• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction

    2023-12-15 11:48:14ShanshanChen陳珊珊XinhaoZhang張新昊GuangcanWang王廣燦ShuoChen陳朔HeqiMa馬和奇TianyuSun孫天瑜BaoyuanMan滿寶元andChengYang楊誠
    Chinese Physics B 2023年12期

    Shanshan Chen(陳珊珊), Xinhao Zhang(張新昊), Guangcan Wang(王廣燦), Shuo Chen(陳朔),Heqi Ma(馬和奇), Tianyu Sun(孫天瑜), Baoyuan Man(滿寶元),2,?, and Cheng Yang(楊誠),2,3,?

    1School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    2Institute of Materials and Clean Energy,Shandong Normal University,Jinan 250014,China

    3Shandong Provincial Engineering and Technical Center of Light Manipulations,Shandong Normal University,Jinan 250014,China

    Keywords: ferroelectric tunnelling junction, metal/ferroelectric/semiconductor, tunnelling electroresistance,optoelectronic properties

    1.Introduction

    Memristors are ideal building blocks for brain-like neuromorphic devices.[1-6]A two-terminal structured ferroelectric tunnelling junction(FTJ)has transmission properties similar to the biological synapse; its top and bottom electrodes are commonly used to mimic the presynaptic and postsynaptic membranes in biological synapses.[7]Traditional memristors that achieve basic synaptic functions by applying voltage alone are purely electronic synapses; however, they lack the function of mimicking sensory cells in a biological nervous system.

    Some researchers have introduced light stimulation to mimic functions in sensory cells.[7-10]Shenet al.reported TiNxO2-x/MoS2/indium tin oxide (ITO) devices that showed basic analog resistive switching behavior and various basic synaptic functions such as short-term plasticity and long-term plasticity,and finally constructed a 4×4 photoelectric synapse array that was used to simulate human visual perception and visual memory functions.[7]To achieve light stimulation,most artificial optoelectronic synapses are typically designed as vertical structures with transparent ITO as the top electrode.However, it is challenging to fabricate thin ITO films; the transmittance of ITO is generally<90%and it decreases with increase in film thickness.[8]Lateral structured devices fabricated using a thin two-dimensional(2D)material can be used to realize the role of light-stimulated synapses.

    Two-dimensional(2D)ferroelectric CuInP2S6(CIPS)has shown excellent ferroelectric properties;[11-13]it can be used to switch polarization in flakes down to several layers at room temperature,[11]and it can be easily integrated onto flat substrates to form FTJ devices due to their strong intralayer coupling and weak interlayer interactions.[13]Recently, Sun and colleagues showed that a tunnelling electroresistance(TER)of over 107could be obtained by using a thin CuInP2S6/graphene junction.[12]Further research could help realize sensory devices using CIPS as a ferroelectric material.

    As a 2D semiconductor material,MoS2has a strong and fast photoresponse[14,15]that benefits the integration of fieldeffect transistors into other new sensing devices.Furthermore,van der Waals (vdW) heterojunctions based on MoS2and other materials, including MoS2/Si,[16]MoS2/WSe2[17]and MoS2/h-BN/graphene,[18]are widely used in optoelectronic applications.Based on the advantages of MoS2,combining it with CIPS to construct a lateral structured Au/CIPS/MoS2/Au vdW heterojunction could possibly realize sensory devices with 2D vdW junctions.

    Semiconductors are also crucial for forming a Schottky barrier to obtain a higher TER, which is essential for the FTJ.[19-24]For vertical structured FTJ devices, an enhanced TER(~103-104)can be obtained using the ferroelectric/semiconductor heterojunction.[22-24]To the best of our knowledge, no lateral structured ferroelectric/semiconductor FTJ with a higher TER(>104)has been reported.

    2.Results and discussion

    We demonstrated that lateral structured Au/CIPS/MoS2/Au vdW heterojunctions could be used in planar FTJ devices,combining excellent TER and optical properties.Figure 1(a)shows a schematic diagram of a lateral structured device.Ferroelectric CIPS flakes were used as the ferroelectric material to realize polarized ON and OFF states.Semiconductor MoS2flakes were used to modulate the barrier height and width of the memristors and as the optoelectronic material of the photodetector.Both CIPS and MoS2flakes were transferred onto a patterned high-work-function Au electrode;details are presented in the supporting information section‘Device fabrication’.Devices with different ferroelectric mechanisms andI-Vcharacteristics are shown in Fig.1.

    The formation mechanisms of the ON and OFF states of the proposed CIPS/MoS2heterojunction were analyzed and are shown in Fig.1(b).The work function of Au is 5.1 eV,[25]the electron affinity of CIPS is 3.7 eV and the indirect band gap of MoS2is 1.365 eV.[12,26]When different voltages were applied to the device,the polarization directions of CIPS were different, resulting in two different resistance states.The polarization direction of CIPS pointed to MoS2when a positive polarization voltage was applied, which generated pairs of bound polarized charges in the dielectric CIPS flakes (left of Fig.1(b)).The positive bound polarized charges attracted electrons in MoS2, causing the accumulation of electrons at the MoS2surface of the CIPS-MoS2interface.Thus, the depletion region of MoS2was annihilated.The conductivity of MoS2also improved when electrons gathered at the MoS2surface to fill the conduction band of MoS2.In this case,MoS2flakes were the n+-type semiconductor that formed the metal/ferroelectric/semiconductor-type FTJ.[24,27,28]A depolarization field,opposite to the polarization direction,was easily formed in the CIPS ferroelectric barrier and benefited from the incomplete screening of the MoS2films.Such a depolarization field lowers the Schottky barrier height (SBH) and generates a higher tunnelling transmittance,inducing a larger tunnelling current.[29]Therefore, the decreased barrier height at the CIPS-MoS2interface resulted in a low resistance (ON state).

    In contrast,the CIPS polarization direction deviated from the MoS2flakes when a negative polarization voltage was applied (right side of Fig.1(b)).Negative bound polarized charges caused the depletion of electrons at the MoS2side of the CIPS-MoS2interface.The width of the depletion region(i.e.,the effective barrier width)increased due to electron depletion at the interface,[20]and the accumulation of holes at the CIPS-MoS2interface decreased the conductivity of MoS2.The immobile ionized donors at the MoS2surface screened the negative bound polarized charges at the CIPS surface.Such screening is usually insufficient[24,27,28]to produce a depolarization field and increases the SBH at the CIPS-MoS2interface.The increased barrier width and height provide greater resistance to stop the tunnelling current through the heterojunction,resulting in a device with high resistance(OFF state).The realization of ON and OFF states can be mainly attributed to the modulation of the SBH and width by the CIPS polarization reversal and the screening of the MoS2flakes.

    Semiconductor MoS2is crucial for modulating the barrier width and height to improve TER.To analyze the effect of the semiconductor MoS2,an Au/CIPS/Au FTJ without MoS2flakes was also fabricated (Fig.1(d)).The formation mechanisms of the ON and OFF states are analyzed in Fig.1(e).The top Au electrode(work function=5.24 eV)[30]was prepared using the transfer method (details in the supporting information section‘Au electrode fabrication,release,transferring and lamination process’),and the bottom Au electrode(work function=5.1 eV)[25]was customized using photolithography to realize the asymmetry of the electrodes.At different voltages,the electric field-induced CIPS polarization changed the band alignment of CIPS at the Au-CIPS interface,resulting in two resistance states(ON and OFF states).When the polarization direction of CIPS is upward,negatively polarized charges are generated at the bottom of the CIPS and positively polarized charges accumulate on the top of the CIPS.The ferroelectric polarized charges cannot be fully compensated by the electrode charges due to interfacial effects.[31]The built-in internal field is directed from the positive to the negative polarized charges, causing the SBH to be reduced.[29,31]The device is in a low-resistance state(ON state).When the polarization direction of CIPS is downward,the CIPS generates the opposite polarized charges and the polarization reversal of CIPS alters the built-in internal field,which increases the SBH.[29,31]The device is in a high-resistance state(OFF state).Such vertical structured Au/CIPS/Au only modulated the barrier height to improve TER.

    TER is considerably influenced by the width and height of the potential barrier;[29]the equation for TER is given by[32]

    Under the Wentzel-Kramers-Brillouin (WKB) approximation,the current density is given by[33]

    whereCandα(V)are expressed asC=-(4em)/(9π2ˉh3)andα(V)=[4d(2m)1/2]/[3ˉh(?1+eV-?2)].If the difference between potential steps ?? ≡?2-?1is too small compared with the average potential barrier, ˉ? ≡(?2+?1)/2,then ??/2< ˉ?.In the case of a small bias voltage,Eq.(2)can be approximated as[32]

    Therefore, TER increases with the barrier heightδ?, as expressed in Eq.(4).The change in the barrier height of the CIPS-MoS2interface is much larger than that of the CIPS-Au interface when the barrier height of the CIPS-MoS2interface is modulated,which increases TER.

    Obviously,TER increases with an increase in the barrier width of the depletion regiond, as calculated using Eq.(4).The barrier width of the depletion region is related to the effective free carrier concentration of the semiconductor.The relationship between the width of the depletion region and the effective free carrier concentration is shown below:[34]

    whereεsis the dielectric constant of semiconductors,Vbiis the built-in potential andNeffis the effective free carrier concentration.

    Fig.1.(a)Schematic diagram of a lateral structured Au/CIPS/MoS2/Au vdW FTJ.(b)Band diagrams for the ON and OFF states of the Au/CIPS/MoS2/Au vdW FTJ.(c)I-V curve of the Au/CIPS/MoS2/Au vdW FTJ with clear switching behavior and low operation voltage.(d)Schematic diagram of a vertical structured Au/CIPS/Au FTJ.(e)Band diagrams for the ON and OFF states of the Au/CIPS/Au FTJ.(f)I-V curve of the Au/CIPS/Au vdW FTJ with switching behavior.(g) Schematic diagram of a lateral structured Au/MoS2/Au.(h) Band diagrams at different bias voltages of the lateral structured Au/MoS2/Au.The green curve above represents the conduction band before the voltage sweep and the red dotted line represents the change in the Schottky barrier height.(i)I-V characteristics of the Au/MoS2/Au junction in both forward and backward states;the inset is an optical image of the device.

    For the case of n+-type MoS2, the effective free carrier concentration decreases at high resistance (OFF state),which can be attributed to the depletion of electrons at the MoS2surface, increasing the width of the depletion region.However, for the Au/CIPS/Au device, it is difficult to change the barrier width at the CIPS-Au interface.Therefore,the change in the barrier width shows that the TER of the Au/CIPS/MoS2/Au vdW FTJ is higher than that of the Au/CIPS/Au FTJ.Thus, the analysis of the effects of barrier height and width on the improvement of TER suggested that an Au/CIPS/MoS2/Au vdW FTJ can significantly improve TER.

    ExperimentalI-Vhysteresis loops of Au/CIPS/MoS2/Au and Au/CIPS/Au junctions are shown in Figs.1(c) and 1(f).The asymmetric hysteresis of the Au/CIPS/MoS2/Au FTJ may be attributed to the asymmetric contact.[35]I-Vcharacteristics of the devices in the voltage range from 3 to-3 V are shown in Fig.S2.In the OFF state, the tunnelling current of the proposed Au/CIPS/MoS2/Au FTJ is one order of magnitude smaller than that of the Au/CIPS/Au FTJ.In the ON state,the tunnelling current of the proposed Au/CIPS/MoS2/Au FTJ is two orders of magnitude larger than that of the Au/CIPS/Au FTJ.Thus, introducing MoS2to the construction of lateral structured Au/CIPS/MoS2/Au vdW FTJ devices significantly improves the TER(by three orders of magnitude).A TER of~1.4×104was obtained for the proposed lateral structured Au/CIPS/MoS2/Au vdW FTJ devices.

    The ferroelectric properties of CIPS are crucial.The Au/MoS2/Au junction without the CIPS flakes[Fig.1(g)]resembles only a Schottky diode.[36]The inhibitory behavior of the MoS2-Au potential barrier for improving TER is almost negligible.The modulation of the MoS2/Au SBH can be qualitatively described by the band diagrams shown in Fig.1(h).According to Liet al., the switching behavior of resistance states is mainly attributed to the redistribution of sulfur(S)vacancies under the electric field.[37]The influence of impurity movement on the interface between MoS2and the substrate,and the adsorption of charged impurities by MoS2in the environment, are ignored.Under negative bias (backward), S vacancies drift from the left to the right electrode.[37]This decreases and increases the density of S vacancies at the left and right electrodes, respectively.As a result, the SBH on the left and right sides decreases and increases, respectively.Conversely, under positive bias (forward), S vacancies drift from the right to the left electrode.TheirI-Vcharacteristics are shown in Fig.1(i).TheIforward/Ibackwardratio is extremely small under both positive and negative biases.The defects of S vacancies drift under voltage bias,and any further influence of barrier height and width in the Au/CIPS/MoS2/Au devices is almost negligible.Thus, data retention can be attributed to the polarization-induced ON-OFF states.

    Fig.2.(a)Raman spectra of CIPS flakes measured at room temperature.(b)I-V characteristics of CIPS flakes.(c)Raman spectra of MoS2 flakes measured at room temperature.(d)IDS-VG characteristics of the MoS2 transistors.

    The CIPS and MoS2materials were characterized using Raman andI-Vcharacteristic curve tests.Figure 2(a) shows the Raman spectra of the CIPS flakes at room temperature.Because of the anion (P2S4-6 ) liberation, a peak at 102 cm-1is easily observed.The presence ofδ(S-P-P) andδ(S-PS) modes leads to multiple Raman peaks of 140-290 cm-1.The presence of the cations (CuI, InIII) leads to the appearance of a Raman peak at 316.5 cm-1.Theν(P-P)mode results in a peak at 373.7 cm-1.[38]Figure 2(b) shows theI-Vcharacteristics of the CIPS flakes.TheI-Vcurves were divided into six parts at 0 V→1 V→0 V and 0 V→-1 V→0 V, with multiple peaks appearing in the sweep voltage.The two-step 90?switch polarization reversal was responsible for these peaks,demonstrating the ferroelectric nature of CIPS flakes.[39]Figure 2(c) shows the Raman spectra of the MoS2flakes.The out-of-plane (E12g) and in-plane resonance peaks(A1g)of MoS2can be observed at 383.5 cm-1and 406.6 cm-1,respectively.[40]The distance between the two characteristic peaks is approximately 23.1 cm-1.Referring to the previous data, this difference of approximately 23.1 cm-1represents four layers of MoS2flakes.[41,42]Figure 2(d)tests theIDS-VGcharacteristics of the MoS2transistors.The transmission characteristics show typical n-type semiconductor characteristics under a sweep gate voltage from-33 V to 33 V.[43,44]

    Fig.3.(a)Data retention characteristics of the device in the ON and OFF states.(b)Endurance characteristics of the device.Experimental measurements were obtained for 1000 switching cycles.(c)Resistances(ON and OFF states)of the 11 different FTJ devices and the corresponding TERs.(d)TERs of the reported lateral structured devices.

    Our proposed Au/CIPS/MoS2/Au vdW FTJs with 11 nm CIPS and 2 nm MoS2(figure S3 shows material thickness)exhibited good reliability, such as long data retention, excellent endurance performance and uniformity.The electrical characteristics and properties were tested and analyzed and are shown in Fig.3.Figure 3(a) shows the data retention properties at room temperature.The TER was stable at 1.4×104after more than 2 months, which showed that the proposed device has a robust performance.[12,45]Figure 3(b)shows the endurance test of the FTJ over 1000 cycles.After 1000 cycles,the TER remained above 1.4×104,indicating good endurance of the device.Several devices were prepared and tested for different values of resistance and TER in the ON and OFF states, as shown in Fig.3(c).The device exhibited good uniformity.The TER of the proposed vdW FTJ compared with that of the other lateral structured devices[46-54]is shown in Fig.3(d).Our proposed vdW FTJ showed the highest TER for the lateral structured devices.The Au/CIPS/MoS2/Au vdW FTJ demonstrated non-volatile switching and non-destructive readout reliability and is thus considered an ideal candidate for high-TER memory.[55]

    The direct tunneling and Fowler-Nordheim tunnelling(FNT)mechanisms are the main transport mechanisms in our proposed Au/CIPS/MoS2/Au vdW FTJ.There are three main possible transport mechanisms: direct tunnelling, FNT and thermionic emission.[56]The physical phenomenon of FNT is the same as that of direct tunnelling; however, at different voltage states, FNT tunnelling occurs at higher voltages.[24]To prove that the tunnelling mechanism of carriers is also independent of thermal emission, theI-Vcharacteristics of the proposed Au/CIPS/MoS2/Au vdW FTJ at different temperatures and the corresponding TER were obtained and are shown in Fig.S4.The current exhibited a weak change in the temperature range 250-340 K for the ON and OFF states,and the TER remained almost the same.According to the current density formula for the thermionic emission[57,58]

    the thermal activation process of the thermionic emission mechanism led to strong temperature dependence(J∝T).The unchanged TER shows that the transport mechanism is independent of the thermionic emission.TheI-Vcharacteristic curve of the device under different voltages was fitted as shown in Fig.S5.It is known that if ln(I/V2)∝1/Vis satisfied FNT prevails,[59]and if ln(I/V2)∝ln(1/V)is satisfied direct tunnelling plays a leading role.Both FNT and direct tunnelling can be observed in the fitting results.[60]By fitting the experimental data, it can be found that the primary tunnelling mechanism is direct tunneling under low voltage.As the voltage increases,FNT becomes dominant.

    The proposed Au/CIPS/MoS2/Au vdW FTJ also exhibited excellent photoresponsive properties, benefiting from the light absorption properties of the MoS2semiconductor.The Au/CIPS/MoS2/Au vdW FTJ had a rather low current when the polarization direction of CIPS was downward(OFF state) (Fig.1(c)).A low dark current has been found to be critical for high-performance photodetectors.To elaborate the performance mechanism when the device was laserilluminated (449 nm laser), the energy band arrangements of the CIPS/MoS2heterojunction under different polarization states are shown in Fig.4(a); the inset of Fig.4(a) shows a schematic diagram of the device.The photogenerated electrons and holes are easily separated and collected to form photocurrents.When the polarization direction of CIPS is upward(ON state),the bending of the MoS2energy band at the interface changes from bottom to top.Due to the positive polarized charges accumulating at the interface, free electrons are attracted and free holes are repelled opposite to the current direction.The dark current is also larger, because of which the change in the photocurrent is insignificant in the ON state.When the polarization direction of CIPS is downward (OFF state), the energy band remains upward.Free electrons are repelled,and free holes are attracted due to the negatively polarized charges accumulating at the interface,the same as the current direction.At this time, the dark current is small, and the photocurrent easily increases under illumination.Therefore, the photocurrent can be mainly attributed to the contribution of photogenerated electrons under positive bias and the dark current is smaller,which improves the photoresponse behavior.

    Figure 4(b)shows the hysteresis loops(VDSwas between-4 V and 4 V) of the generated photocurrents with different polarization states under 449 nm laser irradiation.Figure 4(c) shows the dependence of photocurrent as a function of light intensity (VDS= 1.3 V).In the ON state, the magnitude of the current is almost constant.However, the photocurrent of this device in the OFF state strongly depends on the light intensity and increases with increase in light intensity.In the OFF state,the current of the device increases from 4×10-12A to 1.2×10-10A when light intensity increases from 0 to 0.57 mW·cm-2; the value ofIlight/Idarkis 30.A better linear relationship is obtained, demonstrating that the device has excellent photoresponsive performance in the OFF state.

    Fig.4.(a) Band diagrams of the photodetector in the ON and OFF states; at VDS =1.3 V, the green dotted line is the energy band without light and the 0 V bias voltage,and the solid orange line is the energy band at 1.3 V bias voltage with a 449 nm laser.(b)Hysteresis loops under different light intensities for a 449 nm laser.(c) Photocurrent as a function of light intensity in the ON and OFF states.(d) Photosensitive rate as a function of the light intensity of the device in the ON and OFF states.(e)Responsivity and detectivity of the proposed Au/CIPS/MoS2/Au vdW FTJ photodetector as a function of light intensity in the OFF state.(f)Hysteresis loop area as a function of light intensity.

    The difference in the dark currents in the ON and OFF states is the main reason for the difference in the photoresponsive performance in the ON and OFF states.The dark current in the ON state is much higher than that in the OFF state.Light stimulation onto the device in the ON state cannot easily increase the current, because the dark current in the ON state is already very high.Light stimulation onto the device in the OFF state easily increases the current, benefiting from the very slow dark current in the OFF state.A new parameter of the photosensitive rate(Rp)as a function of the light intensity is proposed here to analyze the effects of the ON and OFF states;the relationship is defined using

    whereIlightis the light current andIdarkis the dark current.As shown in Fig.4(d),the photosensitive rate in the OFF state to the light stimulation is much greater than that in the ON state.

    Photoresponsivity (Rλ) and detectivity (D?), which are important parameters for evaluating the ability to convert light signals into electrical signals,[61]were analyzed in the OFF state and are shown in Fig.4(e).RλandD?can be calculated as defined in Ref.[62]

    wherePis the light power,Ais the photosensitive area andeis the electron charge.Values ofRλ=7.1×10-2A·W-1andD?=2.06×109Jones were obtained in the OFF state.Our experiment shows excellent detector sensitivity in the OFF state.

    Light stimulation can be used to modulate the ferroelectric properties,and the ferroelectric properties can yield a new type of photodetector with the new parameters.The new parameter of the hysteresis loop area as a function of light intensity was analyzed to obtain the relationship between the ferroelectric and photodetection properties, as shown in Fig.4(f).The linear relationship provides a new characteristic for analyzing the photodetector.

    The modulated relationship between ferroelectric TER and photosensitive rateRpcan be summarized by

    The photosensitive rates(Rp)in the different ferroelectric ON and OFF states are defined as

    It should be mentioned that a larger TERdarkis the key point for obtaining two types of photodetection properties in a device.For our proposed ferroelectric CIPS/semiconductor MoS2-based heterojunction,if TERdarkis already large enough(~104),the dark current in the ON state(~10-8A)is already comparable to or of the same order as the current of the MoS2junction under light irradiation and the photoresponsive performance in the ON state is weak.

    Schematic diagrams of the ferroelectric TER parameter in the ferroelectric/semiconductor heterojunction and the photoelectricIlight/darkparameter in the semiconductor junction are shown in Fig.5.When the TERON/OFFis the same order asIlight/dark, the photoresponsive performance in the ON state is negligible.Two types of photodetection properties in one device can be obtained.

    Fig.5.Schematic diagrams of the ferroelectric TER and the photoelectric Ilight/dark parameter in the ferroelectric/semiconductor heterojunction and semiconductor junction.

    3.Conclusion

    A combination of higher TER and excellent optoelectronic properties can be obtained by using a lateral structured Au/CIPS/MoS2/Au vdW FTJ.CIPS polarization directions are easily modulated by an applied voltage to form the ON and OFF states.The barrier width and height at the CIPSMoS2interface were modulated to improve the TER.The ferroelectric and photodetection properties modulated each other.The results show that the devices composed of 2D ferroelectric materials and 2D semiconductors exhibit excellent nonvolatile and photoresponsive performance,providing an excellent method for developing high-TER memristors or preparing new photodetectors.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874244 and 11974222).

    一夜夜www| 欧美变态另类bdsm刘玥| 国产午夜精品久久久久久一区二区三区| 免费黄网站久久成人精品| 青春草亚洲视频在线观看| 一进一出抽搐gif免费好疼| 麻豆一二三区av精品| 99热这里只有是精品在线观看| 亚洲内射少妇av| 色噜噜av男人的天堂激情| 人体艺术视频欧美日本| 亚洲av成人精品一区久久| 久久国内精品自在自线图片| 99九九线精品视频在线观看视频| 久久久成人免费电影| 精品无人区乱码1区二区| 免费搜索国产男女视频| 成人特级av手机在线观看| 久久精品国产亚洲av香蕉五月| 人妻夜夜爽99麻豆av| 麻豆一二三区av精品| 校园春色视频在线观看| 搡老妇女老女人老熟妇| 波多野结衣高清作品| 男女啪啪激烈高潮av片| 国产伦一二天堂av在线观看| 丝袜美腿在线中文| 国产精品av视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 老师上课跳d突然被开到最大视频| 非洲黑人性xxxx精品又粗又长| av视频在线观看入口| 国产精品一及| 国产高清不卡午夜福利| 日本一本二区三区精品| 国产亚洲精品久久久com| 日本免费a在线| 日韩欧美 国产精品| 插逼视频在线观看| 在线播放无遮挡| 免费观看精品视频网站| 国产v大片淫在线免费观看| 亚洲欧美清纯卡通| 日韩三级伦理在线观看| 99久久人妻综合| 夜夜夜夜夜久久久久| 久99久视频精品免费| 色吧在线观看| 99视频精品全部免费 在线| 欧美色欧美亚洲另类二区| 99国产精品一区二区蜜桃av| www.av在线官网国产| 国产视频内射| 久久韩国三级中文字幕| 亚洲精品日韩av片在线观看| a级一级毛片免费在线观看| 成人二区视频| 爱豆传媒免费全集在线观看| 麻豆久久精品国产亚洲av| 亚洲欧美日韩东京热| 尤物成人国产欧美一区二区三区| 干丝袜人妻中文字幕| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 91aial.com中文字幕在线观看| 又黄又爽又刺激的免费视频.| 成人三级黄色视频| 禁无遮挡网站| 美女黄网站色视频| a级毛片a级免费在线| 欧美+亚洲+日韩+国产| 国内精品久久久久精免费| 午夜精品一区二区三区免费看| 深爱激情五月婷婷| 天堂√8在线中文| 有码 亚洲区| 哪里可以看免费的av片| 日韩欧美一区二区三区在线观看| 永久网站在线| 小说图片视频综合网站| 欧美人与善性xxx| 久久人妻av系列| 成熟少妇高潮喷水视频| 能在线免费看毛片的网站| 日本av手机在线免费观看| 久久婷婷人人爽人人干人人爱| 日韩中字成人| 日韩精品有码人妻一区| 一区二区三区高清视频在线| 国产精品电影一区二区三区| 可以在线观看毛片的网站| 99精品在免费线老司机午夜| 99热这里只有是精品50| 中文字幕久久专区| 99热精品在线国产| 国产日韩欧美在线精品| 亚洲图色成人| 午夜福利成人在线免费观看| 久久韩国三级中文字幕| 欧美一区二区国产精品久久精品| 日本成人三级电影网站| 亚洲美女搞黄在线观看| 国产精品伦人一区二区| 中国美女看黄片| 菩萨蛮人人尽说江南好唐韦庄 | 一进一出抽搐gif免费好疼| 又爽又黄无遮挡网站| 日本色播在线视频| 两个人的视频大全免费| av天堂中文字幕网| 欧美+日韩+精品| 亚洲色图av天堂| 大香蕉久久网| 少妇高潮的动态图| 成人综合一区亚洲| 国产色婷婷99| 精品人妻一区二区三区麻豆| 日本在线视频免费播放| 真实男女啪啪啪动态图| 午夜精品一区二区三区免费看| 国产综合懂色| 又爽又黄a免费视频| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 亚洲av电影不卡..在线观看| 欧美高清性xxxxhd video| 久久久久久久久久久丰满| 夜夜爽天天搞| 青春草亚洲视频在线观看| 丰满人妻一区二区三区视频av| 日韩欧美 国产精品| 人妻制服诱惑在线中文字幕| 国产欧美日韩精品一区二区| 青春草视频在线免费观看| 97超碰精品成人国产| 免费看光身美女| 久久精品国产亚洲av涩爱 | 国产一级毛片七仙女欲春2| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色综合大香蕉| 久久欧美精品欧美久久欧美| 成人亚洲欧美一区二区av| 欧美最新免费一区二区三区| 一个人看的www免费观看视频| 日韩欧美国产在线观看| 久久精品国产亚洲av天美| 亚洲美女搞黄在线观看| 在线播放国产精品三级| 插阴视频在线观看视频| 免费观看的影片在线观看| 综合色丁香网| 精品午夜福利在线看| 国产精品免费一区二区三区在线| 变态另类丝袜制服| 夫妻性生交免费视频一级片| 欧美+日韩+精品| 国产在线精品亚洲第一网站| 最后的刺客免费高清国语| 欧美性感艳星| 午夜老司机福利剧场| 国产黄片视频在线免费观看| 婷婷六月久久综合丁香| 久久人人精品亚洲av| 久久久久久伊人网av| 国产精品精品国产色婷婷| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 久久午夜亚洲精品久久| 久久韩国三级中文字幕| 三级毛片av免费| 波多野结衣巨乳人妻| 久久热精品热| 国产极品天堂在线| 精品人妻偷拍中文字幕| 岛国毛片在线播放| 国产美女午夜福利| 日本欧美国产在线视频| 亚洲av免费高清在线观看| 成年免费大片在线观看| 久久久a久久爽久久v久久| 在线播放无遮挡| 两个人的视频大全免费| 国产精品一及| а√天堂www在线а√下载| 亚洲欧美日韩卡通动漫| 两个人视频免费观看高清| 国产精品久久视频播放| 精品久久久久久久末码| 中国美女看黄片| 黑人高潮一二区| 国内少妇人妻偷人精品xxx网站| 精品午夜福利在线看| 夜夜爽天天搞| 久久精品综合一区二区三区| 日韩一本色道免费dvd| 69av精品久久久久久| 国产精品爽爽va在线观看网站| 成人漫画全彩无遮挡| 国产亚洲91精品色在线| 成年女人永久免费观看视频| 毛片一级片免费看久久久久| 能在线免费看毛片的网站| 日韩,欧美,国产一区二区三区 | 26uuu在线亚洲综合色| 少妇熟女aⅴ在线视频| 亚洲丝袜综合中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 免费黄网站久久成人精品| 久久久久网色| 成人亚洲精品av一区二区| 黄色欧美视频在线观看| 久久6这里有精品| 边亲边吃奶的免费视频| 精品人妻偷拍中文字幕| 亚洲精品久久久久久婷婷小说 | 国模一区二区三区四区视频| 国产精品一及| 日本免费a在线| 麻豆精品久久久久久蜜桃| 国产精品av视频在线免费观看| 色吧在线观看| 国产精品女同一区二区软件| 国产精品精品国产色婷婷| 精品免费久久久久久久清纯| 长腿黑丝高跟| 熟妇人妻久久中文字幕3abv| 国语自产精品视频在线第100页| 久久久午夜欧美精品| 国产三级中文精品| 国产综合懂色| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 日韩在线高清观看一区二区三区| 国产午夜精品一二区理论片| 欧美潮喷喷水| 免费观看精品视频网站| 欧美潮喷喷水| 国产成人freesex在线| 久久久久久久久久久丰满| 又粗又硬又长又爽又黄的视频 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲,欧美,日韩| 亚洲国产精品合色在线| 亚洲中文字幕日韩| 国产一区二区三区av在线 | 亚洲欧美日韩高清在线视频| 国产精品1区2区在线观看.| 又粗又爽又猛毛片免费看| 久久久久久久久大av| 国产精品三级大全| 国产精品爽爽va在线观看网站| 久久6这里有精品| 插阴视频在线观看视频| 九九爱精品视频在线观看| 久久精品国产亚洲av涩爱 | 午夜福利在线观看吧| 日韩精品有码人妻一区| 色综合亚洲欧美另类图片| 欧美一区二区亚洲| 亚洲av第一区精品v没综合| 男人和女人高潮做爰伦理| 成熟少妇高潮喷水视频| 国产午夜精品论理片| 国产乱人视频| 成人特级av手机在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲91精品色在线| 欧美日韩乱码在线| 欧美成人a在线观看| 国产精品美女特级片免费视频播放器| 免费在线观看成人毛片| 国产精品伦人一区二区| 美女 人体艺术 gogo| 性插视频无遮挡在线免费观看| 一级毛片久久久久久久久女| 午夜激情欧美在线| 欧美变态另类bdsm刘玥| 日本五十路高清| 青春草亚洲视频在线观看| 成人av在线播放网站| 亚洲在线观看片| 久久久久久久久久久免费av| 国产探花极品一区二区| 国产伦在线观看视频一区| 日韩精品青青久久久久久| 国产精品三级大全| 一进一出抽搐动态| 国产久久久一区二区三区| 亚洲无线观看免费| 三级经典国产精品| 久久精品夜夜夜夜夜久久蜜豆| 97超视频在线观看视频| 一边亲一边摸免费视频| 久99久视频精品免费| av专区在线播放| 国产乱人视频| or卡值多少钱| 久久久精品94久久精品| 欧美成人a在线观看| 国产精品一二三区在线看| 久久精品久久久久久久性| 国产在视频线在精品| 欧美另类亚洲清纯唯美| 国产又黄又爽又无遮挡在线| 日韩视频在线欧美| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人与动物交配视频| 最新中文字幕久久久久| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 一区二区三区免费毛片| 尤物成人国产欧美一区二区三区| 国产大屁股一区二区在线视频| 内地一区二区视频在线| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 日韩中字成人| 日本爱情动作片www.在线观看| videossex国产| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| 免费看a级黄色片| 黄色视频,在线免费观看| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 人妻制服诱惑在线中文字幕| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 青春草亚洲视频在线观看| 国产淫片久久久久久久久| 午夜久久久久精精品| 国产精品不卡视频一区二区| 一进一出抽搐gif免费好疼| 丰满人妻一区二区三区视频av| 日韩成人av中文字幕在线观看| 在线免费观看不下载黄p国产| 亚洲人成网站高清观看| 国产黄片美女视频| 啦啦啦韩国在线观看视频| 色综合色国产| 亚洲成人中文字幕在线播放| 我要看日韩黄色一级片| 熟女人妻精品中文字幕| 国产日韩欧美在线精品| av天堂中文字幕网| 亚洲欧美日韩无卡精品| 精品午夜福利在线看| 性色avwww在线观看| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 久久婷婷人人爽人人干人人爱| 亚洲电影在线观看av| 日日撸夜夜添| 久久午夜福利片| 亚洲国产精品久久男人天堂| www.av在线官网国产| 免费观看a级毛片全部| 舔av片在线| 久久人人爽人人片av| 赤兔流量卡办理| 18+在线观看网站| 色视频www国产| 久久精品国产鲁丝片午夜精品| 看十八女毛片水多多多| 亚洲av免费在线观看| 成人二区视频| 99久久九九国产精品国产免费| 欧美精品国产亚洲| 少妇熟女欧美另类| 国产午夜精品一二区理论片| 亚洲真实伦在线观看| 国产一区二区亚洲精品在线观看| 国产私拍福利视频在线观看| 黄片wwwwww| 少妇丰满av| 男人的好看免费观看在线视频| 国产精品电影一区二区三区| 变态另类成人亚洲欧美熟女| 国产三级中文精品| 观看美女的网站| 少妇熟女欧美另类| 欧美日本视频| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 亚洲成a人片在线一区二区| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 国内久久婷婷六月综合欲色啪| 亚洲av免费高清在线观看| 国内久久婷婷六月综合欲色啪| 97超碰精品成人国产| 中文欧美无线码| 亚洲av熟女| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜 | 国产一区二区在线av高清观看| 简卡轻食公司| av专区在线播放| 国产三级中文精品| 深爱激情五月婷婷| 久久久国产成人精品二区| 看免费成人av毛片| 看非洲黑人一级黄片| 欧美成人a在线观看| 午夜久久久久精精品| 午夜福利在线观看免费完整高清在 | 级片在线观看| 在线天堂最新版资源| 色吧在线观看| 亚洲国产色片| 中文字幕av在线有码专区| 久久99蜜桃精品久久| 日本av手机在线免费观看| 亚洲久久久久久中文字幕| 国产一级毛片在线| 三级经典国产精品| 爱豆传媒免费全集在线观看| 成人性生交大片免费视频hd| 免费一级毛片在线播放高清视频| av天堂在线播放| 69人妻影院| 国产色爽女视频免费观看| 国产亚洲精品久久久久久毛片| 欧美bdsm另类| 一级毛片久久久久久久久女| 国产一级毛片在线| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 成人二区视频| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 桃色一区二区三区在线观看| 久久精品91蜜桃| 九色成人免费人妻av| 韩国av在线不卡| 国产精品99久久久久久久久| 亚洲精品粉嫩美女一区| 国产蜜桃级精品一区二区三区| 天美传媒精品一区二区| 别揉我奶头 嗯啊视频| av.在线天堂| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满| 一区二区三区高清视频在线| 欧美日韩乱码在线| 国内精品久久久久精免费| 永久网站在线| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 3wmmmm亚洲av在线观看| .国产精品久久| 国产精品日韩av在线免费观看| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩东京热| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看 | 精品不卡国产一区二区三区| 国产精品女同一区二区软件| 国产精品一区www在线观看| 欧美高清成人免费视频www| 日韩一本色道免费dvd| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| 国产精品无大码| 老司机影院成人| 国产精品99久久久久久久久| 欧美精品国产亚洲| 精品日产1卡2卡| 日本五十路高清| 亚洲av熟女| 亚洲丝袜综合中文字幕| 日韩中字成人| av女优亚洲男人天堂| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 韩国av在线不卡| 一级黄色大片毛片| or卡值多少钱| 久久久久久久久久久丰满| 久久精品人妻少妇| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 婷婷亚洲欧美| 精品午夜福利在线看| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区在线av高清观看| 久久精品久久久久久久性| 成人特级黄色片久久久久久久| 18禁在线播放成人免费| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 国产成人a区在线观看| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 大香蕉久久网| 亚洲国产欧美人成| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 成人三级黄色视频| 熟女人妻精品中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久久久久大精品| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说 | 亚洲成人中文字幕在线播放| 1024手机看黄色片| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 日韩视频在线欧美| 99久久精品热视频| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| av天堂在线播放| 精品人妻熟女av久视频| 精品熟女少妇av免费看| 99riav亚洲国产免费| 黄色日韩在线| 女人十人毛片免费观看3o分钟| 欧美高清成人免费视频www| 亚洲内射少妇av| 亚洲人成网站高清观看| 美女国产视频在线观看| 欧美丝袜亚洲另类| 九草在线视频观看| 日韩强制内射视频| 一级毛片aaaaaa免费看小| 九九久久精品国产亚洲av麻豆| 亚洲av不卡在线观看| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 边亲边吃奶的免费视频| 亚洲四区av| 熟女电影av网| 一区二区三区免费毛片| 岛国毛片在线播放| 一夜夜www| 亚洲,欧美,日韩| 变态另类丝袜制服| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 国产一区二区在线观看日韩| 如何舔出高潮| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 性插视频无遮挡在线免费观看| 国产精品乱码一区二三区的特点| 日韩欧美三级三区| 99久久成人亚洲精品观看| 黄片wwwwww| 国产一级毛片在线| 亚洲欧美精品专区久久| 美女 人体艺术 gogo| 国产高潮美女av| 最近手机中文字幕大全| 黄色日韩在线| 国产成人a∨麻豆精品| 亚洲国产精品合色在线| 日韩成人av中文字幕在线观看| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 看黄色毛片网站| 亚洲av免费在线观看| 成人二区视频| 搡女人真爽免费视频火全软件| 晚上一个人看的免费电影| 国产 一区精品| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 韩国av在线不卡| 久久久午夜欧美精品| 精品无人区乱码1区二区| 欧美+亚洲+日韩+国产| 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 国产片特级美女逼逼视频| 熟女电影av网| 春色校园在线视频观看| 高清午夜精品一区二区三区 | kizo精华| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 久久久久久大精品| 在线国产一区二区在线| 日韩强制内射视频| 国产伦一二天堂av在线观看| 日本免费a在线| 亚洲在久久综合| 欧美zozozo另类| 亚洲av二区三区四区| 一本久久中文字幕| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说 | 亚洲国产欧美人成| 少妇的逼水好多| av在线天堂中文字幕| 大香蕉久久网| 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪|