• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲烷部分氧化過程中強制振蕩的動力學Monte Carlo模擬

    2014-02-18 12:06:58任秀彬周安寧章結(jié)兵
    物理化學學報 2014年11期
    關(guān)鍵詞:化工學院物理化學西安

    任秀彬 周安寧 章結(jié)兵

    (西安科技大學化學與化工學院,西安710054)

    1 Introduction

    The oxidation of methane on metal catalysts can result in partial oxidation to syngas(CO and H2),which is mostly used for synthesis of chemical materials,for example methanol.It has been reported that the catalytic oxidation of methane exhibits kinetic oscillations in a variety of catalysts including palladium,nickel,cobalt,and nickel/chromium alloy.1The analysis of oscillatory behavior can present valuable information about the intrinsic mechanisms of catalytic reactions.Besides,it is practical to use oscillations to avoid dangerous oscillatory state of reactors,or bring better catalytic performance in some cases.For instance the utilization of pressure cycling is targeted at changing kinetic oscillations,which results in high conversion rate.2

    To interpret this complex dynamics in partial oxidation of methane under Ni catalysts,both experimental studies and simulations have been proposed.With experimental studies,the oscillations over Ni foam,3wire and foil,4,5nickel/chromium alloy,6-9and supported nickel catalyst10have been investigated.With simulations,Slinko11and Lashina12et al.developed continuous mathematical models for describing the oscillatory behavior during methane partial oxidation in isothermal and nonisothermal conditions,respectively.In our previous studies,13-17the oscillations during partial oxidation of methane have been surveyed by Monte Carlo(MC)simulations with 12-and 18-step Langmuir-Hinshelwood(LH)mechanism and the formation and removal of nickel oxide under isothermal and nonisothermal conditions,and the formation mechanism of reaction rate oscillations has also been discussed in detail.In all the studies,it is generally suggested that the oscillations over Ni catalysts originate from the repetitive cycles of oxidation and reduction of the metal surface.

    After the fact of mechanism has been clarified,the next goal is to control the kinetics on the purpose of avoiding dangerous oscillatory state or bringing about better catalytic performance and high conversion rate.Practically,a large number of researches have been focused on improving the conversion rate of methane to syngas,such as catalytic oxidation of methane on special catalysts in high pressure or high temperature.18-20In earlier studies,it has also been shown that forced composition cycling of the feed to catalytic reactions can lead to significant dynamic change and rate enhancement for the platinum catalyzed CO+N2O reaction,21and CO+O2reaction.22How does the composition cycling of feed influence the dynamics and conversion during partial oxidation of methane on catalysts?This paper studies the impact of forced composition cycling of the feed on the dynamics and conversion in methane oxidation to CO and H2by using kinetic MC simulations.

    2 MC model

    The partial oxidation of methane on Ni catalysts follows the Langmuir-Hinshelwood mechanism.Because the formation of CO2and H2O may be ruled out in some circumstances,in the simulation the main products(CO and H2)are only considered.The detailed 12 step elementary reactions have been given and summarized in Table 1.

    In the MC model,the catalyst surface is represented by a twodimensional square lattice ofL×Lsites with periodic boundary conditions.CH4adsorption occurs on an empty site while O2adsorption on a pair of nearest-neighbor(nn)empty sites.CH4desorption and nickel oxide formation are treated as first-order processes.The sum of rate constants for O desorption,LH step(reaction between adsorbed C and O),and oxide formation are taken as a normalized constant.Probability(pi)for each reaction stepiis drawn from the ratio of the reaction rate constant(ki)to the sum of above three rate constants.That is,the probabilitypifor each event is,

    Table 1 Elementary steps

    Especially,thepifor steps 3,4,5,6,10,is considered as being equal to 1 because those steps can proceed completely.Adsorbed CH4,O,and H species are allowed to diffuse to an empty nn site.

    A dimensionless parameterpreais used to characterize the relative rates of reaction and diffusion,and the rates of the reaction and diffusion processes are considered to be proportional topreaand 1-prea,respectively.The MC algorithm is shown in the following:

    (1)A random numberχ(0<χ<1)is firstly generated.The reaction trial is executed withχprea.

    (2)For a diffusion trial,if the randomly selected site is occupied by adsorbed CH4,O,or H,and a randomly selected nn site is empty,the particle jumps to the selected nn site.

    (3)For a reaction trial,a lattice site is randomly selected and a random numberχ1(0<χ1<1)is used to determine a reaction event.

    (i)If the selected site is empty,CH4or O2adsorption can occur forχ1

    (ii)If the selected site is occupied by adsorbed CH4,CH4desorption or dissociation can occur whenχ1

    (iii)If the selected site is occupied by CHx(x=1-3),the trial of CHxdissociation is considered to be successful if the randomly selected nn site is empty.

    (iv)If the selected site is occupied by C,one of the nn sites is chosen at random.If the nn site is occupied by nickel oxide(Ox),the reaction can occur with the probabilityp12.

    (v)If the selected site is occupied by O,O2desorption,formation of NiO or reaction with C can occur forχ1

    (vi)If the selected site is occupied by H,one of the nn sites is chosen at random.If the nn site is also occupied by H,a gaseous H2molecule is released.

    (4)CH4and O2adsorption probabilities(p1andp7)have been changed to zero in a fixed period and width periodically.

    The MC simulation starts from a clean surface,and the MC step(MCS)is employed to represent the reaction time.One MCS is defined asL×Lattempts of the adsorption-reaction events.23,24The reaction rate is determined by the number of produced CO or H2molecules per lattice site in a MCS.The average of produced CO or H2molecules over 50 MCS is used to calculate the reaction rate.

    3 Results and discussion

    It should be mentioned that the simulations are also carried out in the lattice sizes of 100 and 400 to understand the effect of lattice size on the results.The results show that when the lattice size is larger than or equal to 200×200,the oscillatory kinetics has no obvious change.Therefore,all simulations are performed on a square lattice of 200×200 sites.The simulation parameters are executed forprea=0.01,p1=0.009,p2=0.01,p7=0.01,p8=0.001,p11=0.002,andp12=0.001.14

    Autonomous oscillations are shown in Fig.1.From the figure,the coverage of empty sites,C,O,Ox and formation rates of CO and H2all exhibit well-developed oscillations.It is found that the transformation of the dominant reaction(from reaction of C and O to the reaction of C and Ox)results in the periodic oscillations of the reaction kinetics,while the oxidation and reduction of nickel surface play an important role in the transformation.13It can also be seen that those self-sustained oscillations have a relatively fixed period.Therefore,the average periodThas been calculated.

    Composition cycling of feed is used for external forcing of the system.In our previous studies,the reaction rate constant for CH4and O2can be estimated by

    whereJistands for the impinging constant,Pithe partial pressure,andSithe sticking coefficient.Then,the probabilities for CH4and O2adsorption(p1andp7)are taken by calculating the ratio of the reaction rate constants to normalized constant.Therefore,we can easily see that the parameters ofp1andp7are proportional to the concentration(partial pressure)of CH4and O2,respectively.The paper proposes that composition cycling of feed can be easily achieved by changing the adsorption probabilities ofp1andp7periodically.In the simulation,the forcing width is selected asT/5,whereTis the average period of autonomous oscillations,and the results of forced oscillations for different forcing period(T/3,T/2,T,1.3T,1.5T,and 2T)have been shown from Fig.2 to Fig.7.

    In order to determine whether the forced oscillations are random,chaotic or periodic,the chaotic attractor is firstly calculated by using time delay method and the correlation dimension algorithm.25,26The one-dimensional time seriesu(tk)(k=0,1,…,M)measured from surface coverage is extended tom-dimensional phase spaceV(tn)(n=0,1,…,N),whereMandNare the number of data points,mis the dimension of phase space.Then the correlation dimensionD(m)can be calculated by correlation integralC(r,m).

    whereτis the delay time,ris the scaling length,θis the Hevisaide function.The correlation dimensionD(m)is not increased untilmis up tomc,thenD(mc)is the chaotic attractor,wheremcis saturation dimension of phase space.27The calculations are performed utilizing FORTRAN software and the chaotic attractors for forced oscillations are given in Table 2.

    Fig.1 Autonomous oscillations of coverages of C,O,Ox,empty sites and formation rates of CO and H2

    Fig.2 Forced oscillations with the forcing period of T/3 and forcing width of T/5

    It is reported that if the chaotic attractorD(mc)is equal to 1,it is periodic oscillation,and if the chaotic attractorD(mc)is equal to 2,it is quasi-periodic oscillation.28WhenD(mc)is greater than 2,and is the fraction,the oscillation is chaotic.FromTable 2 it can be seen that the chaotic attractors of forced oscillations are 1-2,which means that the oscillations with forcing periods ofT/3,T/2,T,and 2Tare periodic oscillations,and the oscillations with forcing periods of 1.3Tand 2Tare quasi-periodic oscillations.

    In Fig.2,with the forcing period ofT/3,though the chaotic attractor calculation demonstrates it is periodic oscillations,the obtained oscillations are complicated,which is mainly due to system noise.With the forcing period ofT/2(Fig.3),the oscillations show a little complicated state and the period and amplitude have changed.Compared with autonomous oscillations(Fig.1),the period of forced oscillations has reduced by half,which attributes to the transformation of nickel surface between oxidation and reduction.When the reaction begins,the surface is in the reduced state.Then the oxide formation results in the surface changing to oxidized state.Once the breakdown of feed happens,due to the main reaction of C and Ox,the surface again turns to reduced state.It is the period of changing between reduced state and oxidized state that determines the period of forced oscillations.The coverage amplitude of empty sites is slightly increasing while the coverages of C,O,and Ox are reduced by half.This can be interpreted in this way:when the reaction begins there are maximum empty sites on the surface.Methane and oxygen can be easily adsorbed and dissociated,and these processes result in the decrease of empty sites.When the breakdown of feed happens,there is no adsorption of CH4and O2.The increase of C and Ox coverages and decrease of empty sites stop,and C and Ox coverages reach their maximum or minimum respectively.Due to the main reaction of C and Ox,the coverages of C and Ox decrease.Because the reaction rate between C and Ox is very small,the extent of C and Ox decreasing is restricted,which leads to small amplitudes of C and Ox.The consumptions of adsorbed species and oxide could also bring about a larger burst of empty sites.

    Table 2 Chaotic attractors(D(mc))for different forcing conditions

    With the forcing period ofT(Fig.4),it is found that the period and amplitude have not changed obviously.Although any particular information has not been acquired from the coverages of C,O,and Ox,it can be seen from the figure that the double-peak oscillations are found in the coverage of empty sites.For the coverage of empty sites,the first peak is originated from external forcing and the second peak from the autonomous oscillations.When the breakdown of feed happens,the empty sites increase and firstly reach their maximum mainly due to the main surface reaction of adsorbed C and Ox.When the reactant concentration resumes,the adsorption of methane and oxygen becomes easier due to the large empty sites,and these processes result in the decrease of empty sites.With the adsorption of methane and oxygen,the quick reaction between adsorbed C and O leads to the empty sites increasing and again reaching its maximum.

    With the forcing periods of 1.3T(Fig.5)and 1.5T(Fig.6),the period of forced oscillations is decreased remarkably.Besides,double-peak oscillations can be found in the coverages of empty sites,C,O,and Ox.When the forcing period comes to 2T(Fig.7),it can be seen from the coverage of empty sites that in one period the breakout is single-peak,but in the next period the breakout is double-peak.

    Fig.3 Forced oscillations with the forcing period of T/2 and forcing width of T/5

    Fig.4 Forced oscillations with the forcing period of T and forcing width of T/5

    The above results show that with composition cycling of feed,not only the oscillatory behavior such as the period and amplitude could be changed,but also some complex dynamics such as double-peak oscillations can be obtained.The changing of oscillatory dynamics is considered to be related with the transition of metal from oxidized to reduced state.When the forcing of feed happens,the oxidized surface changes to partially reduced surface due to the main reaction between C and Ox.When the reactant concentration resumes,the oxide formation changes reduced surface to the partially oxidized surface.If the forcing period is less than that of autonomous oscillations,the recovery of the system after the forcing of feed is not completed up to the time when the new forcing begins,the smaller oscillatory periods and amplitudes are found.If the forcing period is longer than that of autonomous oscillations and the recovery of system is achieved adequately,the complex dynamics such as double-peak oscillations can be found.

    Fig.5 Forced oscillations with the forcing period of 1.3T and forcing width of T/5

    It has been reported that high conversion rate can be obtained in some forcing conditions.We will now concentrate on the conversion rates of forced oscillations.In the simulation,the conversion rate in different forcing conditions has been calculated.The conversion rate is defined as the ratio between CO production and amount of CH4feed.It is assumed that the amount of CH4feed in one MCS is proportional to the probability of CH4adsorption(p1)and the value isC.Then,the relative average conversion rates of forced oscillations(Xforce)and autonomous oscillations(Xauto)can be calculated as follows.

    Fig.6 Forced oscillations with the forcing period of 1.5T and forcing width of T/5

    Fig.7 Forced oscillations with the forcing period of 2T and forcing width of T/5

    Fig.8 shows conversion rate as a function of forcing period.From Fig.8 it can be seen that the mean conversion rate of forced oscillations is higher than that of the autonomously oscillating state.When the forcing periods areTand 2T,the average conversion rates drop to almost the same value the autonomous system shows.

    Effects of forced processes on the conversion rates can be realized by changing the oxidation and reduction state of catalysts.When the surface is oxidized,the operations of composition cycling of feed(with forcing periods of 1.3Tand 1.5T)make the surface be reduced mainly due to the reaction between C and Ox,which results in an obvious increasing of empty sites.On this basis,CH4and O2adsorption become much easier,and much higher conversion rate of CO can be found.When the surface is reduced,the operations of composition cycling of feed(with forcing periods ofTand 2T)result in further reduction of catalysts due to the reaction between C and Ox.Because the reaction rate of C and Ox is small,the increasing of empty sites is limited,and relative lower conversion rate of CO can be found.With the forcing periods ofT/2,both the above effects make the conversion rate reach its maximum.

    Fig.8 Relative conversion rate as a function of the forcing period

    4 Conclusions

    The kinetics of external forced oscillations during partial oxidation of methane over Ni surface was simulated by the MC method.Based on 12-step Langmuir-Hinshelwood mechanism and composition cycling of feed,kinetic oscillations in both products and coverage of surface species have been observed.The results indicate that with fixed forcing amplitude ofT/5(Tis the average period of autonomous oscillations)and alterable forcing period fromT/3 to 2T,not only the period and amplitude change obviously,but also the kinetic oscillations show double-peak behavior.The mean conversion rates have also been calculated in both autonomous oscillations and forced oscillations.The results demonstrate that the forced oscillations show an increase in conversion rate.The changes of kinetics and conversion rate could attribute to the surface transition from oxidized to reduced states due to the operation of composition cycling of the feed.The results show that the kinetic oscillations could be effectively controlled by composition cycling of feed.

    (1)Zhang,X.L.;Lee,C.S.M.;Hayward,D.O.;Mingos,D.M.P.Catal.Today2005,105,283.doi:10.1016/j.cattod.2005.02.040

    (2) Svensson,P.;Jaeger,N.I.;Plath,P.J.J.Phys.Chem.1988,92,1882.doi:10.1021/j100318a037

    (3) Cimino,S.;Lisi,L.;Mancino,G.;Musiani,M.;Vázquez-Gómez,L.;Verlato,E.Int.J.Hydrog.Energy2012,37,17040.doi:10.1016/j.ijhydene.2012.08.022

    (4)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2003,86,235.doi:10.1023/A:1022672219909

    (5)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2002,83,149.doi:10.1023/A:1021069510797

    (6)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Stud.Surf.Sci.Catal.1997,110,757.doi:10.1016/S0167-2991(97)81038-5

    (7)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.;Yan,Y.B.Kinet.Catal.1999,40,405.

    (8) Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Catal.Today2004,91-92,155.

    (9)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2001,72,147.

    (10) Hu,Y.H.;Ruckenstein,E.Ind.Eng.Chem.Res.1998,37,2333.doi:10.1021/ie980027f

    (11) Slinko,M.M.;Korchak,V.N.;Peskov,N.V.Appl.Catal.A:Gen.2006,303,258.doi:10.1016/j.apcata.2006.02.010

    (12)Lashina,E.A.;Kaichev,V.V.;Chumakova,N.A.;Ustyugov,V.V.;Chumakov,G.A.;Bukhtlyrov,V.I.Kinet.Catal.2012,53,374.doi:10.1134/S0023158412030081

    (13) Ren,X.B.;Li,H.Y.;Guo,X.Y.Surf.Sci.2008,602,300.doi:10.1016/j.susc.2007.10.016

    (14)Ren,X.B.;Li,H.Y.;Guo,X.Y.Acta Phys.-Chim.Sin.2008,24,197.[任秀彬,李換英,郭向云.物理化學學報,2008,24,197.]doi:10.1016/S1872-1508(08)60009-1

    (15) Ren,X.B.;Guo,X.Y.Surf.Rev.Lett.2008,15,769.doi:10.1142/S0218625X0801213X

    (16) Ren,X.B.;Guo,X.Y.Surf.Sci.2009,603,606.doi:10.1016/j.susc.2008.12.018

    (17)Ren,X.B.;Guo,X.Y.J.Nat.Gas Chem.2011,20,503.doi:10.1016/S1003-9953(10)60216-2

    (18) Zhao,K.;He,F.;Huang,Z.;Zheng,A.Q.;Li,H.B.;Zhao,Z.L.Chin.J.Catal.2014,35,1196.[趙 坤,何 方,黃 振,鄭安慶,李海濱,趙增立.催化學報,2014,35,1196.]doi:10.1016/S1872-2067(14)60084-X

    (19) Donazzi,A.;Livio,D.;Diehm,C.;Beretta,A.;Groppi,G.;Forzatti,P.Appl.Catal.A:Gen.2014,469,52.

    (20) Nguyen,T.H.;?amacz,A.;Beaunier,P.;Czajkowska,S.;DomaDski,M.;KrztoD,A.;Le,T.V.;Djéga-Mariadassou,G.Appl.Catal.B:Environ.2014,152-153,360.

    (21) Sadhankar,R.R.;Lynch,D.T.J.Catal.1994,149,278.doi:10.1006/jcat.1994.1296

    (22)Graham,W.R.C.;Lynch,D.T.AIChE J.1990,36,1796.

    (23) Sinha,I.;Mukherjee,A.K.Chem.Phys.Lett.2012,553,30.doi:10.1016/j.cplett.2012.09.073

    (24) Liu,D.J.;Evans,J.W.Prog.Surf.Sci.2013,88,393.doi:10.1016/j.progsurf.2013.10.001

    (25) Packard,N.H.;Crutcheld,J.P.;Farmer,J.D.;Shaw,R.S.Phys.Rev.Lett.1980,45,712.doi:10.1103/PhysRevLett.45.712

    (26) Grassberger,P.;Procaccia,I.Phys.Rev.Lett.1983,50,346.doi:10.1103/PhysRevLett.50.346

    (27) Kipchatov,A.A.;Krasichkov,L.V.On Reconstruction of ChaoticAttractor from Time Series Represented as"Clusters".InDynamical Systems and Chaos;The Proceedings of the International Conference on Dynamical Systems and Chaos,Tokyo,Japan,May 23-27,1994;pp 1-4.

    (28)Guo,X.Y.;Zhong,B.;Peng,S.Y.Acta Phys.-Chim.Sin.1995,11,873.[郭向云,鐘 炳,彭少逸.物理化學學報,1995,11,873.]doi:10.3866/PKU.WHXB20080524

    猜你喜歡
    化工學院物理化學西安
    使固態(tài)化學反應100%完成的方法
    西安2021
    Oh 西安
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    《西安人的歌》突如其來?
    當代陜西(2019年6期)2019-04-17 05:04:10
    Chemical Concepts from Density Functional Theory
    追根溯源 回到西安
    视频在线观看一区二区三区| 黄色配什么色好看| 亚洲精品中文字幕在线视频| 午夜激情av网站| 免费观看性生交大片5| 国产成人精品婷婷| 久久99蜜桃精品久久| 精品国产一区二区三区久久久樱花| 少妇的逼水好多| 极品少妇高潮喷水抽搐| 曰老女人黄片| 亚洲欧美清纯卡通| 天堂8中文在线网| 久久久久久伊人网av| 日本与韩国留学比较| 亚洲第一区二区三区不卡| 久久久久久久久久成人| 日韩视频在线欧美| 晚上一个人看的免费电影| 下体分泌物呈黄色| 久久韩国三级中文字幕| av天堂久久9| 少妇的丰满在线观看| 日韩精品有码人妻一区| 只有这里有精品99| 中文天堂在线官网| 国产免费现黄频在线看| 伦精品一区二区三区| 成年女人在线观看亚洲视频| 欧美日韩亚洲高清精品| a 毛片基地| 女性被躁到高潮视频| 狂野欧美激情性bbbbbb| 久久久久国产精品人妻一区二区| 中文字幕另类日韩欧美亚洲嫩草| 国产毛片在线视频| 久久精品aⅴ一区二区三区四区 | 亚洲性久久影院| 97在线人人人人妻| 性色av一级| 亚洲国产最新在线播放| 国产精品一区二区在线不卡| 亚洲国产精品专区欧美| 国产精品一国产av| 最近最新中文字幕大全免费视频 | 考比视频在线观看| 老熟女久久久| 麻豆乱淫一区二区| 欧美 亚洲 国产 日韩一| 精品少妇久久久久久888优播| 亚洲精品色激情综合| 日本与韩国留学比较| 老司机影院毛片| 午夜福利乱码中文字幕| 纯流量卡能插随身wifi吗| 春色校园在线视频观看| 久久久久久久精品精品| 国产精品国产三级国产av玫瑰| 国产精品偷伦视频观看了| 夫妻性生交免费视频一级片| 国产精品不卡视频一区二区| 91成人精品电影| 欧美成人精品欧美一级黄| 国产精品一区www在线观看| 婷婷色综合www| 视频中文字幕在线观看| 日韩av免费高清视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品成人在线| 交换朋友夫妻互换小说| 亚洲成色77777| 久久久久久久久久成人| 国产av一区二区精品久久| 91成人精品电影| 精品99又大又爽又粗少妇毛片| a 毛片基地| 2021少妇久久久久久久久久久| 久久青草综合色| 国产视频首页在线观看| 亚洲精品色激情综合| 草草在线视频免费看| 国产黄频视频在线观看| 亚洲一码二码三码区别大吗| 99精国产麻豆久久婷婷| 高清视频免费观看一区二区| 午夜福利乱码中文字幕| 老熟女久久久| 国产日韩欧美亚洲二区| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av涩爱| 久久婷婷青草| 亚洲国产毛片av蜜桃av| 亚洲美女搞黄在线观看| 久久99热6这里只有精品| 在线 av 中文字幕| 一本久久精品| 亚洲国产最新在线播放| 精品卡一卡二卡四卡免费| 成人18禁高潮啪啪吃奶动态图| 有码 亚洲区| 777米奇影视久久| 少妇人妻久久综合中文| 国产一区二区在线观看日韩| 亚洲精品久久久久久婷婷小说| 边亲边吃奶的免费视频| 日本-黄色视频高清免费观看| 亚洲经典国产精华液单| 黄色一级大片看看| 宅男免费午夜| 少妇的逼水好多| 日韩一区二区视频免费看| 久久国产精品男人的天堂亚洲 | 伊人亚洲综合成人网| 国产女主播在线喷水免费视频网站| 国产av精品麻豆| 亚洲成人av在线免费| 在线天堂中文资源库| 99re6热这里在线精品视频| 日韩在线高清观看一区二区三区| 秋霞伦理黄片| 男人添女人高潮全过程视频| videos熟女内射| 精品亚洲乱码少妇综合久久| 久久人人爽人人片av| 久久午夜福利片| 久久午夜福利片| 久久青草综合色| 91在线精品国自产拍蜜月| 日本av手机在线免费观看| 视频中文字幕在线观看| 亚洲精品久久午夜乱码| 国产成人av激情在线播放| 久久影院123| 国产精品一区二区在线不卡| av天堂久久9| 久久综合国产亚洲精品| 制服人妻中文乱码| 久久影院123| 9色porny在线观看| 日本欧美国产在线视频| 麻豆乱淫一区二区| 18禁观看日本| 久久久久久久亚洲中文字幕| 另类亚洲欧美激情| 国产成人午夜福利电影在线观看| 国产一区二区激情短视频 | 卡戴珊不雅视频在线播放| av不卡在线播放| 水蜜桃什么品种好| 国产精品久久久久久精品古装| 成年av动漫网址| 乱码一卡2卡4卡精品| 久久这里有精品视频免费| 高清视频免费观看一区二区| 日韩熟女老妇一区二区性免费视频| 熟女电影av网| 精品熟女少妇av免费看| 亚洲精品乱码久久久久久按摩| 18在线观看网站| 少妇被粗大猛烈的视频| 99久久中文字幕三级久久日本| 日韩av免费高清视频| 亚洲欧洲精品一区二区精品久久久 | 国产欧美亚洲国产| 老司机影院毛片| 午夜福利在线观看免费完整高清在| 欧美xxⅹ黑人| 免费av不卡在线播放| 老司机影院毛片| 国产高清不卡午夜福利| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 久久免费观看电影| 日本av免费视频播放| 日韩不卡一区二区三区视频在线| 国产黄频视频在线观看| 亚洲av电影在线进入| 蜜桃在线观看..| 精品人妻一区二区三区麻豆| 伊人久久国产一区二区| 国产欧美日韩一区二区三区在线| 日韩制服丝袜自拍偷拍| 久久狼人影院| 大话2 男鬼变身卡| 日韩av不卡免费在线播放| 国产精品无大码| 久久这里只有精品19| 男女国产视频网站| 亚洲国产精品一区三区| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 国产又爽黄色视频| 亚洲,欧美精品.| 女人久久www免费人成看片| 成人毛片a级毛片在线播放| 亚洲激情五月婷婷啪啪| 日本wwww免费看| 久久久久视频综合| av一本久久久久| 大片免费播放器 马上看| 下体分泌物呈黄色| 18禁观看日本| 久久这里有精品视频免费| 亚洲久久久国产精品| 欧美日韩一区二区视频在线观看视频在线| 欧美亚洲 丝袜 人妻 在线| 日韩精品有码人妻一区| 一级毛片电影观看| 久久 成人 亚洲| 国产精品嫩草影院av在线观看| 51国产日韩欧美| 欧美成人午夜免费资源| 亚洲丝袜综合中文字幕| 黄色配什么色好看| 久久99一区二区三区| 国产精品一国产av| 大码成人一级视频| av在线播放精品| 99久国产av精品国产电影| 国产日韩欧美视频二区| 男女午夜视频在线观看 | 国产成人免费观看mmmm| 国产精品一区二区在线不卡| 9191精品国产免费久久| 这个男人来自地球电影免费观看 | 大香蕉97超碰在线| 最近的中文字幕免费完整| 国产乱人偷精品视频| 18+在线观看网站| 欧美xxⅹ黑人| 精品一区二区免费观看| av天堂久久9| 亚洲精品日本国产第一区| 一级爰片在线观看| 99精国产麻豆久久婷婷| 成人手机av| 一级片'在线观看视频| 日本爱情动作片www.在线观看| 欧美国产精品va在线观看不卡| 久久久久久人人人人人| 久久狼人影院| 国产成人精品福利久久| 亚洲欧美一区二区三区黑人 | 满18在线观看网站| 欧美人与性动交α欧美精品济南到 | 午夜激情av网站| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区视频在线观看| 看十八女毛片水多多多| 一级,二级,三级黄色视频| 又大又黄又爽视频免费| 激情五月婷婷亚洲| 午夜91福利影院| a级毛色黄片| 国产精品麻豆人妻色哟哟久久| 尾随美女入室| 大话2 男鬼变身卡| 国产熟女午夜一区二区三区| 九色成人免费人妻av| 美女福利国产在线| 秋霞在线观看毛片| 国产亚洲精品第一综合不卡 | 国产男人的电影天堂91| 免费观看性生交大片5| 欧美国产精品va在线观看不卡| 午夜精品国产一区二区电影| 亚洲精品久久成人aⅴ小说| 波野结衣二区三区在线| 久久99精品国语久久久| 亚洲av福利一区| 国产精品久久久久久av不卡| 亚洲欧美日韩另类电影网站| 乱码一卡2卡4卡精品| 18禁国产床啪视频网站| 欧美日韩一区二区视频在线观看视频在线| 欧美精品一区二区免费开放| 高清av免费在线| 国产免费视频播放在线视频| 韩国av在线不卡| 一级爰片在线观看| 女人久久www免费人成看片| 欧美亚洲 丝袜 人妻 在线| 精品午夜福利在线看| 女性被躁到高潮视频| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 日韩一本色道免费dvd| 高清av免费在线| 一区二区三区乱码不卡18| 成年av动漫网址| 国产在线视频一区二区| 街头女战士在线观看网站| 久久久久人妻精品一区果冻| 妹子高潮喷水视频| 久久精品国产亚洲av涩爱| 黄片无遮挡物在线观看| 搡老乐熟女国产| 51国产日韩欧美| 久久这里有精品视频免费| 大话2 男鬼变身卡| 国产精品国产三级国产av玫瑰| av电影中文网址| 日本91视频免费播放| 天堂中文最新版在线下载| 我的女老师完整版在线观看| 又黄又粗又硬又大视频| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 国产成人91sexporn| 丝袜美足系列| 18禁观看日本| 免费看光身美女| 亚洲一区二区三区欧美精品| 精品一区在线观看国产| 在现免费观看毛片| 一级爰片在线观看| 狠狠婷婷综合久久久久久88av| 少妇人妻 视频| 咕卡用的链子| 免费黄频网站在线观看国产| 亚洲成人av在线免费| 女人精品久久久久毛片| 美国免费a级毛片| 乱码一卡2卡4卡精品| 免费观看av网站的网址| 欧美精品国产亚洲| 黄色视频在线播放观看不卡| 亚洲精华国产精华液的使用体验| 国产黄色免费在线视频| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 波野结衣二区三区在线| av免费在线看不卡| 人妻人人澡人人爽人人| 免费黄频网站在线观看国产| 永久免费av网站大全| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 91精品三级在线观看| 美女主播在线视频| 久久精品久久精品一区二区三区| 韩国高清视频一区二区三区| 尾随美女入室| 日韩伦理黄色片| 卡戴珊不雅视频在线播放| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 国产亚洲最大av| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| av福利片在线| 亚洲成人手机| 高清在线视频一区二区三区| 国产av精品麻豆| 我的女老师完整版在线观看| 咕卡用的链子| 免费黄频网站在线观看国产| 精品熟女少妇av免费看| 日韩中文字幕视频在线看片| 亚洲国产色片| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 国产成人精品婷婷| 黄色视频在线播放观看不卡| 成人午夜精彩视频在线观看| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 黄网站色视频无遮挡免费观看| 国产精品人妻久久久久久| 精品福利永久在线观看| 国产激情久久老熟女| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级| 国产69精品久久久久777片| 亚洲性久久影院| 亚洲精品,欧美精品| 视频中文字幕在线观看| 飞空精品影院首页| 久久久国产精品麻豆| www.色视频.com| 日本欧美国产在线视频| 成年女人在线观看亚洲视频| 国产精品 国内视频| 青春草亚洲视频在线观看| 韩国av在线不卡| 99re6热这里在线精品视频| 99香蕉大伊视频| videossex国产| 又黄又爽又刺激的免费视频.| 亚洲精品aⅴ在线观看| 国产片内射在线| 欧美3d第一页| 久久久久国产网址| 国产麻豆69| 我要看黄色一级片免费的| 免费人成在线观看视频色| 亚洲av中文av极速乱| 国产1区2区3区精品| 男女无遮挡免费网站观看| 91午夜精品亚洲一区二区三区| 国产成人av激情在线播放| 国产深夜福利视频在线观看| 纵有疾风起免费观看全集完整版| 免费大片18禁| 久久精品国产鲁丝片午夜精品| 亚洲一码二码三码区别大吗| 国产综合精华液| av在线app专区| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 日本91视频免费播放| 国产永久视频网站| 欧美日韩视频高清一区二区三区二| 午夜精品国产一区二区电影| 精品熟女少妇av免费看| 制服人妻中文乱码| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 国产男女内射视频| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 欧美精品av麻豆av| 三上悠亚av全集在线观看| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区三区| 国产精品久久久久久久久免| 99精国产麻豆久久婷婷| 国产片内射在线| 一级爰片在线观看| 国产精品一国产av| 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 国产精品欧美亚洲77777| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 丰满乱子伦码专区| 中文字幕制服av| 亚洲欧美一区二区三区黑人 | 最新中文字幕久久久久| 高清欧美精品videossex| 午夜福利,免费看| 久久久久久伊人网av| 妹子高潮喷水视频| 永久网站在线| 久久99热这里只频精品6学生| 国产精品久久久av美女十八| av播播在线观看一区| 亚洲欧美一区二区三区国产| 国产免费现黄频在线看| 多毛熟女@视频| 成年av动漫网址| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 十八禁网站网址无遮挡| 欧美精品av麻豆av| 久久久国产欧美日韩av| 国产精品国产三级专区第一集| 热re99久久国产66热| 国产av一区二区精品久久| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| 欧美激情极品国产一区二区三区 | 999精品在线视频| 日本黄大片高清| 综合色丁香网| 国产精品久久久av美女十八| av播播在线观看一区| 国产在视频线精品| 久久av网站| 成人国产av品久久久| 91精品国产国语对白视频| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 久久久久网色| 看免费成人av毛片| 少妇的逼好多水| 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 日日爽夜夜爽网站| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 春色校园在线视频观看| 国产一区二区激情短视频 | 免费看不卡的av| 七月丁香在线播放| 久久久久久人人人人人| 男女啪啪激烈高潮av片| 又黄又粗又硬又大视频| 黄色配什么色好看| 亚洲国产精品一区三区| 日韩视频在线欧美| 草草在线视频免费看| 青春草国产在线视频| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 亚洲综合色惰| 欧美亚洲日本最大视频资源| 国产成人精品无人区| 毛片一级片免费看久久久久| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久| 老女人水多毛片| 99香蕉大伊视频| 韩国高清视频一区二区三区| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 久久这里只有精品19| av在线app专区| 国产一区亚洲一区在线观看| 美女中出高潮动态图| 国产精品欧美亚洲77777| 18+在线观看网站| 欧美国产精品一级二级三级| 国产又色又爽无遮挡免| 久久午夜综合久久蜜桃| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| 久久久久久久国产电影| 两性夫妻黄色片 | 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 丝袜脚勾引网站| 国产精品久久久久久久电影| 高清不卡的av网站| 熟女av电影| 一级a做视频免费观看| 日日啪夜夜爽| 少妇被粗大猛烈的视频| 三级国产精品片| 边亲边吃奶的免费视频| av电影中文网址| 亚洲中文av在线| 久久综合国产亚洲精品| 久热这里只有精品99| 精品久久蜜臀av无| 新久久久久国产一级毛片| 欧美日韩精品成人综合77777| 韩国av在线不卡| 交换朋友夫妻互换小说| 99久久精品国产国产毛片| 久久久久久久久久久免费av| 国产成人av激情在线播放| 午夜免费男女啪啪视频观看| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 日韩精品有码人妻一区| 免费看av在线观看网站| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说| 九九在线视频观看精品| 丝袜美足系列| 久久婷婷青草| 日本色播在线视频| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 国产男女内射视频| 国产又爽黄色视频| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 欧美bdsm另类| 国产精品久久久久久久久免| 91国产中文字幕| 在线亚洲精品国产二区图片欧美| 亚洲av成人精品一二三区| 久久久久久人妻| 日日撸夜夜添| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕| 欧美xxxx性猛交bbbb| 国产永久视频网站| 国产成人aa在线观看| 1024视频免费在线观看| 在线免费观看不下载黄p国产| 18在线观看网站| 性色av一级| 亚洲色图 男人天堂 中文字幕 | 一区二区日韩欧美中文字幕 | 老司机亚洲免费影院| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| av.在线天堂| 大香蕉97超碰在线| 久久99一区二区三区| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 欧美日韩av久久| 母亲3免费完整高清在线观看 | 大片电影免费在线观看免费| 精品视频人人做人人爽| √禁漫天堂资源中文www| 国产又色又爽无遮挡免| 久久午夜综合久久蜜桃| 色5月婷婷丁香| xxxhd国产人妻xxx| 伦理电影大哥的女人| 好男人视频免费观看在线| 99视频精品全部免费 在线| 国产亚洲精品久久久com| 天天操日日干夜夜撸| 亚洲精品第二区| 国产精品无大码| 久久久久久人妻|