• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of parameter estimation using the sampling-type algorithm of discrete fractional Fourier transform

    2014-02-15 06:02:07BingDENGJunbaoLUANShiqiCUI
    Defence Technology 2014年4期

    Bing DENG*,Jun-bao LUAN,Shi-qi CUI

    Department of Electronic and Information Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,Shandong,China

    Analysis of parameter estimation using the sampling-type algorithm of discrete fractional Fourier transform

    Bing DENG*,Jun-bao LUAN,Shi-qi CUI

    Department of Electronic and Information Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,Shandong,China

    Parameter estimation is analyzed using two kinds of common sampling-type DFRFT(discrete fractional Fourier transform)algorithm.A model of parameter estimation is established.The factors which infuence estimation accuracy are analyzed.And the simulation is made to verify the conclusions.From the theoretic analysis and simulation verifcation,it can be drawn that,for the estimation of chirp-rate and initial frequency,Pei's method[10]is more suitable if the absolute value of chirp-rate is small relatively;Ozaktas'method[9]is more suitable if the absolute value of chirp-rate is large relatively;and the two methods are both workable if the absolute value of chirp-rate is moderate.The scope of moderate chirp-rate can be approximately determined as[40 Hz/s,110 Hz/s].

    Parameter estimation;Chirp signal;Sampling-type DFRFT

    1.Introduction

    With the development of some related research,fractional Fourier transform(FRFT)has been widely used for signal analysis and reconstruction,signal detection and parameter estimation,flter in the transform-domain,voice analysis, image processing,neural network,mode recognition,array signal processing and radar,communication,sonar[1-7].The key factor that promotes the application of FRFT is the appearance of fast algorithm which computation burden is as considerable as FFT[8].

    Now,there are three kinds of algorithm for discrete fractional Fourier transform(DFRFT),namely sampling-type DFRFT algorithm,eigen-decomposition DFRFT algorithm, and linear-weighting DFRFT algorithm.The sampling-type DFRFT algorithm becomes the most popular algorithm by mapping N sampling values of the original function to N sampling values of its FRFT,which not only provides a perfect value accuracy in approaching continuous FRFT but also its calculation complexity is decreased to O(N log N).The sampling-type DFRFTalgorithm includes two algorithms with mostly same performance,namely Ozaktas'method[9]and Pei's method[10].Ozaktas'method has been used widely,but it requires dimensional normalization to simplify deduction. Compared with Ozaktas'method,Pei's method takes sample input and output values directly,keeping the transformation reversible by limiting input-output sample interval so that the method is more understandable[10].How to choose the two methods in practical application?Since FRFT can be regarded as chirp decomposition,and it can be used to process chirp signals,the two methods are theoretically analyzed and some simulations are made using parameter estimation of chirp signal in the paper.//dx.doi.org/10.1016/j.dt.2014.06.011

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    2.FRFT

    2.1.Defnition

    The FRFT is defned as

    where α represents the transform angle;Kα(t,u)represents the transform kernel;andndemotesan integer.(In this paper,α≠nπ).

    2.2.Discrete algorithm

    2.2.1.Ozaktas'method

    Ozaktas'method is frstly to decompose the complex integral transformation of FRFT into several simple calculation processes;a discrete convolution expression can be got after two steps of discretization,so that FFT can be used to calculate FRFT.Therefore,this method is as fast as FFT. However,the originalsignalrequiresthe dimensional normalization in this method.

    2.2.1.1.Dimensional normalization.It is assumed that a signal is compact in both time domain and frequency domain, thus it is limited between[-Δt/2,Δt/2]in the time domain, and between [-Δf/2,Δf/2]in the frequency domain. Dimensional normalization is the method that makes both the time and frequency domains dimensionless.

    Firstly,the scaling factorSis defned with time unit.Secondly,a new scaling coordinates is defned:w=t/S,v=f·S.the new coordinate system(w,v)is dimensionless.Ifthe region lengthsdomains equal the dimensionless quantityThat is to say,the two regions are both normalized to[-Δx/2,Δx/2].Finally,the normalized signal is sampled according to the sampling theorem,and the sampling interval is 1/Δx.This means that FRFT derivedfromtheOzaktas'methodistheresultafterdimensional normalization.However,the signal is not normalized in fact,so the result should be revised in the applications.

    2.2.1.2.Algorithm.According to Eq.(1),FRFT can be divided into the three steps

    Becausex(t)is the signal after dimensional normalization, its width in all fractional Fourier domains is limited between[-Δx/2,Δx/2].When the transform angle is limited in π/4≤|α|≤3π/4, the highest frequency ofg(t) is 0.5(1+|cot α|)Δx≤Δx,so the sampling interval is determined as 1/(2Δx).After deduction,we can conclude that the whole process can be expressed as

    where XαrepresentsN×1 column vector of discrete sample fromXα(u);x representsN×1 column vector of discrete sample fromx(t);Fα=DKαJ,D represents double interpolation matrix and J represents double decimation matrix [9],

    Although the deduction above can be established only when π/4≤|α|≤3π/4,the angle range can be extended to 0≤|α|≤π/4 or 3π/4≤|α|≤π if the rotating additivity of FRFT is used.

    2.2.2.Pei's method

    Unlike Ozaktas'method,Pei's method samples the input variable and output variable directly,which keeps the transform reversibility by limiting the input and output sample intervals.This method is simple and fast,for its need of only twice chirp product and one FFT.However,its disadvantage is complacency with rotating additivity partially.

    From variable substitution,Eq.(1)can be expressed as

    Firstly,the input functionx(t)with the sample interval Δtand the output functionXα(u)with the sample interval Δuare sampled,respectively.We obtain

    Substituting Eq.(7)into Eq.(8),we have

    After deduction,the conclusion can be drawn that (1)for sin α>0

    (2)for sin α<0

    AndM≥Nand Δt·Δu=should be satisfed.

    3.Theoretical analysis

    3.1.Analysis of parameter estimation model

    According to the algorithms in Section 1,Ozaktas'method is to divide FRFT into three steps,and uses dimensional normalization and double interpolation operation to realize dimension unifcation and meet Shannon sampling theorem.In contrast, Pei'smethoddiscretizestheinputandoutputsignalsdirectlyand determines thesamplinginterval based on reversibility to obtain DFRFT.In the discrete computation,Ozaktas'method only needstheinputsignalandthetransformanglewhilePei'smethod needs the sampling interval and the sample number of input and output signals in addition.It leads to some differences in parameter estimation accuracy of chirp signals.

    The basic idea of chirp signal detection and parameter estimation using FRFT is as follows[11,12]:since chirp signals present different energy concentration performances in different fractional Fourier domains,the FRFT of observed signal versus the transform angle α is calculated to obtain twodimensional distribution of signal energy on the plane(α,u); then two-dimensional search of peak values proceeds according to the determined threshold.

    Let the chirp signals(t)be

    After sampling,it becomes

    wheren=1,2,…,N,(N-1)Ts=Td;Tdis the sampling duration;andTsis the sampling period.We proceed DFRFT with the transform angle step αsin[-π/2,π/2]to form twodimensional distribution of signal energy on the plane(α,u). The peak coordinatescan be determined as(︿k,︿m),︿m∈[1,N],︿k∈[1,Nα],Nα=[π/αs]floor+1 after the twodimensional search of peak values.The symbol[·]floorindicates round-off,and(︿m,︿k)depends on the parameters μ andf0.

    Next,we take the chirp-rate μ and the initial frequencyf0for example to analyze the difference between these two methods.According to the dimensional normalization factor referred in Refs.[13,14],the estimation of μ andf0in Ozaktas' method is as follows.

    Fig.1.Peak searching with the determined step.

    wherefs=1/Ts,

    Pei's method can be used to obtain the peak coordinates)in the same way and the estimation of μ andf0is as follows:

    where︿α is defned by Eq.(15),

    From Eqs.(1)and(7),we can fnd that Ozaktas'method uses frequency as the dimension unit while Pei's method uses angular frequency,so there is the additional product factor 1/ 2π in Eq.(16).

    3.2.Analysis of parameter estimation accuracy

    Comparing Eqs.(14)and(16),we can fnd that the peak position obtained by Ozaktas'method has some relations not only with μ andf0which determine︿mand︿k,but also with the dimensional normalization factorfs/Td.

    3.2.1.Estimation accuracy of chirp-rate

    For the estimation of chirp-rate μ,the two methods both search the peak versus the transform angle α with the determined step αs.In fact,they both search the peak versus cot α,as shown in Fig.1.It can be seen from Fig.1 that the change of cot α is slow when the peak appears about α=±π/2 while the change is cliffy when the peak appears about α=0.

    In other words,with the determined step αsthe search of chirp-rate is fne around α=±π/2 but rough around α=0. This means that the estimation accuracy of chirp-rate when the peak appears about α=±π/2 is higher than that it appears about α=0.

    According to the relationship of FRFT and time-frequency distribution[15],we can fnd that the transform angle for the peak is more close to±π/2 when the absolute value of chirprate to be estimated is relatively small.

    For the search versus cot α,Ozaktas'method uses revised chirp-rate,μ⌒=μ·Td/fs,while the real chirp-rate μ is used in Pei's method.Then we can draw the conclusion as follows:

    1)Pei's method is more suitable if the absolute value of chirprate is relatively small;

    2)Ozaktas'method is more suitable if the absolute value of chirp-rate is relatively large,andfsandTdcan be changed to improve the estimation accuracy.

    Further,the relations between them are analyzed in three kinds of cases.

    We know that Pei's method is more suitable in this case from the above analysis.However,If the absolute value of revised chirp-rate is decreased by changingfsandTd,Ozaktas' method is superior to Pei's method.According to the sampling theory,there certainly existsfsandTdthat meetfs>Td,which could leads to μ⌒<μ.That is to say,Ozaktas'method seems superior to Pei's method through the choice offsandTdeven if|is small enough.

    In order to makefs>Td,we need to reduceTdor raisefs. Due to the resolution of chirp-rate being proportionate to the square ofTd,the decrease inTdprobably leads to the sampled signal segment similar to the single frequency signal segment for smallIn other words,this case maybe results in that|μ|is too small to be resolved,which goes against parameter estimation.There is no relation between the chirp-rate resolution andfs,thus the chirp-rate resolution will| no|t be affected whenfsis increased.However,due to smallthe search scope of transform angle lies in the region where the change of cot α is slow.The beneft is negligible if the peak moves towards-π/2,which brings the increase of data amount and the damage of real-time requirement.Simulation 1 in Section 4 verifes the above-mentioned analysis.

    According to the conventional Shannon sampling theorem, the sampling frequency has to be satisfed as follows

    Let μ>0 andf0=0,we can obtain

    Fig.2.The logarithmic curve of|h(α)|.

    Fig.3.The curve of the absolute value of peak position error with the optimal transform angle(fs=1 KHz,Td=1 s).

    Since the peak search via cot α corresponds to the peak search versus μ⌒=μ·Td/fsfor Ozaktas'method,and

    namely,

    obviously we can obtain

    Eq.(22)shows that αmlies in the slowly changing section near-π/2.

    The analysis above is done with the condition of μ>0, however the same conclusion can be drawn for μ<0.Thus the transform angle of FRFT,which corresponds to the revised chirp-rate,can be adjusted within the fat interval to keep the satisfying accuracy through dimensional normalization when|is large.

    In this case,it is suitable for either Ozaktas'method or Pei's method.Then how do we determine the scope of this intermediate interval?

    From Fig.1,we can fnd that cot α changes slowly within some certain interval near-π/2.In other words,the estimation accuracy of parameter is higher in this interval.However, cot α changes sharply when α is beyond this interval.Thus, this interval can be used as the symbol to determine whetheris large enough.The derivative of cot α is

    The logarithm curve of|h(α)|is shown in Fig.2,where the horizontal coordinate expressesp=α/

    It is obvious that the curve changes slowly when|h(α)|is less than 103,and increases sharply when it is larger than 104. So we can determine the intermediate interval based on the above-mentioned phenomenon.For log10|h(α)|=3,pis about -0.02,and for log10|h(α)|=4,pis about-0.006.Since

    the intermediate interval can be determined as[40 Hz/s, 110 Hz/s].

    According to the symmetry of cot α,we can draw the same conclusion for α∈(0,π/2).Thus,the repeated analysis is omitted.

    3.2.2.Estimation accuracy of initial frequency

    Now,the estimation of the initial frequencyf0is analyzed. Substituting︿uinto Eq.(14),we can get

    Substituting︿upinto Eq.(16),we have

    When︿mis changed by a unit interval,from Eq.(25)the estimation value is changed by

    and from Eq.(26)the estimation value correspondingly is changed by

    Table 1The estimation errors of chirp-rate in simulation 1.

    Table 2The estimation errors of chirp-rate in simulation 2.

    2.2.3.Fractional Fourier spectral leakage

    Since DFRFT is the discrete sampling of continuous FRFT spectrum,the peak position,resulted from the search of DFRFT,probably is not the theoretical peak position of continuous FRFT spectrum,which is called the fractional Fourier spectral leakage[16,17].The above-mentioned factor will bring the estimation error.

    The search accuracy of FRFT angle is related with the search step,for the fxed step for searching.Assuming that the correct FRFT angle αTjust right lies in the searching set of FRFT angle,then it can be assured that the peak position resulted from searching DFRFT is just the peak position of continuous FRFT spectrum as long as the following formula holds.

    Fig.4.The estimation error of chirp-rate in Simulation 3.

    Table 3The estimation errors of initial frequency in simulation 4.

    For the parameter estimation of chirp signal,the estimation accuracy will fuctuate with the different products of time and band width due to the change of sampling position of the peak in the condition of the same fs,Tdand search step.

    4.Simulation

    4.1.Simulation 1

    Set fs=100 Hz,Td=1 s,αs=0.00001×π/2,f0=0 Hz, μ∈{0.5 Hz/s,1 Hz/s,5 Hz/s},and fsis increased to 1 KHz or Tdis decreased to 0.1 s.The simulation results are listed in Table 1.The conclusion can be drawn as follows:a)For Ozaktas'method,what we search is the revised chirp-rate so that Tdis too small to distinguish and the estimated value of chirp-rate is approximately 0.Increasing fscan not improve the performance effectively;b)Pei's method is almost not affected by Tdand fs,and its estimation accuracy is obviously superior to that of Ozaktas'method.

    4.2.Simulation 2

    Set fs=10 kHz,Td=0.1 s,αs=0.00001× π/2, f0=200 Hz,and μ is changed from 50 Hz/s to 2 KHz/s.The simulation results are listed in Table 2.We can draw the conclusion that,in Pei's method,the larger the chirp-rate is,the higher the estimate error is;on the contrary,in Ozaktas' method,the error is relatively stable and smaller than that from Pei's method.

    4.3.Simulation 3

    Set fs=10 KHz,Td=0.1 s,αs=0.00001× π/2, f0=100 Hz,and μ is changed from 30 Hz/s to 150 Hz/s with the step of 0.1 Hz/s.The simulation results are shown in Fig.4. The conclusion can be drawn as follows:a)at the beginning, Pei's method is more accurate than Ozaktas'method;as the chirp-rate raise,the estimation errors of two methods are approximately identical,and Ozaktas'method is better than Pei's method in accuracy when the chirp-rate is beyond 130 Hz/s;b)the estimation accuracy of both the two methods presents fuctuation due to the fractional Fourier spectral leakage.

    4.4.Simulation 4

    Set fs=10 KHz,Td=0.1 s,αs=0.000001× π/2, f0=200 Hz,and μ is changed from 100 Hz/s to 2 KHz/s.The estimation results of initial frequency are listed in Table 3.We can fnd that:a)Pei's method is better than Ozaktas'method when the chirp-rate estimation accuracy of the former is near to or better than the latter;b)the estimation error of chirp-rate of Pei's method rises with the increase in chirp-rate,which leads to the increase in the estimation error of initial frequency.This means that Pei's method is worse than Ozaktas' method with the gradual increase in chirp-rate.

    5.Conclusions

    In this paper,two kinds of sampling-type DFRFT are analyzed through parameter estimation,and the conclusions are drawn as follows:

    1)|μ|∈[40 Hz/s,110 Hz/s]can be determined as the inter

    mediate interval.In this range,Pei's method has the same parameter estimation accuracy as Ozaktas'method.The usageofthesetwomethodsshouldbechosenbysomeother factors,such as computation burden,not only the accuracy.

    2)When|μ|is small(smaller than 40 Hz/s),it is better to use Pei's method.Furthermore,Ozaktas'method can not increase its accuracy by increasing fsor decreasing Td. About the two operations,increasing fsgains little beneft with the cost of the increase of data mount;decreasing Tdmaybe leads to the lose of resolution.

    3)When|μ|is large enough(larger than 110 Hz/s),Ozaktas'

    method can obtain higher accuracy through dimensional normalization.And the estimation accuracy of Ozaktas' method can be kept high only if the sampling theory is met.

    4)Theoretically Pei's method is better than Ozaktas'method for estimation of initial frequency,but the increase in estimation error of chirp-rate will bring the synchronized magnifcation of estimation error of initial frequency. Thus,Ozaktas'method is more suitable for the united estimation of chirp-rate and initial frequency when|μ|is large enough.

    Acknowledgment

    The authors would like to thank the National Natural Science Foundation of China(60902054);China Postdoctoral Science Foundation(201003758,20090460114)and“Taishan Scholars”Special Foundation of Shandong Province for the support.

    [1]Sejdic E,Djurovic I,Stankovic L.Fractional Fourier transform as a signal processing tool:an overview of recent developments.Signal Process 2011;91:1351-69.

    [2]Tao Ran,Deng Bing,Wang Yue.Research progress of the fractional fourier transform in signal processing.Sci China Ser F Info Sci 2006;49(1):1-25.

    [3]Narayanan VA,Prabhu KMM.The fractional Fourier transform:theory, implementation and error analysis.Microprocess Microsystems 2003;27:511-21.

    [4]Ozaktas HM,Kutay MA,Zalevsky Z.The fractional Fourier transform with applications in optics and signal processing.New York,NY:John Wiley&Sons;2001.

    [5]Tao Ran,Deng Bing,Wang Yue.Fractional Fourier transform and its applications.Beijing:Tsinghua University Press;2009.

    [6]Xuemei Li.Research on estimation of time delay based on the fractional Fourier transform.Beijing:Beijing Institute of Technology;2010.

    [7]El-Mashed MG,Dessouky MI,El-Kordy M,Zahran O,Abd El-Samie FE.Target image enhancement in radar imaging using fractional Fourier transform.Sens Imaging Int J 2012;13(1):37-53.

    [8]Tao Ran,Zhang Feng,Wang Yue.Research progress on discretization of fractional Fourier transform. Sci China Ser F Info Sci 2008;51(7):859-80.

    [9]Ozaktas HM,Arikan O,Kutay MA,Bozdagt G.Digital computation of the fractional Fourier transform.IEEE Trans SignalProcess 1996;44(9):2141-50.

    [10]Pei Soo-Chang,Ding Jian-Jiun.Closed-form discrete fractional and affne Fourier transform. IEEE Trans Signal Process 2000;48(5):1338-53.

    [11]Lin Qi,Tao Ran,Si-Yong Zhou,Wang Yue.Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform.Sci China Ser F Info Sci 2004;47(2):184-98.

    [12]Hongkai Wei,Pingbo Wang,Zhiming Cai,Wanjun Yao.Study of algorithm for extremum seeking in the fractional Fourier transform.Acta Electron Sin 2010;38(12):2949-52.

    [13]Zhao Xing-hao,Deng Bing,Tao Ran.Dimensional normalization in the digital computation of the fractional Fourier transform.Trans Beijing Inst Technol 2005;25(4):360-4.

    [14]Liu Feng,Xu Hui-fa,Tao Ran.Selection of dimensional normalization parameters in fractionalFouriertransform.SystEng Electron 2011;33(2):237-41.

    [15]Pei Soo-Chang,Ding Jian-Jiun.Relations between gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Trans Signal Process 2007;55(10):4839-50.

    [16]Deng Bing,Tao Ran,Qu Chang-wen.Analysis of the shading between multicomponent chirp signals in the fractional Fourier domain.Acta Electron Sin 2007;35(6):1094-8.

    [17]Hongzhong Zhao,Qiang Fu.Performance analysis of acceleration resolution for radar signal. Sci China Ser E Technol Sci 2003;33(7):638-46.

    Received 1 March 2014;revised 24 June 2014;accepted 25 June 2014 Available online 24 July 2014

    *Corresponding author.

    E-mail address:dengbing@bit.edu.cn(B.DENG).

    Peer review under responsibility of China Ordnance Society.

    http:

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国语自产精品视频在线第100页| 国产日本99.免费观看| 国产主播在线观看一区二区| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品综合一区二区三区| 国产熟女xx| 别揉我奶头~嗯~啊~动态视频| 亚洲无线在线观看| 亚洲精品美女久久av网站| 久久精品aⅴ一区二区三区四区| 久久香蕉国产精品| 天天添夜夜摸| 淫秽高清视频在线观看| 亚洲av熟女| 欧美在线一区亚洲| 久久午夜亚洲精品久久| 麻豆成人午夜福利视频| 99久国产av精品| 国内精品久久久久精免费| 韩国av一区二区三区四区| 国产亚洲精品av在线| 国语自产精品视频在线第100页| 嫩草影视91久久| 天天躁狠狠躁夜夜躁狠狠躁| 他把我摸到了高潮在线观看| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三| 亚洲 国产 在线| 欧美av亚洲av综合av国产av| 热99在线观看视频| 午夜影院日韩av| 欧美一区二区精品小视频在线| 999精品在线视频| 国产视频一区二区在线看| 黄色成人免费大全| 变态另类成人亚洲欧美熟女| 午夜精品一区二区三区免费看| 久久久久久久久中文| 老司机在亚洲福利影院| 久久国产精品影院| 欧美+亚洲+日韩+国产| 久久久久亚洲av毛片大全| 精品人妻1区二区| 神马国产精品三级电影在线观看| 国产极品精品免费视频能看的| 黄色成人免费大全| 我的老师免费观看完整版| 国产av麻豆久久久久久久| 欧美成狂野欧美在线观看| 亚洲成人精品中文字幕电影| 少妇丰满av| 天堂√8在线中文| 九色成人免费人妻av| 国产成人精品久久二区二区91| 一本一本综合久久| 欧美丝袜亚洲另类 | 国产久久久一区二区三区| 亚洲 欧美一区二区三区| 757午夜福利合集在线观看| 12—13女人毛片做爰片一| 一区二区三区高清视频在线| 在线视频色国产色| 99热只有精品国产| 黄色视频,在线免费观看| 麻豆av在线久日| 99热6这里只有精品| 日韩欧美在线二视频| 99久久精品一区二区三区| 网址你懂的国产日韩在线| 精品电影一区二区在线| 国产精品香港三级国产av潘金莲| 长腿黑丝高跟| 成人午夜高清在线视频| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久免费视频| 国产亚洲精品综合一区在线观看| 成年版毛片免费区| 久久久久久人人人人人| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 国产精品电影一区二区三区| 国内精品一区二区在线观看| 搞女人的毛片| 成人精品一区二区免费| 欧美高清成人免费视频www| 亚洲一区二区三区不卡视频| 观看免费一级毛片| 国产精品一区二区免费欧美| 淫妇啪啪啪对白视频| 天堂网av新在线| 丁香六月欧美| 亚洲第一欧美日韩一区二区三区| 性欧美人与动物交配| 女警被强在线播放| 色av中文字幕| 在线看三级毛片| 国产成人aa在线观看| 黄色片一级片一级黄色片| 午夜亚洲福利在线播放| 嫁个100分男人电影在线观看| 在线观看午夜福利视频| 丝袜人妻中文字幕| 丝袜人妻中文字幕| 麻豆国产av国片精品| 一本久久中文字幕| 18禁黄网站禁片午夜丰满| 别揉我奶头~嗯~啊~动态视频| 亚洲国产色片| 一进一出抽搐动态| 亚洲人与动物交配视频| 成人性生交大片免费视频hd| 日韩有码中文字幕| 日韩有码中文字幕| 精品无人区乱码1区二区| aaaaa片日本免费| 老司机午夜十八禁免费视频| 午夜激情福利司机影院| 很黄的视频免费| 两人在一起打扑克的视频| 精品一区二区三区四区五区乱码| 亚洲人与动物交配视频| 在线观看免费午夜福利视频| 久久久国产成人免费| tocl精华| 国产亚洲av嫩草精品影院| 麻豆国产av国片精品| 欧美日韩福利视频一区二区| 精品一区二区三区四区五区乱码| 老司机午夜十八禁免费视频| 欧美极品一区二区三区四区| 久久这里只有精品19| 好男人在线观看高清免费视频| 久久久久九九精品影院| 十八禁人妻一区二区| 日本一二三区视频观看| 在线观看日韩欧美| 国产欧美日韩一区二区精品| 亚洲欧美激情综合另类| 一本一本综合久久| xxxwww97欧美| xxxwww97欧美| 国产成人啪精品午夜网站| 亚洲第一电影网av| 国内精品久久久久精免费| 黑人欧美特级aaaaaa片| 美女被艹到高潮喷水动态| 日韩国内少妇激情av| 亚洲av成人一区二区三| 亚洲自偷自拍图片 自拍| 小蜜桃在线观看免费完整版高清| 国产伦一二天堂av在线观看| 亚洲av五月六月丁香网| 日韩中文字幕欧美一区二区| 亚洲电影在线观看av| 男人舔奶头视频| 国产av在哪里看| 亚洲美女黄片视频| 国产私拍福利视频在线观看| 欧美性猛交黑人性爽| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 99精品久久久久人妻精品| 美女 人体艺术 gogo| 精品久久蜜臀av无| 99久久成人亚洲精品观看| 91老司机精品| 久久久久久久久中文| 久久久久国产精品人妻aⅴ院| 国产午夜福利久久久久久| 美女大奶头视频| 九九热线精品视视频播放| 后天国语完整版免费观看| 观看免费一级毛片| 动漫黄色视频在线观看| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 两个人视频免费观看高清| 日本黄色片子视频| 成人特级黄色片久久久久久久| 美女黄网站色视频| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 久久久久九九精品影院| 两个人看的免费小视频| 精品福利观看| 久久精品人妻少妇| 此物有八面人人有两片| 国产毛片a区久久久久| 亚洲专区国产一区二区| 神马国产精品三级电影在线观看| 午夜福利在线在线| 国产主播在线观看一区二区| 舔av片在线| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 久久久久久久久中文| 亚洲真实伦在线观看| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 午夜影院日韩av| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 久久九九热精品免费| 国产视频内射| 国产精品久久电影中文字幕| 国产精品电影一区二区三区| 老司机在亚洲福利影院| 日本五十路高清| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 亚洲最大成人中文| 国产高潮美女av| 丰满的人妻完整版| 综合色av麻豆| 国产精品久久久久久人妻精品电影| 成人性生交大片免费视频hd| 亚洲男人的天堂狠狠| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 国产亚洲精品久久久久久毛片| 色哟哟哟哟哟哟| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 国产黄色小视频在线观看| 无人区码免费观看不卡| 久久伊人香网站| 啦啦啦韩国在线观看视频| 国产精品99久久99久久久不卡| 人妻夜夜爽99麻豆av| 午夜福利欧美成人| 美女黄网站色视频| 夜夜爽天天搞| 亚洲欧美激情综合另类| 国内久久婷婷六月综合欲色啪| 麻豆一二三区av精品| 成人高潮视频无遮挡免费网站| 又黄又粗又硬又大视频| 欧美日韩综合久久久久久 | 嫩草影视91久久| 亚洲精品色激情综合| cao死你这个sao货| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 免费在线观看视频国产中文字幕亚洲| 色综合亚洲欧美另类图片| 天堂√8在线中文| 成年女人永久免费观看视频| 我要搜黄色片| 精品久久久久久久末码| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 三级国产精品欧美在线观看 | 日本 欧美在线| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 在线免费观看不下载黄p国产 | 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 精品国产亚洲在线| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app | 淫秽高清视频在线观看| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 一本综合久久免费| 午夜福利高清视频| 成人三级做爰电影| av片东京热男人的天堂| 欧美一级a爱片免费观看看| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 少妇裸体淫交视频免费看高清| 最近最新免费中文字幕在线| 欧美xxxx黑人xx丫x性爽| 91老司机精品| 18禁黄网站禁片免费观看直播| 香蕉国产在线看| 久久久久久久久中文| 亚洲专区中文字幕在线| 少妇丰满av| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 老司机在亚洲福利影院| 午夜福利在线在线| 免费av毛片视频| 久久香蕉国产精品| 一本一本综合久久| 中文字幕最新亚洲高清| 亚洲精华国产精华精| 久久久国产成人精品二区| 最近最新中文字幕大全免费视频| 亚洲精品久久国产高清桃花| 午夜成年电影在线免费观看| 亚洲av片天天在线观看| 99视频精品全部免费 在线 | 国产午夜福利久久久久久| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 亚洲九九香蕉| 窝窝影院91人妻| 美女免费视频网站| 亚洲九九香蕉| 一本综合久久免费| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 免费看a级黄色片| 国产精品美女特级片免费视频播放器 | 亚洲成人久久性| 舔av片在线| 一级毛片高清免费大全| 国产精品久久久久久精品电影| 麻豆成人午夜福利视频| 黄色 视频免费看| 欧美激情在线99| 搞女人的毛片| 成年女人永久免费观看视频| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 在线观看午夜福利视频| 脱女人内裤的视频| 可以在线观看毛片的网站| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 巨乳人妻的诱惑在线观看| 欧美成人性av电影在线观看| 校园春色视频在线观看| 特级一级黄色大片| 国产三级在线视频| 亚洲av成人av| 床上黄色一级片| 男女视频在线观看网站免费| 亚洲精品456在线播放app | 午夜福利在线观看吧| x7x7x7水蜜桃| 一级毛片精品| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| tocl精华| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 在线永久观看黄色视频| a级毛片在线看网站| 9191精品国产免费久久| 岛国视频午夜一区免费看| 中出人妻视频一区二区| 男女下面进入的视频免费午夜| 黄色片一级片一级黄色片| 午夜福利高清视频| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 亚洲天堂国产精品一区在线| 久久天堂一区二区三区四区| 成人三级做爰电影| 亚洲一区二区三区色噜噜| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 亚洲精品中文字幕一二三四区| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 99热6这里只有精品| 成人特级黄色片久久久久久久| 一本久久中文字幕| 国产精品98久久久久久宅男小说| 国产成人影院久久av| 久久久久免费精品人妻一区二区| 午夜亚洲福利在线播放| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 欧美一级a爱片免费观看看| 亚洲精品美女久久久久99蜜臀| www.精华液| 热99在线观看视频| 国产单亲对白刺激| 国产精品香港三级国产av潘金莲| 女人被狂操c到高潮| 搡老岳熟女国产| 黄色片一级片一级黄色片| 男人舔奶头视频| 免费观看的影片在线观看| 国产99白浆流出| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 我要搜黄色片| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 国产av一区在线观看免费| 久久久国产欧美日韩av| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 午夜激情福利司机影院| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 亚洲在线自拍视频| 国产av一区在线观看免费| 日本黄大片高清| a级毛片a级免费在线| 国产激情久久老熟女| 大型黄色视频在线免费观看| 免费观看人在逋| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| 亚洲国产欧美一区二区综合| 波多野结衣巨乳人妻| 亚洲成人久久性| 午夜亚洲福利在线播放| 精品久久久久久成人av| 97碰自拍视频| 久久久精品欧美日韩精品| 亚洲精品456在线播放app | 亚洲成人精品中文字幕电影| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 色播亚洲综合网| 国产又黄又爽又无遮挡在线| 欧美av亚洲av综合av国产av| 精品99又大又爽又粗少妇毛片 | 亚洲国产看品久久| 国产精品九九99| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 婷婷六月久久综合丁香| 亚洲av第一区精品v没综合| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 亚洲精品在线观看二区| 给我免费播放毛片高清在线观看| 999久久久国产精品视频| 午夜免费激情av| 国产午夜精品论理片| 亚洲无线在线观看| 国产熟女xx| 午夜福利免费观看在线| 欧美绝顶高潮抽搐喷水| 51午夜福利影视在线观看| 免费在线观看视频国产中文字幕亚洲| 性色av乱码一区二区三区2| 日本熟妇午夜| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 久久香蕉国产精品| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区mp4| or卡值多少钱| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 亚洲av成人不卡在线观看播放网| 男女之事视频高清在线观看| 国产精品九九99| 99久久综合精品五月天人人| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 国产高清videossex| 97碰自拍视频| 久久精品91无色码中文字幕| 九色国产91popny在线| 草草在线视频免费看| 国产成人aa在线观看| 欧美日韩瑟瑟在线播放| 欧美黑人欧美精品刺激| 欧美色欧美亚洲另类二区| 国内精品一区二区在线观看| 舔av片在线| 日韩欧美国产在线观看| 精品人妻1区二区| 又大又爽又粗| 可以在线观看毛片的网站| 日本 av在线| 亚洲精品乱码久久久v下载方式 | 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| 一个人看的www免费观看视频| 丰满人妻一区二区三区视频av | 国内精品一区二区在线观看| 黄片小视频在线播放| 少妇的丰满在线观看| 欧美日韩精品网址| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 女警被强在线播放| 成人av在线播放网站| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 亚洲欧美日韩卡通动漫| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 老司机福利观看| 国产1区2区3区精品| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 日本五十路高清| 这个男人来自地球电影免费观看| 91在线观看av| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| 伊人久久大香线蕉亚洲五| 给我免费播放毛片高清在线观看| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 欧美日韩综合久久久久久 | 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 18美女黄网站色大片免费观看| 国产精品亚洲美女久久久| 丰满的人妻完整版| 色视频www国产| 黄色 视频免费看| 99久久无色码亚洲精品果冻| 手机成人av网站| 成在线人永久免费视频| 欧美最黄视频在线播放免费| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 日本与韩国留学比较| 后天国语完整版免费观看| 国产毛片a区久久久久| 国产成人精品久久二区二区91| 国内精品久久久久精免费| 少妇丰满av| 亚洲国产色片| av福利片在线观看| 久久天躁狠狠躁夜夜2o2o| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 欧美3d第一页| 日韩人妻高清精品专区| 精品一区二区三区四区五区乱码| 亚洲电影在线观看av| 亚洲精品中文字幕一二三四区| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 久久久久性生活片| 熟女电影av网| 欧美黄色片欧美黄色片| 亚洲精品456在线播放app | 久久久久久久精品吃奶| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 精品一区二区三区视频在线 | 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 国产精品野战在线观看| 美女黄网站色视频| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 国产亚洲欧美98| 97碰自拍视频| 偷拍熟女少妇极品色| 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影 | 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 又黄又粗又硬又大视频| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 国产精品 国内视频| 搞女人的毛片| 国产精品日韩av在线免费观看| 精品国产乱子伦一区二区三区| 香蕉av资源在线| 欧美中文综合在线视频| 一级a爱片免费观看的视频| 午夜免费激情av| 亚洲 国产 在线| 好男人在线观看高清免费视频| 无限看片的www在线观看| 国产精品一区二区三区四区免费观看 | 可以在线观看毛片的网站| 国产精品久久久人人做人人爽| 亚洲欧美精品综合久久99| 丁香欧美五月| 又爽又黄无遮挡网站| 日韩免费av在线播放| 99在线视频只有这里精品首页| 久久精品91蜜桃| 日韩有码中文字幕| 丁香六月欧美| 国内精品美女久久久久久| 两个人视频免费观看高清|