• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective

    2014-02-11 01:59:17YongXu
    THE JOURNAL OF BIOMEDICAL RESEARCH 2014年1期
    關鍵詞:稅額實際操作鏈條

    Yong Xu

    Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.

    Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective

    Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.

    Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclerosis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atherosclerotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.

    Atherosclerosis, transcriptional regulation, endothelial injury, epigenetics

    INTRODUCTION

    Atherosclerosis represents a major factor of coronary heart disease characterized by the formation of fatladen plaque in large and medium-sized vessels. During atherogenesis, the endothelial layer of the vessels is constantly confronted with a range of stress signals. Elevated levels of circulating oxidized low-density lipoprotein (ox LDL)[1], increased turbulent blood flow[2], and excessive inflammation[3]all contribute to endothelial injury. Regardless of the nature of the stress cue, the transcriptome of vascular endothelial cells is profoundly altered[4-8]. For instance, down-regulation of eNOS transcription and simultaneous up-regulation of ET-1 transcription in endothelial cells precedes the impairment of vasodilation and rhythmic vessel tone[9]. Transcriptional activation of adhesion molecules, on the other hand, enables circulating leukocytes to attach to the endothelium and establish a pro-inflammatory microenvironment[10]. Therefore, elucidation of the mechanisms underlying these characteristic transcriptional events will potentially further our understanding of atherogenesis and yield druggable targets for the intervention and prevention of atherosclerosis. Recent advances in the transcriptional regulation of atherosclerosis suggest a growing involvement of the epigenetic machinery[11,12]. This mini-review is a modest attempt to summarize the current state of research on the epigenetic regulation of endothelial disorder in atherosclerosis and to provide an outlook.

    EPIGENETIC REGULATION OF TRANSCRIPTION

    Unlike prokaryotic organisms, eukaryotic transcription takes place on nucleosome-wrapped chromatin. In order for the basic transcription machinery to be recruited to promoter region and initiate transcription, chromatin has to be unwound to expose the binding sites. The epigenetic machinery, composed of histone modifying enzymes, DNA modifying enzymes, chromatin remodeling proteins, non-coding regulatory small RNAs, and histone variants, serves as an intricate regulatory layer for eukaryotic transcription by altering chromatin structure[13]. Due to space constraints, we only give a brief overview of histone modifications and chromatin remodeling, which will be the focus of discussion in this review.

    Histone modifications

    The N-terminal tails of core histones, H3 and H4 in particular, can be post-translationally modified. The term "histone code" was coined to correlate a specific set of histone modifications to a predictable transcriptional outcome[14]. Though a subject of constant controversy and debate, it is generally believed that acetylation of histones H3 and H4 surrounding the promoter region is synonymous with transcriptional activation. Whereas methylation of histone H3 lysine 4 (H3K4) may herald activation, H3K9 methylation often marks repressed chromatin[15].

    Chromatin remodeling

    In order for sequence-specific transcription factors and the basic transcription machinery to access the DNA and initiate transcription, the chromatin has to be unwound and loosened. This is achieved by moving the nucleosomes along the DNA at the expense of ATP hydrolysis[16]. Initially identified and characterized in yeast[17,18], the chromatin remodeling proteins represent a most conserved branch of the epigenetic machinery during evolution. The mammalian chromatin remodeling complex is a multi-subunit mega-protein conglomerate that contains a catalytic component. Brahma related gene 1 (Brg1) and Brahma (Brm) are the best studied chromatin remodeling proteins with ATPase activity[19]. Brg1 and Brm have been known to participate in both transcriptional activation and repression depending on the specific chromatin environment and the transcription factors they interact with[20].

    EPIGENETIC REGULATION OF INDUCTION OF ADHESION MOLECULES DURING ATHEROGENESIS

    Under physiological conditions, the vessel wall is free from the attachment of circulating leukocytes. Under certain pro-atherogenic conditions, such as turbulent shear stress, oxidative stress, intermittent hypoxia, and excessive nutrition, endothelial cells up-regulate the transcription of adhesion molecules (CAM) including ICAMs, VCAMs, and selectins, which consequently allow a much stronger interaction between leukocytes and the endothelium perpetuating a pro-inflammatory niche[10,21].

    Diabetes is one of the leading causes for vasculopathies including atherosclerosis[22]. A seminal study by Brownlee and colleagues examined the effect of transient hyperglycemia on endothelial function[23]. Of great intrigue, these authors have found that exposure to high glucose (HG) for a short period time (16 hours) induced a prolonged activation of VCAM-1 in bovine aortic endothelial cells even when these cells were switched to and maintained in low glucose (LG) for additional 6 days, a phenomenon dubbed as "metabolic memory". Chromatin immunoprecipitation (ChIP) revealed an uptick of H4K4 monomethylation on the proximal promoter of the p65 gene mediated by the histone methyltransferase SET7/9. Transient HG, these authors propose, leaves an epigenetic dent on the p65 gene such that even in the absence of the original stimulus endothelial dysfunction will sustain.

    Circulating oxLDL presents a major risk to atherosclerosis in part by promoting the expression of adhesion molecules[24]. Fang et al. have recently reported a novel epigenetic mechanism underlying the induction of ICAM-1 in human endothelial cells[25]. oxLDL activated the transcriptional modulator MRTF-A, which in turn was recruited to the ICAM-1 promoter by p65 and synergistically stimulated ICAM-1 transcription with oxLDL. Depletion of MRTF-A erased H3/ H4 acetylation and H3K4 dimethylation but restored H3K9 trimethylation on the ICAM-1 promoter. Since MRTF-A is known to engage the epigenetic machinery in regulating transcription within the vasculature[26-29], it is conceivable that MRTF-A may serve as the critical link of endothelial injury bringing histone modifying enzymes to the chromatin. Alternatively, Kim et al. propose that the regulatory subunit of the NAPDH oxidase complex p66shc mediates the induction of ICAM-1 by LDL[30]. LDL induced histone acetylation but inhibited DNA methylation of the p66shc promoter to up-regulate the transcription of p66shc. Of note, oxLDL has been reported to elicit epigenetic changes on a host of gene promoters in endothelial cells[31-33], although a genome-wide survey is lacking.

    Chronic hypoxia has emerged as an independentrisk factor of atherosclerosis[34]. As a result of intermittent low oxygen supply, the transcriptome of endothelial cells undergoes marked changes that include an increase in the transcription rate of adhesion molecules[35]. Our laboratory has recently uncovered a potential role for Brg1 and Brm in hypoxia induced endothelium-leukocyte interaction. Expression of Brg1 and Brm in vitro was up-regulated in cultured endothelial cells exposed to 1% O2and in vivo in pulmonary arteries isolated from mice kept in a lowoxygen chamber for 4 weeks. Introduction of Brg1 and Brm into a Brg1/Brm-negative cell line (SW-13) greatly potentiated hypoxia-induced CAM transactivation whereas silencing of Brg1/Brm in endothelial cells crippled the effect of hypoxia. Brg1 and Brm formed a dynamic interaction with p65 on the CAM promoters where p65 recruits Brg1/Brm and Brg1/ Brm reciprocally stabilizes p65. Brg1/Brm influenced CAM transactivation by altering histone H3/H4 acetylation and H3K4 methylation creating a friendly chromatin structure for the basic transcription machinery. More important, endothelial-specific targeting of Brg1 and Brm normalized CAM expression and attenuated hypoxia induced leukocyte adhesion in mice. Of intrigue, a similar strategy also alleviated the development of atherosclerotic lesions in Apoe-/-mice, indicating that Brg1 and Brm might be able to orchestrate endothelial injury in response to a range of different pro-inflammatory stimuli (unpublished observation).

    EPIGENETIC REGULATION OF INDUCTION OF VASOACTIVE SUBSTANCES DURING ATHEROGENESIS

    Endothelium derived NO plays a critical role in maintaining vascular integrity, the disruption of which contributes to atherogenesis[36]. Not surprisingly, eNOS expression can be down-regulated by multiple atheroprone factors[37]. oxLDL decreases acetylation of H3 and H4 and dimethylation of H3K4 while simultaneously increasing H3K9 trimethylation surrounding the eNOS promoter consistent with the repression of eNOS transcription in endothelial cells[25]. Again, MRTF-A appears to be the key coordinator of these epigenetic changes. In addition, there is a decrease of eNOS expression in mice deficient in LSD1, an H3K4/K9 demethylase, highlighting the role of histone methylation in fine-tuning eNOS transcription[38].

    Fish et al. conducted a comprehensive survey of histone modifications on the eNOS promoter region in endothelial cells challenged with anoxia[39]. In the proximal region of the eNOS promoter (-166/-26), H3/H4 acetylation and H3K4 dimethylation declined as early as 1 hour following exposure to low oxygen. In contrast, these signature changes were not observed on the distal eNOS promoter (-891/-797 and -488/-398). A closer examination revealed that acetylation levels of specific lysine residues fluctuated with distinct patterns. For instance, 1 hour after hypoxia, only H3K14 and H4K5 acetylation plummeted significantly, which was joined by a decrease in H3K9/H4K8/ H4K12 acetylation at 2 hours with H4K16 acetylation unaltered. Interestingly, histone H2A.Z was evicted from the proximal eNOS promoter during hypoxia thereby creating a closed chromatin conformation and rendering a repressed transcription state. Consistently, a recent study has correlated decreased eNOS expression with high levels of DNA methylation on the proximal eNOS promoter in patients with obstructive sleep apnea (OSA), a typical pathology of hypoxia[40]. Paradoxically, eNOS expression has been observed to increase, rather than decrease, in endothelial cells in response to hypoxia probably as means of compensation[41]. The up-regulation of eNOS transcription is accompanied by increased H3 and H4 acetylation across the eNOS promoter region (-4501/+23)[42]. Therefore, while it remains debatable how eNOS transcription responds to hypoxia, suffice it to say that a specific epigenetic code is intimately associated with the transcription status.

    The vessel wall, particularly the endothelial layer, is subject to the pressure caused by various hemodynamic forces. Whereas laminar shear stress (LSS) is considered atheroprotective and stimulates eNOS transcription, turbulent blood flow creates shear stress that damages the vascular endothelium especially at the sites of arterial branches[43]. Among the detrimental effects exerted by pro-atherogenic shear stress are accelerated turnover of endothelial cells, increased adhesion of leukocytes, accumulation of reactive oxygen species, and decreased synthesis of NO stemming from eNOS repression[44-47]. Illi et al. have reported that LSS increased global H3 and H4 acetylation levels in endothelial cells through activating histone acetyltransferases (HATs)[48]. In addition, LSS augmented H3 and H4 acetylation on c-Jun and c-Fos promoters. Since c-Jun/c-Fos is considered essential for eNOS transactivation[49], increase AP-1 activity likely explains elevated eNOS transcription in response to LSS.

    Impaired vessel relaxation during atherogenesis is also rooted in the enhanced expression of endothelin, a potent vasoconstrictor[50]. Accumulating evidence has provided a clear link between histone modification and ET-1 transactivation. In diabetic rats, increased ET-1 release was accompanied by an up-regulation of the histone acetyltransferase p300[51]. This observationhas been replicated in high glucose treated endothelial cells[52]. Silencing of p300 completely abolished ET-1 activation by high glucose thought it remained unclear whether p300 acted through histone or non-histone factors. Wort et al. have demonstrated that H4 acetylation was increased on the ET-1 promoter surrounding a conserved p65 binding element in endothelial cells treated with two pro-inflammatory stimuli, TNF-α and IFN-γ[53], suggesting a potential role for a HAT like p300. In rats with intrauterine growth retardation (IUGR) where hypoxia plays a determining role, H3K9/K18 and H4 acetylation increased on the ET-1 promoter[54]. Recently, our investigation has led to the identification of an MRTF-A-centered epigenetic complex on the ET-1 promoter in response to hypoxia[55]. Under hypoxic conditions, MRTF-A interacted with and was recruited by the sequence specific transcription factor SRF to the proximal ET-1 promoter (-81/+150). Upon the joining of Brg1/Brm, this epigenetic complex altered histone acetylation and H3K4 methylation to facilitate the binding of RNA polymerase II thereby activating ET-1 transcription.

    FUTURE DIRECTIONS

    The turn-of-the-century saw a boom in research on epigenetics with the initiation of several epigenomics projects[56]. Relying on high-fidelity chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing techniques, these projects aim to decode the epigenetic information bringing insights for the prevention and intervention of human diseases. Several exciting findings have provided clues for such basic biological events as adipogenesis[57], macrophage activation[58], and cell cycle progression[59]. So far, there has been a lack of effort in deciphering the epigenetic code on a genomewide scale in any of the major cardiovascular diseases including atherosclerosis. Since single-gene based epigenetic analysis tends to give very limited and often biased knowledge to the understanding of atherogenesis, long considered a multifactorial disease, basic scientists and clinicians like will benefit from an undertaking that unveils a comprehensive picture of epigenetic regulation of endothelial injury in atherosclerosis.

    [1] Kita T, Ishii K, Yokode M, Kume N, Nagano Y, Arai H, et al. The role of oxidized low density lipoprotein in the pathogenesis of atherosclerosis. Eur Heart J 1990; 11 (Suppl) E:122-7.

    [2] Topper JN, Cai J, Falb D, Gimbrone MA, Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A 1996; 93: 10417-22.

    [3] Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54: 2129-38.

    [4] Davies PF. Endothelial transcriptome profiles in vivo in complex arterial flow fields. Ann Biomed Eng 2008; 36: 563-70.

    [5] Civelek M, Manduchi E, Riley RJ, Stoeckert CJ, Jr., Davies PF. Coronary artery endothelial transcriptome in vivo: identification of endoplasmic reticulum stress and enhanced reactive oxygen species by gene connectivity network analysis. Circ Cardiovasc Genet 2011; 4: 243-52.

    [6] McLaughlin JN, Mazzoni MR, Cleator JH, Earls L, Perdigoto AL, Brooks JD, et al. Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells. J Biol Chem 2005; 280: 22172-80.

    [7] Lee YW, Eum SY, Chen KC, Hennig B, Toborek M. Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 2004; 10: 19-27.

    [8] Di Camillo B, Sanavia T, Iori E, Bronte V, Roncaglia E, Maran A, et al. The transcriptional response in human umbilical vein endothelial cells exposed to insulin: a dynamic gene expression approach. PLoS One 2010; 5: e14390.

    [9] Dancu MB, Berardi DE, Vanden Heuvel JP, Tarbell JM. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler Thromb Vasc Biol 2004; 24: 2088-94.

    [10] Barreiro O, Martin P, Gonzalez-Amaro R, Sanchez-Madrid F. Molecular cues guiding inflammatory responses. Cardiovasc Res 2010; 86: 174-82.

    [11] Lund G, Zaina S. Epigenetics, transgenerational effects and risk factors for atherosclerosis. Curr Opin Lipidol 2009; 20: 150-1.

    [12] Turunen MP, Aavik E, Yla-Herttuala S. Epigenetics and atherosclerosis. Biochimica et biophysica acta 2009; 1790: 886-91.

    [13] Bird A. Perceptions of epigenetics. Nature 2007; 447: 396-8.

    [14] Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074-80.

    [15] Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003; 425: 475-9.

    [16] Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 2006; 7: 437-47.

    [17] Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 1992; 68: 573-83.

    [18] Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 1984; 178: 853-68.

    [19] Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 1993; 366: 170-4.

    [20] Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR. Diversity and specialization of mammalian SWI/ SNF complexes. Genes Dev 1996; 10: 2117-30.

    [21] He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res 2010; 87: 281-90.

    [22] Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation research 1999; 84: 489-97.

    [24] Chen H, Li D, Saldeen T, Mehta JL. Transforming growth factor-beta(1) modulates oxidatively modified LDL-induced expression of adhesion molecules: role of LOX-1. Circ Res 2001; 89: 1155-60.

    [25] Fang F, Yang Y, Yuan Z, Gao Y, Zhou J, Chen Q, et al. Myocardin-related transcription factor A mediates OxLDL-induced endothelial injury. Circ Res 2011; 108: 797-807.

    [26] Lockman K, Taylor JM, Mack CP. The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circ Res 2007; 101: e115-23.

    [27] Zhang M, Fang H, Zhou J, Herring BP. A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. J Biol Chem 2007; 282: 25708-16.

    [28] Zhou J, Zhang M, Fang H, El-Mounayri O, Rodenberg JM, Imbalzano AN, et al. The SWI/SNF chromatin remodeling complex regulates myocardin-induced smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 2009; 29: 921-8.

    [29] Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, et al. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 2009; 284: 23125-36.

    [30] Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG. Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem Biophys Res Commun 2003; 309: 512-9.

    [31] Chen KC, Liao YC, Hsieh IC, Wang YS, Hu CY, Juo SH. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: novel mechanisms for cardiovascular diseases. J Mol Cell Cardiol 2012; 52: 587-95.

    [32] Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 2011; 25: 1718-28.

    導致目前少許企業(yè)的抵扣鏈條斷層的緣由主要包括兩方面:首先是現(xiàn)行政策不允許抵扣某些支出,或者沒有這方面的抵扣政策;其次是實際操作階段,抵扣有政策,但是又出現(xiàn)不可抗的因素導致不能及時有效地抵扣稅額。

    [33] Mitra S, Khaidakov M, Lu J, Ayyadevara S, Szwedo J, Wang XW, et al. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. American journal of physiology Heart and circulatory physiology 2011; 301: H506-13.

    [34] Drager LF, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest 2011; 140: 534-42.

    [35] Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99: 675-91.

    [36] Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 1998; 97: 2494-8.

    [37] Teichert AM, Scott JA, Robb GB, Zhou YQ, Zhu SN, Lem M, et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 2008; 103: 24-33.

    [38] Pojoga LH, Williams JS, Yao TM, Kumar A, Raffetto JD, do Nascimento GR, et al. Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension. American journal of physiology Heart and circulatory physiology 2011; 301: H1862-71.

    [39] Fish JE, Yan MS, Matouk CC, St Bernard R, Ho JJ, Jr., Gavryushova A, et al. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 2010; 285: 810-26.

    [40] Kheirandish-Gozal L, Khalyfa A, Gozal D, Bhattacharjee R, Wang Y. Endothelial dysfunction in children with obstructive sleep apnea is associated with epigenetic changes in the eNOS gene. Chest 2013; 143: 971-7.

    [41] Xu XF, Gu WZ, Wu XL, Li RY, Du LZ. Fetal pulmonary vascular remodeling in a rat model induced by hypoxia and indomethacin. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2011; 24: 172-82.

    [42] Xu XF, Ma XL, Shen Z, Wu XL, Cheng F, Du LZ. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens 2010; 28: 2227-35.

    [43] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical per-spectives. Physiol Rev 2011; 91: 327-87.

    [44] Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Jr., Gimbrone MA, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 1986; 83: 2114-7.

    [45] Freyberg MA, Kaiser D, Graf R, Buttenbender J, Friedl P. Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-1 and the integrin-associated protein. Biochem Biophys Res Commun 2001; 286: 141-9.

    [46] Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 1993; 142: 1927-37.

    [47] Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, et al. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem 2003; 278: 47291-8.

    [48] Illi B, Nanni S, Scopece A, Farsetti A, Biglioli P, Capogrossi MC, et al. Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression. Circ Res 2003; 93: 155-61.

    [49] Lopez-Ongil S, Hernandez-Perera O, Navarro-Antolin J, Perez de Lema G, Rodriguez-Puyol M, Lamas S, et al. Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells. Br J Pharmacol 1998; 124: 447-54.

    [50] Boulanger CM, Tanner FC, Bea ML, Hahn AW, Werner A, Luscher TF. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res 1992; 70: 1191-7.

    [51] Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 2009; 25: 964-72.

    [52] Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. American journal of physiology Endocrinology and metabolism 2010; 298: E127-37.

    [53] Wort SJ, Ito M, Chou PC, Mc Master SK, Badiger R, Jazrawi E, et al. Synergistic induction of endothelin-1 by tumor necrosis factor alpha and interferon gamma is due to enhanced NF-kappaB binding and histone acetylation at specific kappaB sites. J Biol Chem 2009; 284: 24297-305.

    [54] Xu XF, Lv Y, Gu WZ, Tang LL, Wei JK, Zhang LY, et al. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR. Respiratory research 2013; 14: 20.

    [55] Yang YY, Chen DW, Yuan ZB, Fang F, Cheng X, Xia J, et al. Megakaryocytic leukemia 1 (MKL1) ties the epigenetic machinery to hypoxia induced transactivation of endothelin-1. Nucleic Acids Res 2013.

    [56] Marx V. Epigenetics: Reading the second genomic code. Nature 2012; 491: 143-7.

    [57] Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010; 143: 156-69.

    [58] Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 2012; 36: 572-85.

    [59] Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 2010; 466: 508-12.

    Received 22 April 2013, Accepted 08 May 2013, Epub 03 June 2013

    The author reported no conflict of interests.

    10.7555/JBR.27.20130055

    猜你喜歡
    稅額實際操作鏈條
    個性鏈條
    鏈條養(yǎng)護好幫手: 5款鏈條油推薦
    中國自行車(2020年2期)2020-04-26 09:59:45
    產(chǎn)業(yè)鏈條“鏈” 著增收鏈條
    當代陜西(2019年13期)2019-08-20 03:53:56
    ●納稅人在辦理留抵退稅期間,如何確定允許退還的增量留抵稅額?
    稅收征納(2019年7期)2019-02-19 19:45:20
    ●2019年4月1日以后新設立的納稅人,如何計算增量留抵稅額?
    稅收征納(2019年7期)2019-02-19 19:45:20
    環(huán)境保護稅,哪些省份稅額標準高?
    職業(yè)學校機械專業(yè)一體化教學探究
    模糊綜合評價法應用于項目后評價的模型構建與實際操作
    試論體驗性學習實踐在初中物理教學中的運用
    語文生本課堂中字詞教學的實踐
    老汉色∧v一级毛片| 高清毛片免费观看视频网站 | 日本一区二区免费在线视频| 一个人免费在线观看的高清视频| 老汉色∧v一级毛片| 夜夜看夜夜爽夜夜摸 | netflix在线观看网站| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区欧美精品| 国产成人精品无人区| 亚洲久久久国产精品| 国产高清激情床上av| 80岁老熟妇乱子伦牲交| 精品国产超薄肉色丝袜足j| 午夜免费鲁丝| 一区在线观看完整版| 欧美激情 高清一区二区三区| 91字幕亚洲| 亚洲一区中文字幕在线| 美女福利国产在线| 成人黄色视频免费在线看| 男女下面插进去视频免费观看| 久久狼人影院| 丝袜在线中文字幕| 看片在线看免费视频| 精品免费久久久久久久清纯| 午夜免费观看网址| 国产一区在线观看成人免费| 欧美日韩av久久| 中出人妻视频一区二区| 一区二区三区精品91| 啪啪无遮挡十八禁网站| 久久久精品欧美日韩精品| 美女大奶头视频| 亚洲色图av天堂| 国产在线精品亚洲第一网站| www国产在线视频色| 淫秽高清视频在线观看| 国产一区二区三区综合在线观看| 黄色女人牲交| 国产不卡一卡二| 亚洲精品一区av在线观看| 在线观看免费高清a一片| 制服诱惑二区| 日本a在线网址| 97碰自拍视频| 欧美乱色亚洲激情| 真人做人爱边吃奶动态| 91大片在线观看| 欧美另类亚洲清纯唯美| 国产精华一区二区三区| 亚洲熟妇中文字幕五十中出 | 69av精品久久久久久| 美女高潮到喷水免费观看| 国产免费av片在线观看野外av| 欧美+亚洲+日韩+国产| 天天影视国产精品| www.熟女人妻精品国产| 男人操女人黄网站| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区| 在线播放国产精品三级| 黄片大片在线免费观看| 久久精品91无色码中文字幕| 99国产精品一区二区蜜桃av| 在线观看午夜福利视频| a级片在线免费高清观看视频| 黑人巨大精品欧美一区二区mp4| 中文亚洲av片在线观看爽| 日韩国内少妇激情av| 精品国内亚洲2022精品成人| 久久久久久久久中文| 久久久久久久久免费视频了| 少妇的丰满在线观看| 国产欧美日韩一区二区精品| 后天国语完整版免费观看| 香蕉国产在线看| 视频在线观看一区二区三区| 久久精品91无色码中文字幕| 国产成人影院久久av| 一级片免费观看大全| 亚洲av电影在线进入| 国产主播在线观看一区二区| 丁香六月欧美| 国产成人欧美在线观看| av网站在线播放免费| 国产1区2区3区精品| 最近最新中文字幕大全免费视频| 桃红色精品国产亚洲av| tocl精华| 丰满人妻熟妇乱又伦精品不卡| 中文字幕精品免费在线观看视频| 日韩免费av在线播放| 国产成年人精品一区二区 | 搡老乐熟女国产| 午夜久久久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁人妻一区二区| 日本a在线网址| 淫秽高清视频在线观看| 国产成年人精品一区二区 | 精品欧美一区二区三区在线| 极品人妻少妇av视频| 午夜精品久久久久久毛片777| 啪啪无遮挡十八禁网站| 免费女性裸体啪啪无遮挡网站| 亚洲av电影在线进入| 黄色视频不卡| 91麻豆精品激情在线观看国产 | 两人在一起打扑克的视频| 久久性视频一级片| 中亚洲国语对白在线视频| 18禁美女被吸乳视频| 成在线人永久免费视频| 天堂动漫精品| 久久精品国产清高在天天线| 在线观看免费视频网站a站| 美女大奶头视频| 最好的美女福利视频网| 亚洲专区中文字幕在线| 激情视频va一区二区三区| 麻豆成人av在线观看| 国产乱人伦免费视频| 欧美 亚洲 国产 日韩一| 久久国产亚洲av麻豆专区| 脱女人内裤的视频| 人人妻人人添人人爽欧美一区卜| 最新美女视频免费是黄的| 色综合欧美亚洲国产小说| 日韩一卡2卡3卡4卡2021年| 国产成人av教育| bbb黄色大片| 69精品国产乱码久久久| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 在线观看免费高清a一片| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 欧美老熟妇乱子伦牲交| 免费高清视频大片| 欧美日韩乱码在线| aaaaa片日本免费| 国产日韩一区二区三区精品不卡| 老司机在亚洲福利影院| 黑人巨大精品欧美一区二区蜜桃| 久久天堂一区二区三区四区| 亚洲国产欧美一区二区综合| 丝袜在线中文字幕| 久久精品国产亚洲av香蕉五月| 国产成年人精品一区二区 | 欧美精品啪啪一区二区三区| 精品电影一区二区在线| av在线播放免费不卡| 国产一区二区三区在线臀色熟女 | 亚洲av片天天在线观看| 999精品在线视频| 亚洲成人精品中文字幕电影 | 十八禁人妻一区二区| 三级毛片av免费| 久久影院123| 国产精品99久久99久久久不卡| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| 成年人免费黄色播放视频| 国产精品成人在线| 一级片'在线观看视频| 国内久久婷婷六月综合欲色啪| 热re99久久国产66热| 久久久久国产精品人妻aⅴ院| 91字幕亚洲| 精品一区二区三卡| 岛国视频午夜一区免费看| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| av国产精品久久久久影院| 大型黄色视频在线免费观看| 99国产精品免费福利视频| 男人操女人黄网站| 午夜老司机福利片| 一级毛片高清免费大全| 亚洲少妇的诱惑av| 久久精品国产亚洲av香蕉五月| 人人妻人人爽人人添夜夜欢视频| 亚洲,欧美精品.| 国产有黄有色有爽视频| 久久香蕉激情| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 神马国产精品三级电影在线观看 | av国产精品久久久久影院| 精品久久久精品久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲伊人色综图| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| tocl精华| 欧美中文综合在线视频| 欧美大码av| 精品国产乱子伦一区二区三区| 中文字幕高清在线视频| 国产精品国产高清国产av| 午夜精品国产一区二区电影| 久久亚洲精品不卡| 国内毛片毛片毛片毛片毛片| 亚洲国产精品一区二区三区在线| 嫁个100分男人电影在线观看| av天堂久久9| 99久久99久久久精品蜜桃| 亚洲 欧美 日韩 在线 免费| 超碰97精品在线观看| 91字幕亚洲| 久久欧美精品欧美久久欧美| 欧美黑人精品巨大| 美女大奶头视频| 搡老岳熟女国产| 99热只有精品国产| 成在线人永久免费视频| 亚洲国产精品一区二区三区在线| 麻豆国产av国片精品| 操美女的视频在线观看| 久久热在线av| 精品国产国语对白av| 国产视频一区二区在线看| av天堂在线播放| 欧美黑人欧美精品刺激| 在线天堂中文资源库| 免费高清在线观看日韩| 校园春色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久免费视频了| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情久久久久久爽电影 | 国内久久婷婷六月综合欲色啪| 岛国在线观看网站| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 涩涩av久久男人的天堂| 国产精品二区激情视频| 亚洲一区二区三区欧美精品| 亚洲黑人精品在线| 久久人妻熟女aⅴ| 久久久精品欧美日韩精品| 欧美精品一区二区免费开放| 美女福利国产在线| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 国产精品二区激情视频| 亚洲av成人av| 欧美黄色淫秽网站| 欧美中文综合在线视频| 黄色怎么调成土黄色| 国产aⅴ精品一区二区三区波| 操美女的视频在线观看| 不卡av一区二区三区| 91字幕亚洲| 亚洲少妇的诱惑av| 日日干狠狠操夜夜爽| 电影成人av| 久久影院123| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| 日本欧美视频一区| 亚洲人成77777在线视频| 亚洲狠狠婷婷综合久久图片| 十分钟在线观看高清视频www| 久久精品国产99精品国产亚洲性色 | 一级毛片精品| 757午夜福利合集在线观看| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 午夜a级毛片| 黄片大片在线免费观看| 一级作爱视频免费观看| 亚洲精品国产色婷婷电影| 丰满迷人的少妇在线观看| 亚洲色图综合在线观看| 亚洲国产精品合色在线| av免费在线观看网站| 国产亚洲欧美在线一区二区| 久久精品人人爽人人爽视色| 18禁黄网站禁片午夜丰满| 欧美成人免费av一区二区三区| 久久午夜综合久久蜜桃| 久久精品国产综合久久久| 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| 亚洲第一av免费看| 黄片大片在线免费观看| 麻豆国产av国片精品| 国产精品野战在线观看 | 亚洲第一青青草原| 久久久精品欧美日韩精品| 亚洲七黄色美女视频| 国产精品成人在线| 人人妻人人澡人人看| 夫妻午夜视频| 黄色怎么调成土黄色| 亚洲一区中文字幕在线| 黄网站色视频无遮挡免费观看| 国产野战对白在线观看| 国产不卡一卡二| 桃红色精品国产亚洲av| 女警被强在线播放| 中文字幕精品免费在线观看视频| 一二三四在线观看免费中文在| 亚洲第一av免费看| 久久天堂一区二区三区四区| 亚洲九九香蕉| 青草久久国产| 女人被狂操c到高潮| 日韩大尺度精品在线看网址 | 亚洲一区中文字幕在线| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女 | 亚洲午夜理论影院| 男女做爰动态图高潮gif福利片 | 在线十欧美十亚洲十日本专区| 亚洲成人免费电影在线观看| 国产精品日韩av在线免费观看 | 一级,二级,三级黄色视频| 久99久视频精品免费| 多毛熟女@视频| 超碰97精品在线观看| 亚洲欧美日韩无卡精品| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 女同久久另类99精品国产91| 美女午夜性视频免费| 成年人免费黄色播放视频| 男女下面插进去视频免费观看| 精品久久蜜臀av无| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣高清无吗| 亚洲av美国av| 日本a在线网址| av国产精品久久久久影院| 久久久久国产精品人妻aⅴ院| 色在线成人网| 69精品国产乱码久久久| 高清av免费在线| 免费在线观看视频国产中文字幕亚洲| 18禁观看日本| 国产蜜桃级精品一区二区三区| 国产麻豆69| 9色porny在线观看| 久热爱精品视频在线9| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 在线观看日韩欧美| 午夜久久久在线观看| 日韩免费av在线播放| 久久精品国产清高在天天线| 国产伦人伦偷精品视频| 色婷婷av一区二区三区视频| 天堂影院成人在线观看| 新久久久久国产一级毛片| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 亚洲人成网站在线播放欧美日韩| 久久久国产精品麻豆| 青草久久国产| 亚洲男人的天堂狠狠| 久久国产亚洲av麻豆专区| 欧美精品啪啪一区二区三区| 黑人欧美特级aaaaaa片| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 91成年电影在线观看| 精品日产1卡2卡| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区蜜桃| 大型av网站在线播放| 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看| av在线播放免费不卡| 久久久精品欧美日韩精品| aaaaa片日本免费| 手机成人av网站| 国产亚洲精品第一综合不卡| 9色porny在线观看| 亚洲国产精品999在线| 国产精品日韩av在线免费观看 | 久久中文字幕人妻熟女| 一级作爱视频免费观看| 午夜两性在线视频| 精品乱码久久久久久99久播| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 又大又爽又粗| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 亚洲av五月六月丁香网| 午夜影院日韩av| 精品福利永久在线观看| √禁漫天堂资源中文www| 99国产精品一区二区三区| 在线天堂中文资源库| 国产精品成人在线| 看免费av毛片| 好男人电影高清在线观看| 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 又黄又爽又免费观看的视频| 美女大奶头视频| 久久久久久久精品吃奶| 久久草成人影院| 麻豆久久精品国产亚洲av | www国产在线视频色| 成年版毛片免费区| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 亚洲av成人av| 69精品国产乱码久久久| 黄色成人免费大全| 欧美黄色片欧美黄色片| 久久性视频一级片| 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 日本a在线网址| 在线播放国产精品三级| 亚洲专区国产一区二区| 免费观看人在逋| 国产单亲对白刺激| www日本在线高清视频| 国产一区二区三区在线臀色熟女 | 老汉色∧v一级毛片| 国产精品 国内视频| 成人影院久久| 一区二区三区激情视频| 在线天堂中文资源库| 女警被强在线播放| 色婷婷久久久亚洲欧美| 免费av毛片视频| 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 久久亚洲精品不卡| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 日韩视频一区二区在线观看| 啦啦啦 在线观看视频| 亚洲欧美精品综合久久99| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 一边摸一边做爽爽视频免费| 日韩欧美三级三区| 高清在线国产一区| 精品一区二区三区视频在线观看免费 | 免费少妇av软件| 亚洲欧美一区二区三区黑人| 在线国产一区二区在线| 丁香欧美五月| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点 | 美女大奶头视频| 亚洲五月婷婷丁香| 国产成人免费无遮挡视频| 国产主播在线观看一区二区| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 亚洲久久久国产精品| 久久这里只有精品19| 在线十欧美十亚洲十日本专区| 国产av精品麻豆| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 18禁裸乳无遮挡免费网站照片 | 午夜福利欧美成人| 一级,二级,三级黄色视频| svipshipincom国产片| av欧美777| 欧美成狂野欧美在线观看| 在线国产一区二区在线| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 欧美色视频一区免费| 亚洲熟女毛片儿| 国产精品日韩av在线免费观看 | av网站在线播放免费| 在线观看免费视频日本深夜| 久久亚洲真实| 欧美乱码精品一区二区三区| av视频免费观看在线观看| 视频区图区小说| 乱人伦中国视频| 中文欧美无线码| svipshipincom国产片| 无遮挡黄片免费观看| 十分钟在线观看高清视频www| av免费在线观看网站| 国产亚洲欧美在线一区二区| 久久 成人 亚洲| 日韩视频一区二区在线观看| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 亚洲全国av大片| av网站免费在线观看视频| av国产精品久久久久影院| 欧美日本中文国产一区发布| 精品卡一卡二卡四卡免费| 亚洲视频免费观看视频| aaaaa片日本免费| 波多野结衣高清无吗| 亚洲一区高清亚洲精品| 黄网站色视频无遮挡免费观看| 国产av精品麻豆| 好看av亚洲va欧美ⅴa在| 亚洲熟妇中文字幕五十中出 | 99久久人妻综合| 久久久久九九精品影院| 亚洲一区二区三区不卡视频| 欧美老熟妇乱子伦牲交| 精品国产乱子伦一区二区三区| 午夜福利欧美成人| 99热国产这里只有精品6| 成人av一区二区三区在线看| 两性夫妻黄色片| 成人永久免费在线观看视频| 国产成年人精品一区二区 | 亚洲视频免费观看视频| 女人精品久久久久毛片| 老汉色∧v一级毛片| 无人区码免费观看不卡| 丝袜在线中文字幕| 一个人观看的视频www高清免费观看 | 黄色毛片三级朝国网站| 在线永久观看黄色视频| 两个人看的免费小视频| 国产成人系列免费观看| 日韩有码中文字幕| 纯流量卡能插随身wifi吗| 欧美成狂野欧美在线观看| 亚洲一区中文字幕在线| 淫秽高清视频在线观看| 国产精品久久久久成人av| 成人免费观看视频高清| 久久影院123| 91麻豆精品激情在线观看国产 | 一a级毛片在线观看| 精品久久久久久电影网| 97碰自拍视频| 日韩有码中文字幕| 国产精品亚洲一级av第二区| 日韩欧美免费精品| 91九色精品人成在线观看| 免费高清视频大片| 99在线视频只有这里精品首页| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 曰老女人黄片| 日本a在线网址| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 国产免费男女视频| 国产一区二区三区在线臀色熟女 | 午夜a级毛片| 国产单亲对白刺激| 亚洲精品久久成人aⅴ小说| 久久草成人影院| 国产亚洲精品第一综合不卡| 免费在线观看黄色视频的| 村上凉子中文字幕在线| 免费高清在线观看日韩| 中文字幕av电影在线播放| 国产精品爽爽va在线观看网站 | 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 一区在线观看完整版| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9| 精品一区二区三卡| 国产97色在线日韩免费| 在线观看一区二区三区激情| www.熟女人妻精品国产| 国产主播在线观看一区二区| 国产亚洲欧美精品永久| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 久久精品aⅴ一区二区三区四区| 一级片'在线观看视频| 欧美老熟妇乱子伦牲交| 久久久久久久久免费视频了| 亚洲成人国产一区在线观看| 久久久久精品国产欧美久久久| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 久久人妻av系列| videosex国产| 正在播放国产对白刺激| 在线永久观看黄色视频| 看免费av毛片| 久久久精品欧美日韩精品| 91在线观看av|