials to clone the promoter,5′-UTR,coding region,and 3′-UTR of TaHSP16.9-3A.Also,17 common wheat cultivars and 23 Chinese landraces were selected for haplotype analysis of the MITE insertion(Table 1).Chinese Spring and its nullisomic-tetrasomics and ditelosomics were kindly providedby Drs.W.J.Raupp and B.S.Gill,Wheat Genetics Resource Center, Kansas State University,USA.

    2.2.Hightemperaturestresstreatments

    Seeds were surface-sterilized with 1%sodium hypochlorite for 30 min,rinsed with distilled water,and soaked in the dark overnight at roomtemperature.After germination,seeds were planted in flasks(10 seedlings per flask)containing 1%agar culture medium and grown in a climate-controlled incubator (16 h day/8 h night,22°C day/18°C night,60%humidity)[24]. Ten days later,seedlings were transferred to another incubator(16 h day/8 h night,42°C day/18°C night,80%humidity) for heat treatment at 42°C for 0.5 h,1 h,2 h,and 3 h.A total of30 seedlings in three flasks were subjected to each treatment, and three independentbiologicalreplications were prepared.At the end of each treatment,leaf samples from three flasks were immediately frozen in liquid nitrogen and stored at-80°C until total RNA extraction.

    2.3.DNAextractionandDNAamplification

    Genomic DNA was extracted from 10-day-old seedling leaves by the CTAB method[25].DNA amplification reactions were performed in a 20-μL volume containing 100 ng DNA,0.2 mmol L-1dNTPs,0.3μmol L-1of each primer,1 U Taq polymerase,and 1× assay buffer.The amplification parameters were as follows: 94°C for 5 min;40 cycles of 94°C for 45 s,53–60°C(depending on primers used)for 45 s,72°C for 1 min;and 72°C for 10 min. The PCR products were checked on 8%nondenaturing polyacrylamide gels or 2%agarose gels.

    2.4.Genomewalking

    Genomic DNA extracted from wheat genotypes TAM107 and CS was purified with phenol/chloroform after RNase (TaKaRa,Japan)treatment at 37°C for 1 h.DNA samples were evaluated by electrophoresis on a 1%agarose gel inTris-acetate ethylenediaminetetraacetic acid(TAE)buffer containing ethidiumbromide(0.5μg mL-1)for DNAintegrity and quantified by spectrophotometry.A genome walker library was constructed using the Genome Walker Universal Kit(Clontech, Japan)according to the manufacturer's protocol.The cycling conditions were as follows:94°Cfor 3 min;7 or 5 cycles of 94°C for 25 s,72°Cfor 3 min;32 or 25 cycles of94°Cfor 25 s,67°Cfor 3 min;with a final extension of 67°C for 7 min.

    Table 1–Common wheat cultivars and landraces used for MITE haplotype analysis.

    2.5.RNAextractionandreversetranscription

    Three sHSP-W(without MITE insertion)and three sHSP-M (with MITE insertion)cultivars or landraces were randomly chosen and subjected to heat treatment and total RNA was extracted from 10-day-old seedlings using TRIzol reagent (Tiangen,Beijing)according to the manufacturer's instructions.Total RNA samples were treated with DNase I(Promega, USA)at 37°C for 1 h and subjected to phenol/chloroform extraction to eliminate residual DNA.RNA was precipitated with 0.3 mol L-1NaAc(pH 5.2)and two volumes ofethanol,collected by centrifugation(12,000×g,15 min at 4°C).RNA concentration was determined by measuring absorbance at 260 nm.Firststrand cDNA was synthesized from 2μg of total RNA using (dT)18primer with MMLV reverse transcriptase(Promega,USA) following the manufacturer's instructions.The reverse transcription reaction conditions were as follows:37°C for 60 min, 95°C for 5 min.The product of reverse transcription was examined by amplifying Tabeta-actin(300 bp),which was used as the endogenous control in semi-quantitative PCR.

    2.6.Quantitativereal-timePCR

    Quantitative real-time PCR was performed on a CFX96 realtime system(Bio-Rad,USA)using SYBR premix Ex Taq mixture (TaKaRa,Japan)with cycle conditions as follows:95°C for 5 min;38 cycles of 95°C for 10 s,56°C for 10 s,72°C for 20 s; melt curve from 65°C to 90°C,increment 0.3°C for 0.03 s, plate read.Allreactions were run in triplicate and included no template and no reverse transcription controls.Quantification results were expressed in terms of the cycle threshold(CT) value according to the baseline adjusted to 0.04.The comparative CT method(PE Applied Biosystems,USA)was used to quantify relative gene expression compared with Tabeta-actin (120 bp).Briefly,the CT values were averaged for each triplicate.Differences between the mean CTvalues of specific genes and those of Tabeta-actin were calculated as=In the final results,the relative expression levels were determined by the 2–ΔCtmethod.Statistical significance was tested using Student's t test(P<0.05)[25].Each PCR product was evaluated in at least two independent experiments.The primers used for semiquantitative PCR and quantitative real-time PCR are listed in Table 2.

    3.Results

    3.1.IdentificationofaMITEinsertioninthe3′-UTRofTaHSP16.9incommonwheat

    A 276-bp tourist-like MITE insertion was identified in the 3′-UTR of a small heat shock protein gene,TaHSP16.9,in wheat during annotation of the TaHSP16.9 sequence from a public database.Two haplotypes,sHSP-W(wild type without MITE insertion)and sHSP-M(mutant with MITE insertion), were found in public NCBI wheat EST data sets and then were confirmed in wheat germplasm by specific primers (CJD/MITER1 and GSP3/MIDE)flanking the MITE(Table 2; Fig.1).A set of common wheat cultivars and landraces werethen selected for MITE insertion polymorphism analysis.The sHSP-Mhaplotype was detected in 5 of 23 wheat landraces and 10 of17 wheatcultivars.Interestingly,the MITE insertion was present in a heat-tolerant wheat cultivar,TAM107,but absent from a heat-sensitive wheat landrace,Chinese Spring (Table 1).

    Table 2–Primers used for semiquantitative PCR,quantitative real-time PCR,chromosome assignment,and haplotype analysis.

    The chromosomal location of TaHSP16.9 was determined using nullitetrasomic and ditelosomic lines of Chinese Spring. TaHSP16.9 was assigned to chromosome 3AL(Fig.2).

    3.2.GenomicstructureofTaHSP16.9-3AbetweenTAM107 andChineseSpring

    The promoter,5′-UTR,coding sequences,and 3′-UTR of Ta HSP16.9-3A were amplified from genomic DNAof TAM107 and Chinese Spring by genome walking.TaHSP16.9-3A is a single-exon gene without introns.Two SNPs(G/C and A/G) in the coding region,27 SNPs in the promoter region,and a 276-bp MITE insertion and deletion(InDel)in the 3′-UTR were observed in the TaHSP16.9-3A between TAM107 and Chinese Spring.The MITE was located 142 bp downstream of the stop codon(TGA)and upstream of the polyadenylation termination sequence(AATAAA)signal site in the 3′-UTR with typical tourist-like structure of TAA as target site duplication (TSD)and 5′-GGCTGCTCATAGTGG-3′as terminal inverted repeat(TIR)(Fig.1).

    The promoter regions of TaHSP16.9-3A between TAM107 and Chinese Spring were scanned in the PlantCARE web site(http://bioinformatics.psb.ugent.be/)to predict putative regulatory motifs,some of which were stress responsive.No significant differences in stress-response elements were identified between TAM107 and Chinese Spring(data not shown).The G/C and A/G SNPs in the coding regions resulted in two amino acid polymorphisms(N/K;E/K).The N/K amino acid polymorphisms were located in theβ-strand 5 within the conservedα-crystallin domain of Ta HSP16.9[5].

    3.3.ExpressionpatternofTaHSP16.9-3Aunderhightemperaturestress

    Semiquantitative PCR and quantitative real-time PCR analysis showed that TaHSP16.9-3A was expressed in a heat-inducible fashion and that the expression increased significantly in both TAM107 and Chinese Spring with increasing seedling exposure time to high temperature stress(42°C).However, the expression levels were higher in TAM107 than in Chinese Spring at each time point.No TaHSP16.9-3A expression was detected under the controlcondition(22°C day/18°Cnight)in either TAM107 or Chinese Spring(Fig.3).

    To test whether the regulatory effects of MITE insertion in the 3′-UTR on TaHSP16.9-3A were universal,semiquantitative PCR and quantitative real-time PCR analysis were performed to evaluate the transcription of TaHSP16.9-3A in 6 Chinese wheat landraces under 42°C heat-treatment for 2 h.The results revealed an increased transcript level of TaHSP16.9-3A in the sHSP-M haplotype(Huangmaizi,Huangxiaomai,and Jiyumai)compared with the sHSP-W haplotype(Chinese Spring,Jianermai,Jianmai)(Fig.4).

    Fig.1–Structure comparisons of the TaHSP16.9-3A gene between Chinese Spring and TAM107.

    Fig.2–Chromosome arm assessment of TasHSP16.9 in Chinese Spring homoeologous group 3 nullisomic–tetrasomics and ditelosomics.M:marker;CS:Chinese Spring;1:N3A-T3B;2:N3B-T3A;3:N3B-T3D;4:N3D-T3A;5:N3D-T3B;6:Dt3AS;7:Dt3AL;8: Dt3BL;9:Dt3DS;10:DT3DL;11:ddH2O.

    4.Discussion

    Wheat is one of the most important food crops,and is grown under various environmental conditions worldwide.High temperature is one of its key limiting factors,causing wheat yield loss and reducing wheat quality.Plants are induced to synthesize abundant low molecular weight HSPs(sHSPs)in response to heat stress,suggesting that plant HSPs play a role in tolerance to heat shock.

    In the present study,a miniature inverted-repeat transposable element(MITE)insertion in the 3′-UTR of TaHSP16.9-3A resulted in two haplotypes(sHSP-Wand sHSP-M)in wheat germplasm.An increased transcript level of TasHSP16.9-3A was detected in sHSP-M haplotypes compared with sHSP-W haplotypes under high-temperature stress.Comparative analysis of the promoter sequences revealed no recognizable cisacting stress-response elements differing between TAM107 and Chinese Spring.The nucleotide diversity in the promoter sequence may not contribute to the increased transcript level of TaHSP16.9-3A under heat stress treatment(Fig.S1).The G/C and A/G SNPs in the coding region resulted in two amino acid polymorphisms(Fig.S2).The N/K and E/K amino acid polymorphisms may influence the 3-D structure of the sHSP protein,but are unlikely to influence the transcription level.It appeared that the MITE insertion into the 3′-UTR could be a key factor enhancing the transcription of TaHSP16.9-3A.

    Previous studies showed that increased HSP gene expression was positively correlated with genetic differences in cellular thermal tolerance in winter wheat.Earlier synthesized and higher levels of sHSP mRNAs were found in the heat-tolerant wheat cultivar Mustang than in the heatsusceptible wheat cultivar Sturdy under heat stress[26,27]. We propose that MITE insertion into the 3′-UTRof TaHSP16.9-3A improves the heat tolerance of wheat genotypes by increasing the transcription of TaHSP16.9-3A under heat stress.Association analysis of heat tolerance with the MITE insertion using a diversity panelof wheat germplasm and over-expression of the TaHSP16.9-3A in heat-sensitive wheat varieties should allow testing this hypothesis.

    Fig.3–The TaHSP16.9-3A transcription pattern of TAM107 and Chinese Spring under 42°C heat treatment for different time intervals(0 h,0.5 h,1 h,2 h,3 h)detected by semiquantitative PCR(a)and quantitative real-time PCR(b).

    Fig.4–The TaHSP16.9-3A transcription pattern in Chinese wheat landraces detected by semiquantitative PCR(a)and quantitative real-time PCR(b).1:Huangmaizi;2:Huangxiaomai;3:Jiyumai;4:Chinese Spring;5:Jianermai;6:Jianmai.Heat treatment was at 42°C for 2 h.MITE insertions were present in the 3′-UTRs of Huangmaizi,Huangxiaomai,and Jiyumai but absent from Chinese Spring(CS),Jianermai,and Jianmai.

    The 3′-UTR could play an important role in gene regulation by controlling mRNA stability and translation efficiency.The 3′-UTR may act as a binding site of trans-acting factors such as proteins and miRNA.A recent study showed that the binding of miRNA23b to the 3′-UTR of mouseμ-opioid receptor(MOR1) suppressed MOR1 mRNA translation by inhibiting mRNA interaction with polysomes[28].Detailed analysis of SAURAC1 expression in Arabidopsis showed that the 3′-UTRacted as an mRNA instability determinant[29].The highly conserved DST(downstream element)sequence in the 3′-UTR may contribute to the mRNA instability and mediate mRNA decay[30].The mRNAs of heat shock genes have structures like the regions in the 3′-UTR that allow their selective translation in stressed cells by increasing mRNA stability[31].Studies have suggested that the abundance of gene expression is often regulated at the posttranscriptional levellike mRNA degradation,which is associated with mRNA stability[29,30].In this study,our results suggested that the MITE insertion enhanced the transcription of TaHSP16.9-3A mRNA in wheat lines containing MITE insertion in the 3′-UTR.Further analysis is needed to determine whether the MITE insertion improved the stability of TaHSP16.9-3A mRNA.

    In plants,recent studies have suggested that MITEs contribute to genome structure and gene regulation[16,17,32–34].TEs are usually silenced by methylation,but they may affect the expression of adjacent genes under certain stresses.In other words,various environmental stresses are associated with the activation of TEs.The contribution of the MITE(Kiddo)insertion in the promoter to the enhancement of rubq2 promoter activity in rice was neutralized by methylation of Kiddo[19].The DNA transposon mPing acts as an enhancer to up-regulate the expression ofnearby genes under cold stress regardless of the site of TE insertion in rice[16].In sorghum,MITEs may act as cis-acting elements to multiplicatively enhance expression of SbMATE to induce aluminum tolerance[21].In this study,we speculate that either heat stress activates the MITE to enhance the expression of TaHSP16.9-3A,or the MITE acts as a cis-acting element interacting with trans-acting elements to enhance the expression of TaHSP16.9-3A in wheatlines(sHSP-M),resulting in heat tolerance.

    5.Conclusions

    Annotation of TaHSP16.9 sequence from a public database revealed the presence of a tourist-like MITE insertion in the 3′-UTR of TaHSP16.9 on chromosome 3A in wheat.Haplotype analysis of a set of common wheat cultivars and landraces revealed two haplotypes,sHSP-Wand sHSP-M.Transcription analysis suggested that MITE insertion is the key factor up-regulating the expression of TaHSP16.9-3A in the sHSP-M haplotype after heat treatment at 42°C,indicating a possible role of the MITE in gene regulation in wheat.

    Acknowledgments

    This work was supported by the China Agricultural University Graduate Research and Innovation Project(kycx09019).

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.07.001.

    [1]W.Wang,B.Vinocur,O.Shoseyov,A.Altman,Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response,Trends Plant Sci.9(2004)244–252.

    [2]W.Sun,M.Van Montagu,N.Verbruggen,Smallheat shock proteins and stress tolerance in plants,Biochim.Biophys. Acta 1577(2002)1–9.

    [3]T.Mahmood,W.Safdar,B.H.Abbasi,S.S.Naqvi,An overview on the smallheatshock proteins,Afr.J.Biotechnol.9(2010)927–939.

    [4]Y.Sato,S.Yokoya,Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein,s HSP17.7,Plant Cell Rep.27(2008)329–334.

    [5]R.L.van Montfort,E.Basha,K.L.Friedrich,C.Slingsby,E. Vierling,Crystalstructure and assembly ofa eukaryotic small heat shock protein,Nat.Struct.Mol.Biol.8(2001)1025–1030.

    [6]E.Basha,G.J.Lee,B.Demeler,E.Vierling,Chaperone activity of cytosolic smallheat shock proteins from wheat,Eur.J. Biochem.271(2004)1426–1436.

    [7]B.Chénais,A.Caruso,S.Hiard,N.Casse,The impact of transposable elements on eukaryotic genomes:from genome size increase to genetic adaptation to stressfulenvironments, Gene 509(2012)7–15.

    [8]N.V.Fedoroff,Transposable elements,epigenetics,and genome evolution,Science 338(2012)758–767.

    [9]Q.H.Le,S.Wright,Z.Yu,T.Bureau,Transposon diversity in Arabidopsis thaliana,Proc.Natl.Acad.Sci.U.S.A.97(2000) 7376–7381.

    [10]C.Feschotte,N.Jiang,S.R.Wessler,Plant transposable elements: where genetics meets genomics,Nat.Rev.Genet.3(2002) 329–341.

    [11]C.Feschotte,C.Mouches,Evidence that a family of miniature inverted-repeat transposable elements(MITEs)from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon,Mol.Biol.Evol.17(2000)730–737.

    [12]T.E.Bureau,S.R.Wessler,Tourist:a large family of small inverted repeat elements frequently associated with maize genes,Plant Cell 4(1992)1283–1294.

    [13]T.E.Bureau,S.R.Wessler,Stowaway:a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants,Plant Cell 6 (1994)907–916.

    [14]Q.Zhang,J.Arbuckle,S.R.Wessler,Recent,extensive,and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize,Proc.Natl.Acad.Sci.U.S.A.97 (2000)1160–1165.

    [15]G.Yang,J.Dong,M.Chandrasekharan,T.Hall,Kiddo,a new transposable element family closely associated with rice genes,Mol.Genet.Genomics 266(2001)417–424.

    [16]K.Naito,F.Zhang,T.Tsukiyama,H.Saito,C.N.Hancock,A.O. Richardson,Y.Okumoto,T.Tanisaka,S.R.Wessler, Unexpected consequences of a sudden and massive transposon amplification on rice gene expression,Nature 461(2009) 1130–1134.

    [17]N.Oki,K.Yano,Y.Okumoto,T.Tsukiyama,M.Teraishi,T. Tanisaka,A genome-wide view of miniature inverted-repeat transposable elements(MITEs)in rice,Oryza sativa ssp. japonica,Genes Genet.Syst.83(2008)321–329.

    [18]M.Patel,S.Jung,K.Moore,G.Powell,C.Ainsworth,A.Abbott, High-oleate peanut mutants result from a MITE insertion into the FAD2 gene,Theor.Appl.Genet.108(2004)1492–1502.

    [19]G.Yang,Y.H.Lee,Y.Jiang,X.Shi,S.Kertbundit,T.C.Hall,A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter,Plant Cell 17(2005)1559–1568.

    [20]T.Suprunova,T.Krugman,A.Distelfeld,T.Fahima,E.Nevo, A.Korol,Identification of a novel gene(Hsdr4)involved in water-stress tolerance in wild barley,Plant Mol.Biol.64(2007) 17–34.

    [21]J.V.Magalhaes,J.Liu,C.T.Guimaraes,U.G.Lana,V.M.Alves, Y.H.Wang,R.E.Schaffert,O.A.Hoekenga,M.A.Pineros,J.E. Shaff,A gene in the multidrug and toxic compound extrusion (MATE)family confers aluminum tolerance in sorghum,Nat. Genet.39(2007)1156–1161.

    [22]H.Kuang,C.Padmanabhan,F.Li,A.Kamei,P.B.Bhaskar,S. Ouyang,J.Jiang,C.R.Buell,B.Baker,Identification of miniature inverted-repeat transposable elements(MITEs) and biogenesis of their siRNAs in the Solanaceae:new functional implications for MITEs,Genome Res.19(2009) 42–56.

    [23]J.Hou,Y.Long,H.Raman,X.Zou,J.Wang,S.Dai,Q.Xiao,C. Li,L.Fan,B.Liu,A tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.),BMCPlant Biol.12 (2012)238–250.

    [24]D.Qin,H.Wu,H.Peng,Y.Yao,Z.Ni,Z.Li,C.Zhou,Q.Sun, Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat(Triticum aestivum L.)by using wheat genome array,BMC Genomics 9(2008)432–450.

    [25]J.Li,G.Guo,W.Guo,G.Guo,D.Tong,Z.Ni,Q.Sun,Y.Yao, miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize(Zea mays L.),BMC Plant Biol.12(2012) 220–233.

    [26]M.Krishnan,H.T.Nguyen,J.J.Burke,Heat shock protein synthesis and thermaltolerance in wheat,Plant Physiol.90 (1989)140–145.

    [27]J.Weng,H.Nguyen,Differences in the heat-shock response between thermotolerant and thermosusceptible cultivars of hexaploid wheat,Theor.Appl.Genet.84(1992)941–946.

    [28]Q.Wu,P.Y.Law,L.N.Wei,H.H.Loh,Post-transcriptional regulation of mouseμopioid receptor(MOR1)via its 3′untranslated region:a role for micro RNA23b,J.Fed.Am.Soc. Exp.Biol.22(2008)4085–4095.

    [29]P.Gil,P.J.Green,Multiple regions of the Arabidopsis SAUR-AC1 gene controltranscript abundance:the 3′untranslated region functions as an mRNA instability determinant,J.Eur.Mol. Biol.Organ.15(1996)1678–1686.

    [30]T.C.Newman,M.Ohme Takagi,C.B.Taylor,P.J.Green,DST sequences,highly conserved among plant SAUR genes,target reporter transcripts for rapid decay in tobacco,Plant Cell5 (1993)701–714.

    [31]M.J.Schlesinger,Heat shock proteins,J.Biol.Chem.265(1990) 12111–12114.

    [32]M.J.Han,Y.H.Shen,Y.H.Gao,L.Y.Chen,Z.H.Xiang,Z. Zhang,Burst expansion,distribution and diversification of MITEs in the silkworm genome,BMC Genomics 11(2010) 520–531.

    [33]C.Lu,J.Chen,Y.Zhang,Q.Hu,W.Su,H.Kuang,Miniature inverted–repeat transposable elements(MITEs)have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa, Mol.Biol.Evol.29(2012)1005–1017.

    [34]A.Benjak,S.Boué,A.Forneck,J.M.Casacuberta,Recent amplification and impact of MITEs on the genome of grapevine(Vitis vinifera L.),Genome Biol.Evol.1(2009)75–84.

    *Corresponding author.

    E-mail address:zhiyongliu@cau.edu.cn(Z.Liu).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2014.07.001

    2214-5141/?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.

    两个人的视频大全免费| 成人午夜精彩视频在线观看| 丰满少妇做爰视频| 国产日韩一区二区三区精品不卡 | 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频 | 国产极品粉嫩免费观看在线 | 天美传媒精品一区二区| 天天操日日干夜夜撸| 亚洲精品一二三| 亚洲不卡免费看| 99热这里只有是精品在线观看| 国产免费一区二区三区四区乱码| 人人澡人人妻人| 大码成人一级视频| 国产黄片美女视频| 国产又色又爽无遮挡免| 久久狼人影院| 亚洲人成网站在线播| 高清欧美精品videossex| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人看| 久久免费观看电影| av有码第一页| 人妻 亚洲 视频| 少妇的逼水好多| 97在线人人人人妻| 99热全是精品| 亚洲精品国产av成人精品| 少妇裸体淫交视频免费看高清| 日韩三级伦理在线观看| 精品久久久久久电影网| 亚洲精品久久久久久婷婷小说| 午夜福利在线观看免费完整高清在| 久久这里有精品视频免费| 妹子高潮喷水视频| av国产久精品久网站免费入址| 免费大片18禁| 精品久久久久久久久av| 午夜影院在线不卡| 少妇 在线观看| 人妻人人澡人人爽人人| 午夜福利视频精品| 校园人妻丝袜中文字幕| 免费观看性生交大片5| 亚州av有码| 亚洲精品日韩av片在线观看| 男的添女的下面高潮视频| 黄色日韩在线| 人妻一区二区av| 成人午夜精彩视频在线观看| 国产亚洲av片在线观看秒播厂| 久久人人爽人人片av| 午夜91福利影院| 久久午夜综合久久蜜桃| 色婷婷av一区二区三区视频| 国产极品天堂在线| 亚洲av欧美aⅴ国产| 高清黄色对白视频在线免费看 | 色吧在线观看| 亚洲欧美成人综合另类久久久| a级毛片在线看网站| 成人毛片60女人毛片免费| 免费观看av网站的网址| 全区人妻精品视频| 国产日韩欧美亚洲二区| 99热6这里只有精品| 久久 成人 亚洲| 久久人人爽av亚洲精品天堂| 一本—道久久a久久精品蜜桃钙片| 国产精品偷伦视频观看了| 欧美三级亚洲精品| 老司机影院毛片| 五月开心婷婷网| 看免费成人av毛片| 国产成人午夜福利电影在线观看| 日日啪夜夜爽| 久久久久久人妻| 天堂俺去俺来也www色官网| 男人和女人高潮做爰伦理| 少妇猛男粗大的猛烈进出视频| 91久久精品国产一区二区成人| 日日爽夜夜爽网站| 一区二区三区免费毛片| 国产精品久久久久久av不卡| 国产片特级美女逼逼视频| 久久国内精品自在自线图片| av卡一久久| 国模一区二区三区四区视频| 18禁在线无遮挡免费观看视频| 国产高清有码在线观看视频| 美女xxoo啪啪120秒动态图| 校园人妻丝袜中文字幕| 日韩av免费高清视频| 久久久久视频综合| 精品久久久久久电影网| 中文欧美无线码| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 免费播放大片免费观看视频在线观看| 欧美日韩在线观看h| 亚洲av中文av极速乱| 亚洲一区二区三区欧美精品| 中文字幕人妻丝袜制服| 免费观看在线日韩| 日本黄大片高清| 欧美三级亚洲精品| 人人妻人人澡人人爽人人夜夜| 亚洲,欧美,日韩| 内射极品少妇av片p| 97超碰精品成人国产| 日韩成人伦理影院| 国产精品熟女久久久久浪| 国产色婷婷99| 乱码一卡2卡4卡精品| 国产一区有黄有色的免费视频| 韩国高清视频一区二区三区| 久久国产乱子免费精品| 成人综合一区亚洲| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 欧美精品亚洲一区二区| 欧美 亚洲 国产 日韩一| 毛片一级片免费看久久久久| 好男人视频免费观看在线| 国产高清有码在线观看视频| 国产在视频线精品| 免费观看的影片在线观看| 色婷婷久久久亚洲欧美| 乱系列少妇在线播放| 人妻系列 视频| 久久久久久久大尺度免费视频| 纯流量卡能插随身wifi吗| 日韩一区二区三区影片| 狂野欧美白嫩少妇大欣赏| 最近2019中文字幕mv第一页| 中文字幕制服av| 亚洲图色成人| 一级爰片在线观看| 中国美白少妇内射xxxbb| 高清午夜精品一区二区三区| 黄色日韩在线| 女性生殖器流出的白浆| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 久久久午夜欧美精品| av福利片在线| 午夜激情久久久久久久| 久久午夜综合久久蜜桃| 日韩欧美精品免费久久| 亚洲人成网站在线播| 久久精品熟女亚洲av麻豆精品| 人人妻人人看人人澡| 久久精品国产亚洲av涩爱| 亚洲成色77777| 国产成人精品无人区| 婷婷色麻豆天堂久久| 免费观看在线日韩| 中文天堂在线官网| 国产午夜精品久久久久久一区二区三区| 日韩一本色道免费dvd| 男女啪啪激烈高潮av片| 亚洲欧美精品专区久久| 精品久久久久久电影网| 中文精品一卡2卡3卡4更新| 国产欧美另类精品又又久久亚洲欧美| 亚洲av福利一区| 国产精品女同一区二区软件| 亚洲综合精品二区| 午夜福利视频精品| 久久综合国产亚洲精品| 色哟哟·www| 亚洲一级一片aⅴ在线观看| 欧美另类一区| 久久97久久精品| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美清纯卡通| 丝袜脚勾引网站| 欧美成人精品欧美一级黄| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 日韩在线高清观看一区二区三区| 国产精品99久久久久久久久| 精品视频人人做人人爽| 久久久久久久亚洲中文字幕| 免费看不卡的av| 国产精品一区二区三区四区免费观看| 午夜福利在线观看免费完整高清在| 中文字幕人妻丝袜制服| 在线观看免费日韩欧美大片 | videossex国产| 国产精品久久久久久av不卡| 汤姆久久久久久久影院中文字幕| 久久精品国产亚洲av涩爱| 内射极品少妇av片p| 国产男女超爽视频在线观看| 高清黄色对白视频在线免费看 | 国语对白做爰xxxⅹ性视频网站| 在线观看美女被高潮喷水网站| 国产综合精华液| 9色porny在线观看| 国精品久久久久久国模美| 2021少妇久久久久久久久久久| 久久精品夜色国产| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 新久久久久国产一级毛片| 国产欧美日韩一区二区三区在线 | 欧美日韩av久久| 亚洲成人一二三区av| 国产一级毛片在线| 久久国产精品男人的天堂亚洲 | 26uuu在线亚洲综合色| 最新中文字幕久久久久| 少妇丰满av| 国产欧美另类精品又又久久亚洲欧美| 男女边吃奶边做爰视频| 人人妻人人添人人爽欧美一区卜| 中文字幕精品免费在线观看视频 | www.av在线官网国产| 97超碰精品成人国产| a级片在线免费高清观看视频| 夜夜看夜夜爽夜夜摸| 国产精品无大码| av免费在线看不卡| 青春草亚洲视频在线观看| 黄色毛片三级朝国网站 | 中国美白少妇内射xxxbb| 欧美老熟妇乱子伦牲交| 麻豆成人av视频| .国产精品久久| 亚洲精品日韩在线中文字幕| 99久久精品热视频| 亚洲欧洲精品一区二区精品久久久 | 十八禁网站网址无遮挡 | 青青草视频在线视频观看| 免费观看的影片在线观看| 性色av一级| 日本91视频免费播放| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 国产亚洲5aaaaa淫片| 亚洲精品乱久久久久久| 久久人人爽av亚洲精品天堂| 91精品伊人久久大香线蕉| 最后的刺客免费高清国语| 亚洲综合精品二区| 久热久热在线精品观看| a级一级毛片免费在线观看| 欧美最新免费一区二区三区| 这个男人来自地球电影免费观看 | 久久国内精品自在自线图片| 妹子高潮喷水视频| 久久久精品免费免费高清| av.在线天堂| 日韩伦理黄色片| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 又爽又黄a免费视频| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 日韩人妻高清精品专区| 黄色一级大片看看| 免费观看在线日韩| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 国产乱来视频区| 久久久久久人妻| 国产精品99久久久久久久久| 在线看a的网站| 亚洲欧美成人综合另类久久久| 午夜久久久在线观看| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 日韩一区二区视频免费看| 老司机影院毛片| 中文欧美无线码| 天堂8中文在线网| 欧美3d第一页| 人妻制服诱惑在线中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 亚洲在久久综合| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 嘟嘟电影网在线观看| 秋霞伦理黄片| 男女免费视频国产| 久久久国产一区二区| 一级毛片 在线播放| 男女边吃奶边做爰视频| 国产 精品1| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 如日韩欧美国产精品一区二区三区 | 好男人视频免费观看在线| 狠狠精品人妻久久久久久综合| 夜夜爽夜夜爽视频| 久久久午夜欧美精品| 国产亚洲最大av| 国产乱来视频区| 插逼视频在线观看| 激情五月婷婷亚洲| 妹子高潮喷水视频| 欧美变态另类bdsm刘玥| 日韩欧美 国产精品| 天堂8中文在线网| 日韩一区二区三区影片| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添av毛片| 国产极品天堂在线| 视频中文字幕在线观看| 成人二区视频| 久久这里有精品视频免费| 亚洲激情五月婷婷啪啪| 国产国拍精品亚洲av在线观看| av不卡在线播放| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 乱码一卡2卡4卡精品| 黄色日韩在线| 中文字幕人妻丝袜制服| 伊人亚洲综合成人网| 久久99一区二区三区| 美女主播在线视频| 青青草视频在线视频观看| 亚洲精品第二区| 久久久精品免费免费高清| 两个人的视频大全免费| 777米奇影视久久| 高清欧美精品videossex| 久久久久久久久久久丰满| 国产成人午夜福利电影在线观看| 国产极品天堂在线| 久久久久视频综合| 亚洲婷婷狠狠爱综合网| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 亚洲av.av天堂| 性色avwww在线观看| 日本欧美视频一区| 国产成人精品无人区| 精品久久国产蜜桃| 欧美日韩av久久| 精品一区二区三卡| 午夜日本视频在线| 国产精品一区二区在线不卡| 曰老女人黄片| 国产淫语在线视频| 边亲边吃奶的免费视频| 一边亲一边摸免费视频| 国产亚洲精品久久久com| 在线观看一区二区三区激情| 国产熟女欧美一区二区| 蜜臀久久99精品久久宅男| 欧美另类一区| 精品99又大又爽又粗少妇毛片| 插逼视频在线观看| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 精品亚洲成国产av| 九九在线视频观看精品| 亚洲国产精品专区欧美| 一区二区三区免费毛片| 国产亚洲精品久久久com| 国产色婷婷99| 边亲边吃奶的免费视频| 国产精品三级大全| 国产成人aa在线观看| 在线观看一区二区三区激情| 国产免费福利视频在线观看| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 美女中出高潮动态图| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 欧美日韩av久久| 一级毛片aaaaaa免费看小| 看十八女毛片水多多多| av福利片在线| 男男h啪啪无遮挡| 新久久久久国产一级毛片| 亚洲电影在线观看av| 国产成人精品婷婷| 狂野欧美白嫩少妇大欣赏| 中文资源天堂在线| 国产真实伦视频高清在线观看| 视频中文字幕在线观看| 中文字幕制服av| h日本视频在线播放| av福利片在线| 18禁在线无遮挡免费观看视频| 丁香六月天网| 久久人妻熟女aⅴ| 少妇人妻 视频| 国产在视频线精品| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看 | 色视频在线一区二区三区| 久久久久久久国产电影| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 国产色婷婷99| 边亲边吃奶的免费视频| 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放| 亚州av有码| 99热6这里只有精品| 大陆偷拍与自拍| 亚洲情色 制服丝袜| 免费少妇av软件| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 亚洲欧洲精品一区二区精品久久久 | av卡一久久| 久久久久久人妻| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| 久久婷婷青草| 七月丁香在线播放| 嘟嘟电影网在线观看| 久久国产精品大桥未久av | 中文字幕制服av| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 日本91视频免费播放| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区 | 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 国产精品一区www在线观看| 亚洲在久久综合| 在线观看三级黄色| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品一区二区| 在线观看免费日韩欧美大片 | 色视频在线一区二区三区| 老女人水多毛片| 亚洲欧美成人综合另类久久久| 简卡轻食公司| 精品人妻熟女毛片av久久网站| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 国产一区二区在线观看日韩| 国产精品久久久久成人av| 久久av网站| 男女边吃奶边做爰视频| tube8黄色片| 少妇人妻久久综合中文| 久久99热6这里只有精品| 老司机影院毛片| 免费大片18禁| 中文字幕久久专区| 观看av在线不卡| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看| 欧美97在线视频| 久久av网站| 精品午夜福利在线看| 国产视频内射| 插逼视频在线观看| 人人妻人人添人人爽欧美一区卜| 午夜影院在线不卡| 亚洲熟女精品中文字幕| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 在线观看三级黄色| 中文字幕亚洲精品专区| 亚洲精品乱码久久久久久按摩| 一本一本综合久久| h日本视频在线播放| 日韩成人av中文字幕在线观看| 99re6热这里在线精品视频| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 黑人高潮一二区| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 一本一本综合久久| 老司机影院毛片| 国产欧美日韩精品一区二区| 日本色播在线视频| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 精品人妻偷拍中文字幕| 我要看黄色一级片免费的| 看十八女毛片水多多多| 搡老乐熟女国产| 欧美精品高潮呻吟av久久| 日本vs欧美在线观看视频 | 国产欧美亚洲国产| 亚洲精品国产成人久久av| 亚洲av成人精品一区久久| 少妇被粗大猛烈的视频| 欧美日韩av久久| 欧美区成人在线视频| 亚洲色图综合在线观看| 午夜免费男女啪啪视频观看| 桃花免费在线播放| 欧美日韩av久久| 99精国产麻豆久久婷婷| 人人澡人人妻人| 美女中出高潮动态图| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放 | 曰老女人黄片| 人妻夜夜爽99麻豆av| av.在线天堂| 久久久国产一区二区| 日本欧美视频一区| 各种免费的搞黄视频| av线在线观看网站| 国产精品秋霞免费鲁丝片| 性色av一级| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 我的老师免费观看完整版| 高清欧美精品videossex| 欧美三级亚洲精品| av卡一久久| 黄色日韩在线| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 男男h啪啪无遮挡| 国产成人freesex在线| 一级二级三级毛片免费看| 成人午夜精彩视频在线观看| 国产亚洲欧美精品永久| 免费人成在线观看视频色| 国产精品三级大全| 日韩视频在线欧美| 亚洲自偷自拍三级| 精品亚洲成a人片在线观看| 99久久中文字幕三级久久日本| 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 夜夜爽夜夜爽视频| 亚洲自偷自拍三级| av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| 中文字幕亚洲精品专区| 美女主播在线视频| 晚上一个人看的免费电影| 日本午夜av视频| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 伊人久久国产一区二区| 国产成人91sexporn| 99久久人妻综合| 成人国产麻豆网| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 国产一级毛片在线| av免费观看日本| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| av线在线观看网站| 一级毛片 在线播放| 中文字幕久久专区| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡 | 日韩欧美精品免费久久| 全区人妻精品视频| 亚洲国产精品成人久久小说| 国产亚洲5aaaaa淫片| 国产精品久久久久久久久免| 国产熟女午夜一区二区三区 | 色视频www国产| av播播在线观看一区| 国产精品久久久久久精品古装| 日本色播在线视频| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 黄色欧美视频在线观看| 黑人猛操日本美女一级片| 97超碰精品成人国产| 青青草视频在线视频观看| 成年人免费黄色播放视频 | 免费看av在线观看网站| 亚洲欧美成人综合另类久久久| 日日啪夜夜爽|