• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rab proteins implicated in lipid storage and mobilization

    2014-02-11 06:11:33RobertScottKissTommyNilsson
    THE JOURNAL OF BIOMEDICAL RESEARCH 2014年3期

    Robert Scott Kiss,Tommy Nilsson

    aDepartment of Medicine,McGill University,Montreal,Canada;

    bResearch Institute of McGill University Health Centre,Montreal,Canada.

    Rab proteins implicated in lipid storage and mobilization

    Robert Scott Kissa,b,?,Tommy Nilssona,b

    aDepartment of Medicine,McGill University,Montreal,Canada;

    bResearch Institute of McGill University Health Centre,Montreal,Canada.

    Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases.In the liver,excess accumulation of triacylglycerol(TG)leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis.This places individuals at risk of developing cirrhosis,hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs.Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state.Pathological accumulation of cholesteryl ester(CE)in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease.Overconsumption of dietary fat,cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals.Dietary regimes have proven futile and barring surgery,no realistic alternatives are at hand as effective drugs are few and not without side effects.Overweight and obesity-related diseases are no longer restricted to the developed world and as such,constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step,elucidation of the molecular pathophysiology underlying each associated disease state.The lipid droplet(LD),an up to now overlooked intracellular organelle,appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs.As the molecular machinery and mechanisms of LDs of each cell type are being elucidated,regulatory proteins used to control various cellular processes are emerging.Of these and the subject of this review,small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.

    lipid droplet,rab protein,effector,GTPase,GAP,GEF

    INTRODUCTION

    Rab proteins are cytosolic small molecule GTPases that are recruited to the cytosolic leaflet of intracellular membranes where they function in various cellular processes.Like other small GTPases,their core function is to act as molecular switches cycling between an‘‘on’’and‘‘off’’mode through exchange of bound GDP for GTP and subsequent hydrolysis of bound GTP to GDP.This cycling between an‘‘off’’(RabGDP)and an‘‘on’’(RabGTP)state is accompanied by a conformational change that alters its interaction with effector and accessory molecules.Apart from their role as molecular switches,Rab proteins can also be viewed as macromolecular organizers regulating the assembly of protein complexes.

    Rab proteins are distinguished by a post-translational modification,prenylation[1,2],catalyzed by gera-nylgeranyltransferase,or geranylgeranyl transferase II which adds two(usually)geranylgeranyl groups to cysteines present at their carboxy termini.A note of interest is that without these lipid modifications,the Rab protein is effectively inhibited.This can be achieved upon addition of statin[3,4]that impairs the synthesis of the prenyl groups(a byproduct of cholesterol synthesis). Statin is a class of drugs commonly prescribed to patients with elevated cholesterol levels and cardiovascular disease and acts as an inhibitor of HMG-CoA reductase, a key enzyme in cholesterol synthesis.Pleiotropic beneficial effects independent of the lowering of cholesterol levels observed upon administrating statins might be explained through inhibition of Rab proteins and other small GTPases[5]though equally and perhaps likely,also some of its side effects.For prenylation,Rab proteins are first bound by the Rab escort protein(REP)via a conserved region and then presented to the Rab geranylgeranyltransferase[2].Once Rab proteins are prenylated,the lipid anchor(s)ensure that Rabs are no longer soluble and here,the REP plays an important role in binding and hiding the geranylgeranyl groups from the hydrophilic environment of the cytosol and in the delivery of the Rab protein to the relevant cell membrane.As many as 70 Rab proteins are predicted in the human genome,with the majority of unknown function.Most are evolutionarily conserved and exist in diverse species (source:NCBI Gene).As an example,Rab5a,is found in mammals,amphibians(X.laevis 97.7%sequence identity),fish(D.rerio 98.2%),nematodes(C.elegans 88.9%),insects(D.melanogaster 83.9%),mold (N.crassa 72.2%),plant(A.thaliana 72.5%),and yeast (S.cerevisiae 64.6%).With such a high degree of sequence identity over a broad range of species,this points to Rab proteins as conserved key regulators of cellular events.

    Transition from the‘‘off’’(RabGDP)to the‘‘on’’(RabGTP)state is facilitated by a guanine nucleotide exchange factor(GEF)and coincides with the recruitment to its site of action,e.g.a specific membrane domain enabling the Rab protein to bind and assemble effector molecules for specific functions(e.g.membrane mobility,membrane fusion).The corresponding transition from the‘‘on’’to the‘‘off’’state is catalyzed by a GTPase activating protein(GAP)enabling hydrolysis of bound GTP to GDP.A GDP dissociation inhibitor(GDI)prevents the release of the GDP and thereby reactivation of the Rab protein[6].Putatively, each Rab protein has its own cohort of GEF,GAP, GDI proteins,themselves subject to cellular regulation, yielding versatile and interconnected molecular machineries.Targeting information within each Rab protein selectively recruits it to its preferred membrane domain. This can be a sub-compartment of an intracellular membrane.As an example,the early endosome recruits at least three Rab proteins:Rab4,Rab5 and Rab11. These Rabs proteins do not colocalize or overlap in their function.Rab4 is recruited to a subdomain destined for rapid recycling and Rab11 to one destined for slow recycling whereas Rab5 is recruited to a subdomain destined for transport/conversion to a late endosome[7]. In this way,although all three exist on the same membrane,they participate in different processes.

    Rab proteins share little sequence identity between themselves.Whereas the N-terminal region of Rab proteins responsible for binding GTP and hydrolyzing the GTP is essentially conserved with an active site containing serine and glutamine residues,the remainder of the protein varies greatly[8].This variability in sequence enables the Rab proteins to bind different effector molecules and to specify their site of action[9]. Contained within the Rab protein are targeting motifs as well as interaction domains where,for example,the C-terminal residues of Rab7(residues 174-195)target it to late endosomes[8].A primary targeting mechanism for Rab proteins is also through their interaction with their corresponding GEF[10-12]that binds to specific phospholipids that,in turn,serve as membrane targeting domains.The GEFs often possess phosphatidylinositol (PI)binding domains.PI and its phosphorylated variants act as precursors for second messengers,regulation of cellular processes as well as in the recruitment of proteins to the cytosolic leaflet of phosphobilayers. Furthermore,the synthesis and degradation of these PI species is regulated,and consequently,recruitment of the subclass of proteins that bind to these lipids.There is also evidence to suggest that the curvature of the acceptor membrane plays a role in the selection and recruitment of Rab proteins[13].

    At the site of action,apart from binding GEF,GAP and GDI proteins,each Rab protein regulates assembly of proteins that often act as scaffolds for further recruitment of proteins resulting in large molecular complexes(e.g.motor protein complexes).Rab5 has been shown to interact with at least 20 identified proteins through the use of Rab5-GST fusion proteins in affinity chromatography preloaded with either GTP or GDP and after binding to effector molecules,eluted with GDP or GTP,respectively[14]:Rabaptin-5[15],RIN3[16], Rabex-5 GEF[17],Rabenosyn-5[18,19],Rabankyrin-5[20], EEA1[21],PI-3 kinases hVPS34 and p85α-p110β[22,23], PI-4,PI-5 phosphatases[24],kinesin type motor proteins for microtubule dependent movement[25],APPL1 and APPL2[26],syntaxin-13[27],GGAs[28],Huntingtin and HAP40[29].The nature of the function of Rab proteins (cycling between the‘‘on’’and‘‘off’’state)may makefor only transient interactions with effectors,which from an experimental perspective,are difficult to trap.An elegant approach to visualize Rab6 in its‘‘on’’state (Rab6GTP)based on an expressed phage display-derived antibody fused to enhanced green fluorescent protein showed a preferred location of Rab6GTPto Golgi membranes and transport intermediates[30].Combined with affinity-based chromatography,such molecular approaches should prove useful in further elucidating the various processes involving Rab proteins and in the biochemical isolation of involved molecular complexes.

    THE LIPID DROPLET AS AN ORGANELLE

    Cellular organelles(eg.ER,Golgi,mitochondria, peroxisome,nucleus,TGN,endosome system,lysosome,vacuole,chloroplast)have long since been defined and are relatively well characterized whereas the lipid droplet(LD)only recently gained organelle status.Lipid droplets were originally thought to be static reservoirs of neutral lipids(e.g.TGs and CEs)acting as energy stores for times of need and buffers for potentially toxic lipids(e.g.free fatty acids and cholesterol).Coated by a monolayer of phospholipids that shields neutral lipids of the core from the aqueous cytosol,the LD is unique in its composition.It gained its organellar status after it was shown that LDs possess specific coat and regulatory proteins.Like other organelles,LDs also utilize microtubules for intracellular movement from or to the cell periphery and undergo fission and fusion events.The LD is closely linked to the energy state of the cell(reviewed in[31-34])and proteins that are recruited to its surface[35,36]include Rab proteins and other small GTPases,some with welldefined functions.

    The mechanism underlying LD formation is not fully understood.A prevailing hypothesis is that LDs originate from the ER[34].Here,neutral lipids are synthesized and inserted between the lumenal and cytosolic leaflet of the ER membrane.This leads to a bulging of the cytosolic leaflet followed by a fission event of the cytosolic leaflet releasing the LD into the cytosol.As neutral lipids are free to diffuse laterally,a mechanism must be invoked to enable the LD bulge to grow by preventing neutral lipids from equilibrating throughout the vast ER membrane system. One possibility is that LDs form from micro-domains devoid of transmembrane proteins enabling the two leaflets to separate and that further bulging is promoted by curvature‘‘friendly’’phospholipids[31].Another possibility is to first bud off a vesicular structure using mechanisms similar to those involved in intracellular vesicle formation(e.g.COPI,COPII and clathrincoated vesicles)followed by an enlargement of the intra-leaflet space through TG and CE synthesis/insertion(for review,see[37]).A role for ER membranes in LD biogenesis is supported by the notion that many ER proteins have been ascribed to the surface of the LD[34].An alternative explanation for the presence of ER proteins is that lipid droplets often appear in close juxta-position to other organelles such as the ER,the mitochondria,peroxisomes and membranes of the endocytic pathway[35,38-41].LDs can also be encircled and degraded within autophagosomes,a process termed lipophagy,which results in the mass liberation of fatty acids and cholesterol[42-45].Finally,some LD coat proteins are delivered to the LD via COPI and COPII mediated trafficking from the ER/Golgi[46].This interdependence between the LD and other organelles underscores its role in central functions of the cell including lipid metabolism,metabolic regulation and signaling[34]. The LD also appears linked to ER stress and to apoptosis,functional connections implied by proteins found associated to its surface.

    The elucidation of the LD proteome is a work in progress.Many high-confidence LD-associated proteins have been identified separating into two partially overlapping populations,those that appear functionally associated and those that appear physically associated. Co-immunoprecipitation,yeast-2-hybrid and affinity purification using known LD-associated proteins as bait have yielded multiple proteins and through the application of liquid chromatography tandem mass spectrometry(LC-MS/MS),several hundred putative LD proteins have been described.LDs can be easily purified from cells and tissue due to their buoyant nature through sucrose gradient centrifugation.Following lipid extraction,associated proteins can then be readily detected.While LC-MS/MS is sensitive and capable of identifying several thousands of proteins in a given sample in a quantitative mode,it does so indiscriminately in that it highlights both real LD proteins and contaminating proteins.Assuming that the LD proteome is composed of both abundant(e.g.PLIN1-5) and less abundant proteins(e.g.Rab18),simply thresholding based on relative abundance is not feasible.Rather,the LD fraction needs to be analyzed in the context of the cell homogenate,cytosol and ideally, other protein-rich and/or associated organelles such as the mitochondria and the ER.Proteins can then be assigned to the LD with higher confidence following hierarchal clustering and heat map-based readout or through protein-correlation profiling using known LD markers as guides[47-49].There is an upper estimate of about 500 proteins ascribed to the LD surface of which50 have been independently verified.These are referenced in[49-64]and reviewed in[33,65].A complementary approach and one also used to independently verify LD candidate proteins is fluorescence imaging of endogenous or expressed proteins.The resulting proteome of LDs,pending verification,is likely to differ between cell types and even within the same cell.LDs from adipose tissue[52,66],differ greatly from intestinal[67],intramuscular[68]or macrophage[62]LDs,as they serve non-overlapping roles.The classic LD binding proteins,the‘‘PAT’’proteins(also referred to as PLIN proteins):perilipin, adipocyte differentiation-related protein(ADRP), TIP47;are not on every type of LD.There is even a suggestion that LDs in the same cell may have different proteomes[69].The LD proteome is also adaptable,in that the metabolic state of the cell determines the LD proteome[51].Regulatory proteins such as the Rab proteins here play important functions.

    LD-ASSOCIATED RAB PROTEINS

    There has been at least one proteomics-based report of each of these Rabs being on an isolated LD: Rab1a,1b,2a,2b,3a,4a,4b,5a,5b,5c,7,8a,8b, 10,11a,11b,12,13,14,18,19b,21,22a,24,31,34, 35,39,40c,and 41[49-64].Following on from the discussion above,this review is limited to those that have been confirmed through independent techniques,such as imaging.These are Rab1,5,7,and 18.Rab18 is the only true LD resident Rab protein with extensive evidence for a role in LD function.Rab1,5,and 7 have also been demonstrated to interact with LDs but with more circumstantial evidence,and will be described thereafter.

    Rab 18

    Rab18 has been shown to localize to LDs both at the light and ultrastructural level.Expression of a fusion protein between Rab18 and enhanced green fluorescent protein showed typical peri-LD staining typical of surface-associated proteins and confirmed by immunoelectron microscopy showing Rab18 in direct association with the monolayer surface[70,71].Rab18 appear localized only to a subset of LDs in both adipocytes and non-adipocyte cell lines[70].In cell culture experiments,expression of a dominant active mutant form of Rab18 revealed predominant localization to LDs.In contrast,expression of a dominant negative mutant form of Rab18 showed an exclusive Golgi-like distribution[70-72].This form specifically enhanced retrograde Golgi-ER transport[72]and knockdown of Rab18 through RNA silencing both disrupts the Golgi apparatus and reduces the normal secretion pathway[72].It has been shown that Rab18 expression increases during differentiation in 3T3-L1 cells[73]and that insulin treatment induces recruitment of Rab18 to LDs.Overexpression of Rab18 also increases basal lipogenesis,while knockdown of Rab18 appears to impair the lipogenic response to insulin.This suggests a role for Rab18 in promoting TG accumulation[73]. Evidence also exists to support a role for Rab18 in lipolysis[71,74]and that Rab18 levels in adipose tissue correlate with obesity as well as with gender[75]. Despite being well characterized as a LD-associated protein,the function of Rab18 is yet to be determined. At least three possible roles can be envisaged:1)A regulatory role in LD-ER interaction;overexpression of Rab18 causes a close apposition of LDs to the rough ER with possible implications in the storage and mobilization of lipid esters in LDs[71].2)A regulatory role for Rab18 in the fusion and fission of LDs;lipogenic and lipolytic stimulation associate with increased motility[76-79]and increased fusion and fission[77]events of LDs,respectively.As Rab proteins have been implicated in the regulation of SNARE-dependent fusion events elsewhere in the cell,it is possible that the observed stimulatory role of Rab18 in fusion and fission of LDs involves the regulation and recruitment of SNAREs and associated proteins[64].3)A regulatory role in lipolysis through ATGL;Rab18 is recruited and localized to LDs undergoing lipolysis and evidence suggests that Rab18 recruits ATGL,the primary lipase for LD TG hydrolysis,to the LD in a COPII-dependent manner[46].Visualization of de novo LD synthesis by fluorescence microscopy[70]also shows that Rab18 does not interact with LDs at an early stage.Only once the LDs are larger,does Rab18 bind to LDs.These observations suggest that Rab18 is not involved in LD formation(e.g.budding from ER)or initial homotypic fusion events of small LDs.

    The role of Rab18 in LD function(s)is highlighted in several diseases(for a complete review of diseases associated with lipid droplet abnormalities,please see[53]).Hepatitis C virus(HCV)assembly is dependent on the association of core proteins with LDs.Using a proteomics-based strategy,Salloum et al.found that Rab18 interacts with the HCV nonstructural protein NS5A[80].The Rab18Q67Ldominant active mutant bound more strongly to NS5A than did the Rab18S22Ndominant negative mutant.These results support a model in which the specific interactions of the viral protein NS5A with Rab18 promote the physical interaction between assembling HCV virions and lipid droplets[80]. Hepatitis B virus X protein(HBx)promotes development of hepatocellular carcinoma(HCC)through induction of dysregulation of lipogenesis.In this study,You et al.showed that the expression levels of Rab18 were positively correlated with HBx expression levels in clinical tissues,and HBx induced expression of Rab18 in p21-HBx transgenic mice and hepatoma cell lines[63].This study also demonstrated that cyclooxygenase-2 and 5-lipoxygenase were able to stimulate the Rab18 promoter through activating transcription factor activator protein 1(AP-1)and cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB).In addition,the authors found that miR-429, a small noncoding microRNA molecule,was able to bind to the 3′untranslated region of Rab18,regulating its expression level.As HBx was shown to downregulate miR-429 in hepatoma cells,this opens up the possibility that HBx enhances hepatocarcinogenesis through the dysregulation of lipogenesis and proliferation of hepatoma cells,involving two pathways,HBx/ COX-2/5-LOX/AP-1/CREB/Rab18 and HBx/miR-429/ Rab18[63].

    Additional clues to the role of Rab18 comes from studies of the Warburg micro syndrome,an autosomal-recessive developmental disorder characterized by brain,eye,and endocrine abnormalities[81].Previous studies suggested that mutations in Rab3GAP1/2 were causative for disease development[82,83].Bem et al.performed autozygosity mapping in consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in Rab18(Leu24Gln,founder mutation;a homozygous exon 2 deletion resulting in a frame shift mutation;an anti-termination mutation of the stop codon X207QextX20;and an in-frame arginine deletion Arg93 del)[84].The clinical features of Warburg micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and Rab18 mutations are indistinguishable,although no interaction between Rab3 and Rab18 has been demonstrated.It is therefore possible that RAB3GAP1 and RAB3GAP2 act on Rab18 though no evidence exist to suggest that these activating proteins can be found on the LD.

    Rab18 may also be indirectly involved in a number of other diseases involving LDs including lipodystrophy, cachexia,neutral lipid storage disease,metabolic syndrome,NASH and atherosclerosis(reviewed in[53]),but these will have to be independently confirmed.With regards to the known involvement of Rab18 in disease, it is important that the role of Rab18 is elucidated at the mechanistic and molecular level.

    Rab 1

    Rab1(with two isoforms Rab1a and Rab1b)has been implicated in multiple intracellular trafficking processes,including transport between ER and Golgi[85],autophagosome formation[86],early endosome motility and sorting[87],and tethering of p115 to SNAREs[88].Rab1a recruitment of the tethering factor p115 into a SNARE complex promotes COPII vesicles budding from the ER for their fusion with Golgi membranes and or recycling Golgi-derived COPI vesicles[88,89].It has been shown that Rab1b interacts with the COPII components Sec23,Sec24 and Sec31 and that inhibition of Rab1b changes the COPII phenotype,suggesting a key regulatory role[90].It has also been shown that Rab1a is associated with early endocytic vesicles and required for their microtubule-based motility[87].In Rab1a knockdown cell lines,endocytosed ligands failed to segregate from their receptor and consequently did not reach lysosomes for degradation,indicating a defect in early endosome sorting.Rab1a recruits the minus end directed kinesin motor,KifC1,to early endocytic vesicles[87].None of these described functions associates Rab1 with the LD.In contrast,Rab1 and its cognate GAP,TBC1D20,are recruited to LDs and essential for HCV assembly and virulence[91].Expression of a dominant negative mutant of Rab1 also inhibits LD formation though whether this is through the interdependence between the biogenesis of LDs and COPI and COPII components is unclear[91].

    Rab 5

    Rab5(with three isoforms Rab5a,Rab5b and Rab5c)has been implicated in multiple intracellular trafficking processes,including early endosome sorting[18,92],recruitment of SNAREs and tethering[93,94]. Interestingly,none of these studies suggests an interaction with LDs.Based on the current literature,there is no verifiable physiological mechanism that would include the interaction of early endosomes and LDs, despite many proteomic studies that suggest otherwise. Studies demonstrated that Rabs associated with LDs regulate membrane traffic[95,96].Using an in vitro reconstitution assay,Liu et al.took advantage of the ability to remove Rabs by the Rab GDI in a GDP-dependent reaction,and to recruit Rabs to Rab-depleted LDs from cytosol in a GTP-dependent reaction[95,96].This method can selectively measure the recruitment of Rabs and their effectors to LDs.They showed that both GTP bound active or GDP bound inactive Rab5 are targeted to LDs,but that only the active form recruits EEA1. They proposed that the Rabs associated with LDs may be capable of regulating the transient interaction of specific membrane systems,probably to transport lipids between membrane compartments[95,96].Like Rab 18 and Rab1,Rab5 is also implicated in HCV assembly and virulence on LDs[97].

    Rab 7

    Rab7(with three isoforms Rab7a,Rab7b and Rab7c)has been implicated in multiple intracellular trafficking processes,including protein sorting in early endosomes[98],autophagosome and endosome maturation[98],as well as receptor and ligand trafficking at the interface/transition between late endosomes and lysosomes[99,100].The current view is that Rab5 and Rab7 cooperate in a functional handoff of cargo that is destined for lysosomal degradation[101].Here,Rab7 is necessary for recruitment of effectors that promote the maturation of the late endosome[102,103].A possible role for Rab7 in the context of LDs comes from the notion that under certain conditions,LDs are targeted and engulfed by autophagosomes and delivered to the lysosomes for lysosomal acid lipase-mediated degradation[42-45].This process temporarily puts Rab7 incloseappositiontoLDs,althoughperhapsnotdirectly on the LD monolayer surface.Like Rab18,Rab1 and Rab5,Rab7 is also implicated in HCV assembly[97].

    CONCLUSION

    Rab18 is the hallmark Rab protein of LDs,while Rab1,Rab5,and Rab7 are candidate LD interacting Rab proteins.Clearly,elucidation of these and other Rab proteins is needed in the context of LD function. Rab mediated recruitment of scaffolding proteins regulates interactions with other organelles,motility and fusion,as is also the case in LDs.It is expected that continued functional studies of LD-associated Rab proteins will address mechanisms to treat the modern disease burden of obesity,insulin resistance and atherosclerosis through elucidation of their molecular pathophysiologies.

    [1] Peter M,Chavrier P,Nigg EA,Zerial M.Isoprenylation of rab proteins on structurally distinct cysteine motifs.J Cell Sci 1992;102:857-65.

    [2] Alexandrov K,Horiuchi H,Steele-Mortimer O,Seabra MC,Zerial M.Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes.EMBO J 1994;13:5262-73.

    [3] Sakamoto K,Kimura J.Mechanism of statin-induced rhabdomyolysis.J Pharmacol Sci 2013;123:289-94.

    [4] Sakamoto K,Wada I,Kimura J.Inhibition of Rab1 GTPase and endoplasmic reticulum-to-Golgi trafficking underlies statin′s toxicity in rat skeletal myofibers.J Pharmacol Exp Ther 2011;338:62-9.

    [5] Bell AW,Nilsson T,Kearney RE,Bergeron JJ.The protein microscope:incorporating mass spectrometry into cell biology.Nat Methods 2007;4:783-4.

    [6] Ullrich O,Stenmark H,Alexandrov K,Huber LA,Kaibuchi K,Sasaki T,Takai Y,Zerial M.Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins.J Biol Chem 1993;268:18143-50.

    [7] Sonnichsen B,de Renzis S,Nielsen E,Rietdorf J,Zerial M.Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4,Rab5,and Rab11.J Cell Biol 2000;149:901-14.

    [8] Chavrier P,Gorvel JP,Stelzer E,Simons K,Gruenberg J, Zerial M.Hypervariable C-terminal domain of rab proteins acts as a targeting signal.Nature 1991;353:769-72.

    [9] Stein M,Pilli M,Bernauer S,Habermann BH,Zerial M, Wade RC.The interaction properties of the human Rab GTPase family-comparative analysis reveals determinants of molecular binding selectivity.PLoS One 2012;7: e34870.

    [10]Blumer J,Rey J,Dehmelt L,Mazel T,Wu YW,Bastiaens P,Goody RS,Itzen A.RabGEFs are a major determinant for specific Rab membrane targeting.J Cell Biol 2013; 200:287-300.

    [11]Blumer J,Wu YW,Goody RS,Itzen A.Specific localization of Rabs at intracellular membranes.Biochem Soc Trans 2012;40:1421-5.

    [12]Wu YW,Oesterlin LK,Tan KT,Waldmann H,Alexandrov K,Goody RS.Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes.Nat Chem Biol 2010;6:534-40.

    [13]Kirsten ML,Baron RA,Seabra MC,Ces O.Rab1a and Rab5a preferentially bind to binary lipid compositions with higher stored curvature elastic energy.Mol Membr Biol 2013;30:303-14.

    [14]Christoforidis S,Zerial M.Purification and identification of novel Rab effectors using affinity chromatography. Methods 2000;20:403-10.

    [15]Stenmark H,Vitale G,Ullrich O,Zerial M.Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion.Cell 1995;83:423-32.

    [16]Kajiho H,Saito K,Tsujita K,Kontani K,Araki Y,Kurosu H,Katada T.RIN3:a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci 2003;116:4159-68.

    [17]Horiuchi H,Lippe R,McBride HM,Rubino M,Woodman P,Stenmark H,et al.A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function.Cell 1997;90:1149-59.

    [18]de Renzis S,Sonnichsen B,Zerial M.Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes.Nat Cell Biol 2002;4:124-33.

    [19]Nielsen E,Christoforidis S,Uttenweiler-Joseph S, Miaczynska M,Dewitte F,Wilm M,et al.Rabenosyn-5, a novel Rab5 effector,is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000;151:601-12.

    [20]Schnatwinkel C,Christoforidis S,Lindsay MR, Uttenweiler-Joseph S,Wilm M,Parton RG,et al.The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms.PLoS Biol 2004;2:E261.

    [21]Simonsen A,Lippe R,Christoforidis S,Gaullier JM,Brech A,Callaghan J,et al.EEA1 links PI(3)K function to Rab5 regulation of endosome fusion.Nature 1998;394:494-8.

    [22]Christoforidis S,Miaczynska M,Ashman K,Wilm M, Zhao L,Yip SC,et al.Phosphatidylinositol-3-OH kinases are Rab5 effectors.Nat Cell Biol 1999;1:249-52.

    [23]Christoforidis S,McBride HM,Burgoyne RD,Zerial M. The Rab5 effector EEA1 is a core component of endosome docking.Nature 1999;397:621-5.

    [24]Shin HW,Hayashi M,Christoforidis S,Lacas-Gervais S, Hoepfner S,Wenk MR,et al.An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway.J Cell Biol 2005;170:607-18.

    [25]Nielsen E,Severin F,Backer JM,Hyman AA,Zerial M. Rab5 regulates motility of early endosomes on microtubules.Nat Cell Biol 1999;1:376-82.

    [26]Miaczynska M,Christoforidis S,Giner A,Shevchenko A, Uttenweiler-Joseph S,Habermann B,et al.APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment.Cell 2004;116:445-56.

    [27]McBride HM,Rybin V,Murphy C,Giner A,Teasdale R, Zerial M.Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13.Cell 1999;98:377-86.

    [28]Mattera R,Arighi CN,Lodge R,Zerial M,Bonifacino JS. Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex.EMBO J 2003;22:78-88.

    [29]Pal A,Severin F,Lommer B,Shevchenko A,Zerial M. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington′s disease.J Cell Biol 2006;172:605-18.

    [30]Nizak C,Monier S,del Nery E,Moutel S,Goud B,Perez F.Recombinant antibodies to the small GTPase Rab6 as conformation sensors.Science 2003;300:984-7.

    [31]Thiam AR,Farese RV,Jr.,Walther TC.The biophysics and cell biology of lipid droplets.Nat Rev Mol Cell Biol 2013;14:775-86.

    [32]Khor VK,Shen WJ,Kraemer FB.Lipid droplet metabolism.Curr Opin Clin Nutr Metab Care 2013;16:632-7.

    [33]Sturley SL,Hussain MM.Lipid droplet formation on opposing sides of the endoplasmic reticulum.J Lipid Res 2012;53:1800-10.

    [34]Brasaemle DL,Wolins NE.Packaging of fat:an evolving model of lipid droplet assembly and expansion.J Biol Chem 2012;287:2273-9.

    [35]Zehmer JK,Huang Y,Peng G,Pu J,Anderson RG,Liu P. A role for lipid droplets in inter-membrane lipid traffic. Proteomics 2009;9:914-21.

    [36]Zehmer JK,Bartz R,Liu P,Anderson RG.Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets.J Cell Sci 2008;121:1852-60.

    [37]Kalantari F,Bergeron JJ,Nilsson T.Biogenesis of lipid droplets-how cells get fatter.Mol Membr Biol 2010;27: 462-8.

    [38]Khor VK,Shen WJ,Kraemer FB.Lipid droplet metabolism.Curr Opin Clin Nutr Metab Care 2013;16:632-7.

    [39]Wang H,Lei M,Hsia RC,Sztalryd C.Analysis of lipid droplets in cardiac muscle.Methods Cell Biol 2013;116: 129-49.

    [40]Wang H,Sreenivasan U,Hu H,Saladino A,Polster BM, Lund LM,et al.Perilipin 5,a lipid droplet-associated protein,provides physical and metabolic linkage to mitochondria.J Lipid Res 2011;52:2159-68.

    [41]Pu J,Ha CW,Zhang S,Jung JP,Huh WK,Liu P. Interactomic study on interaction between lipid droplets and mitochondria.Protein Cell 2011;2:487-96.

    [42]Weidberg H,Shvets E,Elazar Z.Lipophagy:selective catabolism designed for lipids.Dev Cell 2009;16:628-30.

    [43]Liu K,Czaja MJ.Regulation of lipid stores and metabolism by lipophagy.Cell Death Differ 2013;20:3-11.

    [44]Singh R,Cuervo AM.Lipophagy:connecting autophagy and lipid metabolism.Int J Cell Biol 2012:2012:282041.

    [45]Ouimet M,Franklin V,Mak E,Liao X,Tabas I,Marcel YL.Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase.Cell Metab 2011;13:655-67.

    [46]Soni KG,Mardones GA,Sougrat R,Smirnova E,Jackson CL,Bonifacino JS.Coatomer-dependent protein delivery to lipid droplets.J Cell Sci 2009;122:1834-41.

    [47]Andersen JS,Wilkinson CJ,Mayor T,Mortensen P,Nigg EA,Mann M.Proteomic characterization of the human centrosome by protein correlation profiling.Nature 2003;426:570-4.

    [48]Gilchrist A,Au CE,Hiding J,Bell AW,Fernandez-Rodriguez J,Lesimple S,et al.Quantitative proteomics analysis of the secretory pathway.Cell 2006;127:1265-81.

    [49]Krahmer N,Hilger M,Kory N,Wilfling F,Stoehr G,Mann M,et al.Protein correlation profiles identify lipid droplet proteins with high confidence.Mol Cell Proteomics 2013;12:1115-26.

    [50]Cho SY,Park PJ,Lee JH,Kim JJ,Lee TR.Identification of the domains required for the localization of Prp19p to lipid droplets or the nucleus.Biochem Biophys Res Commun 2007;364:844-9.

    [51]Crunk AE,Monks J,Murakami A,Jackman M,Maclean PS,Ladinsky M,et al.Dynamic regulation of hepatic lipid droplet properties by diet.PLoS One 2013;8:e67631.

    [52]Ding Y,Wu Y,Zeng R,Liao K.Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse.Acta Biochim Biophys Sin (Shanghai)2012;44:394-406.

    [53]Krahmer N,Farese RV,Jr.,Walther TC.Balancing the fat:lipid droplets and human disease.EMBO Mol Med 2013;5:905-15.

    [54]Larsson S,Resjo S,Gomez MF,James P,Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing beta-cell line(INS-1 832/13).J Proteome Res 2012;11:1264-73.

    [55]Liu P,Ying Y,Zhao Y,Mundy DI,Zhu M,Anderson RG.Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic.J Biol Chem 2004;279:3787-92.

    [56]Rasineni K,McVicker BL,Tuma DJ,McNiven MA, Casey CA.Rab GTPases Associate with Isolated Lipid Droplets(LDs)and Show Altered Content After Ethanol Administration:Potential Role in Alcohol-Impaired LD Metabolism.Alcohol Clin Exp Res 2014;38:327-35.

    [57]Schmidt C,Ploier B,Koch B,Daum G.Analysis of yeast lipid droplet proteome and lipidome.Methods Cell Biol 2013;116:15-37.

    [58]Soulages JL,Firdaus SJ,Hartson S,Chen X,Howard AD, Arrese EL.Developmental changes in the protein composition of Manduca sexta lipid droplets.Insect Biochem Mol Biol 2012;42:305-20.

    [59]Tan X,Xie G,Sun X,Li Q,Zhong W,Qiao P,et al.High fat diet feeding exaggerates perfluorooctanoic acidinduced liver injury in mice via modulating multiple metabolic pathways.PLoS One 2013;8:e61409.

    [60]Turro S,Ingelmo-Torres M,Estanyol JM,Tebar F, Fernandez MA,Albor CV,et al.Identification andcharacterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets.Traffic 2006;7:1254-69.

    [61]Umlauf E,Csaszar E,Moertelmaier M,Schuetz GJ, Parton RG,Prohaska R.Association of stomatin with lipid bodies.J Biol Chem 2004;279:23699-709.

    [62]Weibel GL,Joshi MR,Jerome WG,Bates SR,Yu KJ, Phillips MC,et al.Cytoskeleton disruption in J774 macrophages:consequences for lipid droplet formation and cholesterol flux.Biochim Biophys Acta 2012;1821: 464-72.

    [63]You X,Liu F,Zhang T,Li Y,Ye L,Zhang X.Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells.Carcinogenesis 2013;34:1644-52.

    [64]Bostrom P,Andersson L,Rutberg M,Perman J,Lidberg U,Johansson BR,et al.SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity.Nat Cell Biol 2007;9:1286-93.

    [65]Murphy S,Martin S,Parton RG.Lipid droplet-organelle interactions;sharing the fats.Biochim Biophys Acta 2009;1791:441-7.

    [66]Brasaemle DL,Dolios G,Shapiro L,Wang R.Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.J Biol Chem 2004;279:46835-42.

    [67]Beilstein F,Bouchoux J,Rousset M,Demignot S. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLoS One 2013;8:e53017.

    [68]Zhang H,Wang Y,Li J,Yu J,Pu J,Li L,et al.Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I.J Proteome Res 2011;10:4757-68.

    [69]Hsieh K,Lee YK,Londos C,Raaka BM,Dalen KT, Kimmel AR.Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesterylester-specific intracellular lipid storage droplets.J Cell Sci 2012;125:4067-76.

    [70]Martin S,Driessen K,Nixon SJ,Zerial M,Parton RG. Regulated localization of Rab18 to lipid droplets:effects of lipolytic stimulation and inhibition of lipid droplet catabolism.J Biol Chem 2005;280:42325-35.

    [71]Ozeki S,Cheng J,Tauchi-Sato K,Hatano N,Taniguchi H,Fujimoto T.Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane.J Cell Sci 2005;118:2601-11.

    [72]Dejgaard SY,Murshid A,Erman A,Kizilay O,Verbich D,Lodge R,et al.Rab18 and Rab43 have key roles in ER-Golgi trafficking.J Cell Sci 2008;121:2768-81.

    [73]Pulido MR,Diaz-Ruiz A,Jimenez-Gomez Y,Garcia-Navarro S,Gracia-Navarro F,Tinahones F,et al.Rab18 dynamics in adipocytes in relation to lipogenesis,lipolysis and obesity.PLoS One 2011;6:e22931.

    [74]Martin S,Parton RG.Characterization of Rab18,a lipid droplet-associated small GTPase.Methods Enzymol 2008;438:109-29.

    [75]Pulido MR,Rabanal-Ruiz Y,Almabouada F,Diaz-Ruiz A,Burrell MA,Vazquez MJ,et al.Nutritional,hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue.J Mol Endocrinol 2012;50:19-29.

    [76]Lyn RK,Hope G,Sherratt AR,McLauchlan J,Pezacki JP. Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein. PLoS One 2013;8:e78065.

    [77]Ariotti N,Murphy S,Hamilton NA,Wu L,Green K, Schieber NL,et al.Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes.Mol Biol Cell 2012;23:1826-37.

    [78]Jungst C,Klein M,Zumbusch A.Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes.J Lipid Res 2013;54:3419-29.

    [79]Jungst C,Winterhalder MJ,Zumbusch A.Fast and long term lipid droplet tracking with CARS microscopy.J Biophotonics 2011;4:435-41.

    [80]Salloum S,Wang H,Ferguson C,Parton RG,Tai AW. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets.PLoS Pathog 2013;9:e1003513.

    [81]Dursun F,Guven A,Morris-Rosendahl D.Warburg Micro syndrome.J Pediatr Endocrinol Metab 2012;25:379-82.

    [82]Handley MT,Aligianis IA.RAB3GAP1,RAB3GAP2 and RAB18:disease genes in Micro and Martsolf syndromes.Biochem Soc Trans 2012;40:1394-7.

    [83]Handley MT,Morris-Rosendahl DJ,Brown S,Macdonald F,Hardy C,Bem D,et al.Mutation spectrum in RAB3GAP1,RAB3GAP2,and RAB18 and genotypephenotype correlations in warburg micro syndrome and Martsolf syndrome.Hum Mutat 2013;34:686-96.

    [84]Bem D,Yoshimura S,Nunes-Bastos R,Bond FC,Kurian MA,Rahman F,et al.Loss-of-function mutations in RAB18 cause Warburg micro syndrome.Am J Hum Genet 2011;88:499-507.

    [85]Batoko H,Zheng HQ,Hawes C,Moore I.A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants.Plant Cell 2000;12:2201-18.

    [86]Zoppino FC,Militello RD,Slavin I,Alvarez C,Colombo MI.Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites.Traffic 2010;11: 1246-61.

    [87]Mukhopadhyay A,Quiroz JA,Wolkoff AW.Rab1a Regulates Sorting of Early Endocytic Vesicles.Am J Physiol Gastrointest Liver Physiol 2014;Epub ahead of print January 9.

    [88]Allan BB,Moyer BD,Balch WE.Rab1 recruitment of p115 into a cis-SNARE complex:programming budding COPII vesicles for fusion.Science 2000;289:444-8.

    [89]Moyer BD,Allan BB,Balch WE.Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering.Traffic 2001;2:268-76.

    [90]Slavin I,Garcia IA,Monetta P,Martinez H,Romero N, Alvarez C.Role of Rab1b in COPII dynamics and function.Eur J Cell Biol 2011;90:301-11.

    [91]Nevo-Yassaf I,Yaffe Y,Asher M,Ravid O,Eizenberg S, Henis YI et al.Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A.J Virol 2012;86:6491-6502.

    [92]Zeigerer A,Gilleron J,Bogorad RL,Marsico G,Nonaka H, Seifert S,et al.Rab5 is necessary for the biogenesis of the endolysosomal system in vivo.Nature 2012;485:465-70.

    [93]Ohya T,Miaczynska M,Coskun U,Lommer B,Runge A, Drechsel D,et al.Reconstitution of Rab-and SNARE-dependent membrane fusion by synthetic endosomes. Nature 2012;459:1091-7.

    [94]Epp N,Rethmeier R,Kramer L,Ungermann C. Membrane dynamics and fusion at late endosomes and vacuoles-Rab regulation,multisubunit tethering complexes and SNAREs.Eur J Cell Biol 2011;90:779-85.

    [95]Liu P,Bartz R,Zehmer JK,Ying YS,Zhu M,Serrero G, et al.Rab-regulated interaction of early endosomes with lipid droplets.Biochim Biophys Acta 2007;1773: 784-93.

    [96]Liu P,Bartz R.,Zehmer JK,Ying Y,Anderson RG.Rabregulated membrane traffic between adiposomes and multiple endomembrane systems.Methods Enzymol 2008;439:327-37.

    [97]Manna D,Aligo J,Xu C,Park WS,Koc H,Heo WD,Konan KV.Endocytic Rab proteins are required for hepatitis C virus replication complex formation.Virology 2010; 398:21-37.

    [98]Girard E,Chmiest D,Fournier N,Johannes L,Paul JL, Vedie B,et al.Rab7 Is Functionally Required for Selective Cargo Sorting at the Early Endosome.Traffic 2013;15:309-26.

    [99]Ng EL,Gan BQ,Ng F,Tang BL.Rab GTPases regulating receptor trafficking at the late endosome-lysosome membranes.Cell Biochem Funct 2012;30:515-23.

    [100]Vanlandingham PA,Ceresa BP.Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration.J Biol Chem 2009;284: 12110-24.

    [101]Poteryaev D,Datta S,Ackema K,Zerial M,Spang A. Identification of the switch in early-to-late endosome transition.Cell 2010;141:497-508.

    [102]Binder B,Holzhutter HG.A hypothetical model of cargoselective rab recruitment during organelle maturation.Cell Biochem Biophys 2012;63:59-71.

    [103]van der Kant,R,Fish A,Janssen L,Janssen H,Krom S, Ho N,et al.Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L.J Cell Sci 2013:126:3462-74.

    Received 10 February 2014,Accepted 28 February 2014,Epub 26 March 2014

    ?Corresponding author:Dr.Robert Scott Kiss,Department of Medicine, McGill University,Montreal,Canada;Research Institute of McGill University Health Centre,Montreal,Canada,687 Pine Ave West,RoyalVictoria Hospital,H7.02,Montreal,Quebec,Canada,H3A 1A1.Tel/Fax: 514-934-1934/34848/514-843-2843,E-mail:Robert.kiss@mcgill.ca.

    The authors reported no conflict of interests.

    ?2014 by the Journal of Biomedical Research.All rights reserved.

    10.7555/JBR.28.20140029

    99国产精品免费福利视频| 亚洲av成人精品一二三区| 性高湖久久久久久久久免费观看| 在线精品无人区一区二区三| 国产精品久久久久久精品古装| 大码成人一级视频| 亚洲精品乱码久久久久久按摩| 亚洲av二区三区四区| 一区二区日韩欧美中文字幕 | 人妻夜夜爽99麻豆av| 久久精品国产鲁丝片午夜精品| 高清欧美精品videossex| 免费观看无遮挡的男女| 大码成人一级视频| 欧美一级a爱片免费观看看| 国产视频内射| 熟女人妻精品中文字幕| 久久ye,这里只有精品| 少妇被粗大猛烈的视频| 国产男女超爽视频在线观看| 美女中出高潮动态图| 午夜激情福利司机影院| 久久99热这里只频精品6学生| 国产成人免费观看mmmm| 亚洲精品视频女| 国产精品99久久久久久久久| 国产淫语在线视频| 久久久国产欧美日韩av| 老熟女久久久| 成年av动漫网址| 亚洲精品国产av蜜桃| 美女国产高潮福利片在线看| 亚洲欧洲精品一区二区精品久久久 | 一本色道久久久久久精品综合| 天天影视国产精品| 丝袜脚勾引网站| 午夜老司机福利剧场| 亚洲av福利一区| 欧美日韩成人在线一区二区| 日韩av在线免费看完整版不卡| a级毛片在线看网站| 久久av网站| 国产亚洲精品第一综合不卡 | 亚洲精品av麻豆狂野| 少妇的逼好多水| 成人国语在线视频| 欧美日韩成人在线一区二区| 久久精品国产亚洲av涩爱| 国产av一区二区精品久久| 亚洲精品日本国产第一区| 亚洲精品久久午夜乱码| 777米奇影视久久| av免费观看日本| 国产女主播在线喷水免费视频网站| 国产精品99久久久久久久久| 久久久a久久爽久久v久久| 午夜激情福利司机影院| 国产免费一区二区三区四区乱码| 男女高潮啪啪啪动态图| 看非洲黑人一级黄片| 母亲3免费完整高清在线观看 | 美女大奶头黄色视频| 亚洲,欧美,日韩| 夜夜爽夜夜爽视频| 亚洲精品456在线播放app| 亚洲成人一二三区av| 天美传媒精品一区二区| 中国国产av一级| 久久影院123| 久久综合国产亚洲精品| 国产av国产精品国产| 大片免费播放器 马上看| 国产精品嫩草影院av在线观看| 九色亚洲精品在线播放| 美女xxoo啪啪120秒动态图| 视频区图区小说| 国产一区二区三区av在线| 少妇丰满av| 亚洲伊人久久精品综合| 狠狠婷婷综合久久久久久88av| 精品一区二区三卡| 97在线人人人人妻| 欧美亚洲日本最大视频资源| 男人爽女人下面视频在线观看| 黄色毛片三级朝国网站| av在线播放精品| 观看美女的网站| 高清av免费在线| 18禁裸乳无遮挡动漫免费视频| 99久久中文字幕三级久久日本| 九九久久精品国产亚洲av麻豆| 亚洲一区二区三区欧美精品| 亚洲精品日韩在线中文字幕| 日韩av不卡免费在线播放| 日韩人妻高清精品专区| 国产精品.久久久| 国产淫语在线视频| 国产乱人偷精品视频| 久久99热6这里只有精品| 在线观看www视频免费| 国产在视频线精品| 亚洲,一卡二卡三卡| 中国国产av一级| 国产成人精品婷婷| 亚洲国产精品专区欧美| 欧美人与性动交α欧美精品济南到 | 考比视频在线观看| 涩涩av久久男人的天堂| 三上悠亚av全集在线观看| 人妻系列 视频| 国产精品嫩草影院av在线观看| 卡戴珊不雅视频在线播放| 美女内射精品一级片tv| 欧美人与性动交α欧美精品济南到 | 亚洲中文av在线| 老司机影院毛片| 亚洲国产精品一区二区三区在线| 日韩一本色道免费dvd| 日本黄大片高清| 亚洲第一区二区三区不卡| 国产毛片在线视频| 国产探花极品一区二区| 亚洲成人av在线免费| 制服丝袜香蕉在线| 欧美日本中文国产一区发布| 国产一区有黄有色的免费视频| 纯流量卡能插随身wifi吗| 老熟女久久久| videos熟女内射| 国产精品一二三区在线看| 午夜精品国产一区二区电影| 青春草视频在线免费观看| 中国美白少妇内射xxxbb| 亚洲av不卡在线观看| 久久午夜福利片| 一本久久精品| 免费av中文字幕在线| 欧美另类一区| 黄片播放在线免费| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 日韩强制内射视频| 少妇的逼好多水| 国产国拍精品亚洲av在线观看| 日韩三级伦理在线观看| 少妇人妻久久综合中文| 看非洲黑人一级黄片| 国产精品一国产av| 国产精品偷伦视频观看了| 91午夜精品亚洲一区二区三区| 久久人妻熟女aⅴ| 22中文网久久字幕| 午夜福利网站1000一区二区三区| 大香蕉久久网| 少妇高潮的动态图| 大香蕉久久网| 国产成人精品福利久久| www.av在线官网国产| 国产探花极品一区二区| 国产成人午夜福利电影在线观看| 国产在线一区二区三区精| 乱人伦中国视频| 秋霞伦理黄片| 大香蕉久久网| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕 | 18禁动态无遮挡网站| 人妻系列 视频| 麻豆乱淫一区二区| 九九爱精品视频在线观看| 午夜免费观看性视频| 亚洲精品久久成人aⅴ小说 | 在线免费观看不下载黄p国产| a 毛片基地| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 亚洲在久久综合| 亚洲国产日韩一区二区| 国产精品久久久久久久电影| 我的老师免费观看完整版| 日韩av不卡免费在线播放| 国产精品一国产av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩视频高清一区二区三区二| 色视频在线一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产综合精华液| 亚洲精品久久午夜乱码| 国产精品.久久久| 成年人免费黄色播放视频| 欧美激情 高清一区二区三区| 考比视频在线观看| 国产毛片在线视频| 精品人妻熟女毛片av久久网站| 国产欧美亚洲国产| 美女脱内裤让男人舔精品视频| 在线看a的网站| 一级,二级,三级黄色视频| 一级毛片 在线播放| 天美传媒精品一区二区| 国内精品宾馆在线| 高清毛片免费看| h视频一区二区三区| 夜夜看夜夜爽夜夜摸| 国产极品天堂在线| 国产一区二区在线观看日韩| 九九久久精品国产亚洲av麻豆| 搡老乐熟女国产| 亚洲综合精品二区| 欧美亚洲日本最大视频资源| 国产乱来视频区| 美女国产高潮福利片在线看| 在线免费观看不下载黄p国产| 国产一级毛片在线| 99热这里只有精品一区| 久久国产精品男人的天堂亚洲 | 丝袜在线中文字幕| 国产淫语在线视频| 欧美激情国产日韩精品一区| 免费av不卡在线播放| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| 日本vs欧美在线观看视频| 亚洲综合色网址| 好男人视频免费观看在线| 少妇人妻精品综合一区二区| 成年av动漫网址| 亚洲少妇的诱惑av| 在线观看一区二区三区激情| 免费黄频网站在线观看国产| 日日啪夜夜爽| 免费人成在线观看视频色| 99久久精品一区二区三区| 久热这里只有精品99| 久久久欧美国产精品| 狠狠婷婷综合久久久久久88av| 久久99蜜桃精品久久| 久久人人爽人人爽人人片va| 色视频在线一区二区三区| 老司机亚洲免费影院| 如何舔出高潮| 国产在线一区二区三区精| 一个人免费看片子| 中国美白少妇内射xxxbb| 日本黄大片高清| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 久久青草综合色| 一区二区三区四区激情视频| 欧美 亚洲 国产 日韩一| 国产精品一区www在线观看| 自线自在国产av| 97超碰精品成人国产| 99视频精品全部免费 在线| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 色吧在线观看| 亚洲四区av| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 成人影院久久| 日韩 亚洲 欧美在线| 久久av网站| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 香蕉精品网在线| 少妇被粗大的猛进出69影院 | 婷婷色综合www| 在线亚洲精品国产二区图片欧美 | 我的老师免费观看完整版| 26uuu在线亚洲综合色| 搡老乐熟女国产| 亚洲人与动物交配视频| 国产又色又爽无遮挡免| 亚洲精品美女久久av网站| 国产成人精品久久久久久| 桃花免费在线播放| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲精品第一综合不卡 | 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 日本猛色少妇xxxxx猛交久久| 丝袜脚勾引网站| 高清在线视频一区二区三区| 99re6热这里在线精品视频| av免费观看日本| 免费观看无遮挡的男女| 中文字幕亚洲精品专区| 精品熟女少妇av免费看| 国产精品一区二区在线不卡| 久久久精品区二区三区| 在线精品无人区一区二区三| 亚洲美女黄色视频免费看| 欧美日韩视频高清一区二区三区二| 亚洲欧美中文字幕日韩二区| 日韩精品免费视频一区二区三区 | 国产成人午夜福利电影在线观看| 亚洲av中文av极速乱| 国产男女内射视频| 在线观看www视频免费| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 人妻人人澡人人爽人人| 黄色欧美视频在线观看| 中文字幕人妻丝袜制服| 少妇人妻久久综合中文| 亚洲高清免费不卡视频| 日本黄色片子视频| 亚洲无线观看免费| av播播在线观看一区| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 成人午夜精彩视频在线观看| 国产免费现黄频在线看| 国产精品成人在线| 久久影院123| 久久久精品区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近中文字幕2019免费版| av福利片在线| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 少妇被粗大猛烈的视频| 午夜福利视频精品| 丁香六月天网| 国产免费一级a男人的天堂| 亚州av有码| 午夜激情av网站| 久久婷婷青草| 亚洲精品亚洲一区二区| 97在线视频观看| 黄色视频在线播放观看不卡| 精品久久久噜噜| 中文天堂在线官网| 黄片播放在线免费| 99热这里只有是精品在线观看| 午夜福利,免费看| 美女国产视频在线观看| av卡一久久| 欧美成人精品欧美一级黄| 国产在线视频一区二区| 人人妻人人澡人人看| 好男人视频免费观看在线| 丁香六月天网| 日本免费在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 国产不卡av网站在线观看| 视频区图区小说| 9色porny在线观看| 日韩欧美精品免费久久| 少妇的逼水好多| 国产精品.久久久| 99热网站在线观看| 制服人妻中文乱码| 夜夜骑夜夜射夜夜干| 99热这里只有精品一区| 日韩电影二区| 22中文网久久字幕| 最近最新中文字幕免费大全7| 国产精品99久久99久久久不卡 | 亚洲国产欧美日韩在线播放| 在线精品无人区一区二区三| 最新中文字幕久久久久| 久久午夜福利片| 免费黄频网站在线观看国产| 三级国产精品欧美在线观看| 国产精品欧美亚洲77777| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 欧美性感艳星| 蜜桃国产av成人99| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| 韩国av在线不卡| 大陆偷拍与自拍| 免费大片18禁| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 男女国产视频网站| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 国产精品一区www在线观看| 成人免费观看视频高清| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 国产欧美日韩综合在线一区二区| 草草在线视频免费看| 精品卡一卡二卡四卡免费| 欧美变态另类bdsm刘玥| 日本与韩国留学比较| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 美女大奶头黄色视频| av一本久久久久| 韩国高清视频一区二区三区| 十八禁高潮呻吟视频| 亚洲,欧美,日韩| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 九九爱精品视频在线观看| 波野结衣二区三区在线| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 免费看光身美女| 日韩制服骚丝袜av| 最后的刺客免费高清国语| tube8黄色片| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 欧美精品高潮呻吟av久久| 亚洲激情五月婷婷啪啪| videossex国产| 热99久久久久精品小说推荐| 中文欧美无线码| videossex国产| 少妇的逼水好多| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 国产日韩欧美视频二区| 大香蕉久久网| 国产精品国产三级国产av玫瑰| 青春草国产在线视频| 大陆偷拍与自拍| 亚洲国产精品一区三区| 国产色爽女视频免费观看| 亚洲精品视频女| 一二三四中文在线观看免费高清| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 国产在线一区二区三区精| 22中文网久久字幕| 久久97久久精品| 人妻 亚洲 视频| 草草在线视频免费看| 99热6这里只有精品| 99国产精品免费福利视频| 精品一区二区免费观看| 国产 精品1| 国产精品99久久久久久久久| 制服诱惑二区| 午夜福利影视在线免费观看| 在线观看一区二区三区激情| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 日本av手机在线免费观看| 国产日韩欧美视频二区| 亚洲美女黄色视频免费看| 搡老乐熟女国产| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 丝袜喷水一区| 永久免费av网站大全| 久久97久久精品| av专区在线播放| 视频区图区小说| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 高清不卡的av网站| 91精品一卡2卡3卡4卡| 一本色道久久久久久精品综合| 日本黄色片子视频| 满18在线观看网站| 免费观看无遮挡的男女| 两个人免费观看高清视频| 日韩不卡一区二区三区视频在线| 久久久久国产精品人妻一区二区| 免费高清在线观看日韩| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 午夜av观看不卡| 简卡轻食公司| 亚洲经典国产精华液单| 在线观看国产h片| 国产淫语在线视频| 亚洲熟女精品中文字幕| av卡一久久| 伦精品一区二区三区| freevideosex欧美| 插阴视频在线观看视频| 蜜桃在线观看..| 亚洲精品日韩av片在线观看| 熟女人妻精品中文字幕| 欧美+日韩+精品| 桃花免费在线播放| 国产亚洲一区二区精品| 久久久久久久久久人人人人人人| 精品久久国产蜜桃| 国产日韩欧美亚洲二区| 制服诱惑二区| 久久人人爽人人片av| 日本-黄色视频高清免费观看| 国产黄片视频在线免费观看| 热99久久久久精品小说推荐| 亚洲国产精品专区欧美| 国产69精品久久久久777片| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| a级片在线免费高清观看视频| 国产精品国产三级国产av玫瑰| 国产日韩欧美视频二区| 两个人的视频大全免费| 免费观看的影片在线观看| 九九在线视频观看精品| 亚洲高清免费不卡视频| 国产伦理片在线播放av一区| 各种免费的搞黄视频| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 一本大道久久a久久精品| 18+在线观看网站| 久久久久视频综合| 超碰97精品在线观看| 午夜福利网站1000一区二区三区| 久久 成人 亚洲| 考比视频在线观看| 久久久久久伊人网av| 亚洲av综合色区一区| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 欧美成人午夜免费资源| 在线观看一区二区三区激情| 日本与韩国留学比较| 亚洲国产色片| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 最近最新中文字幕免费大全7| 99热全是精品| 成人毛片a级毛片在线播放| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 天美传媒精品一区二区| 久久亚洲国产成人精品v| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| 国产午夜精品久久久久久一区二区三区| av电影中文网址| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 全区人妻精品视频| 好男人视频免费观看在线| 麻豆成人av视频| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 国产成人免费无遮挡视频| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 汤姆久久久久久久影院中文字幕| 曰老女人黄片| 亚洲欧美精品自产自拍| 一级毛片我不卡| 国产免费现黄频在线看| 日本av手机在线免费观看| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 精品亚洲乱码少妇综合久久| 大香蕉久久成人网| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在| 精品国产国语对白av| 中国美白少妇内射xxxbb| 中文字幕最新亚洲高清| 亚洲av成人精品一区久久| 日本vs欧美在线观看视频| 18禁观看日本| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 国产精品久久久久久久电影| xxxhd国产人妻xxx| 麻豆成人av视频| 99九九线精品视频在线观看视频| 久久久精品免费免费高清| 少妇的逼好多水| 成人综合一区亚洲| 亚洲国产欧美在线一区| 午夜福利视频在线观看免费| 国产成人91sexporn| 中文字幕亚洲精品专区| 精品国产乱码久久久久久小说| 国产精品久久久久久精品古装| 国产黄色免费在线视频| 国产 精品1| 22中文网久久字幕| 美女国产高潮福利片在线看| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 精品少妇内射三级| 久久久国产精品麻豆| 亚洲婷婷狠狠爱综合网| 免费av不卡在线播放| 啦啦啦视频在线资源免费观看| 国产毛片在线视频| 天堂8中文在线网| 国产精品99久久久久久久久| 久久人人爽av亚洲精品天堂|