• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational prediction of MHCⅡ-peptide ligands binding specificities by AUC Optimized Gibbs

    2014-02-08 09:40:02SHENGHaoLUYufengZHANGYi
    大連理工大學學報 2014年1期

    SHENG Hao, LU Yu-feng, ZHANG Yi

    (1.School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China;2.School of Sciences,Hebei University of Science and Technology,Shijiazhuang 050018,China)

    0 Introduction

    Recently there has been constant concern about the rules for the binding of peptides to MHC molecules.The MHC molecules deliver fragmented pieces of an antigen protein on the host cell′s surface to the cytotoxic T cell(Tc)or the helper T cell(Th),giving rise to their development and activation.It is important to know which peptide fragments of pathogenderived proteins most probably bind to a certain MHC-molecule.The MHCⅠbinding groove is closed,which tends to bind short peptides of 8-10 amino acids by both ends.But the MHCⅡbinding groove is open,which makes the length of the peptides bound by MHCⅡmolecules unconstrained.And relative to the MHCⅠmolecules,the binding pockets of MHCⅡmolecules are more permissive in the accommodation of amino acids.The two obstacles greatly affect the performance of MHCⅡbinding peptide prediction.

    On the opinion of the IBS hypothesis[1],for most peptides,each side chain of the peptide sequence contributes a certain amount to the stability of binding peptides to MHCⅡmolecules;and the MHCⅡ-peptide ligands binding affinity is independent of the peptide sequence.The influence of residues at each position in the peptide sequence on the binding affinity can be considered independently.Based on this hypothesis,some linear models,additive PLS method[2],stabilized matrix method[3],Gibbs sampling method[4]and SMM-align method[5]have achieved reasonable performance.

    AUC Optimized Gibbs(AOG)method used in the study is a changed version of Gibbs sampling method.The Gibbs sampling method was applied to predict classⅠand classⅡepitopes[4];Whereas,the relative entropy is used to guide the sampler,resulting in that only binding peptides are used for training,and nonbinding peptides are discarded.This leads to a low efficient use of the training data.In the study,the homology reduced self-fitting AUC is used to guide the sampler,resulting in that both the positive and negative information could be incorporated into training the sampler.In the HLA-DR4(B1*0401)epitope benchmark and quantitative IEDB benchmark,the AOG algorithm is used as well as Gibbs sampling method[4]and TEPITOPE[6].Through reduction of the noise from the experimental data using the AOG method,MHCⅡbinding specificities are computationally predicted,and the profile of the MHCⅡmolecule interacting with its peptides is analyzed from the results of the algorithm.The processing of classⅡepitopes as well as design of better peptide vaccine can be understood well.

    1 Methods and materials

    1.1 Training and testing data

    1.1.1 Training datasets for HLA-DR4(B1*0401) 462 Binding peptides and 177 non-binding peptides that have interacted with the HLA-DR4(B1*0401)constitute the HLA-DR4(B1*0401)training set.The binding peptides are extracted from SYFPEITHI[7],which have been described by Nielsen,etal[4];The nonbinders are extracted from MHCBN[8],which have been described by Murugan,etal[9].Both the training set and the evaluation set contain two columns.The first column gives the peptide sequence,and the second one gives theIC50logtransformed binding affinity pIC50,pIC50=1-log(IC50/(nmol·L-1))/log 50 000[4].This set is referred to as DR4-training.

    1.1.2 Testing datasets for HLA-DR4(B1*0401) HLA-DR4(B1*0401)benchmarks are the same benchmarks used by Nielsen,etal[4].They consist of ten datasets;and eight of ten datasets are downloaded from MHCbench(http://www.imtech.res.in/raghava/mhcbench),the rest two are Southwood and Geluk datasets[4].The same threshold to determine binders and non-binders as Nielsen,etal.(2004)[4]is used in study in this paper.For the 8 MHCbench datasets,peptides with a binding value of non-zero are defined as binders and all other peptides are defined as non-binders.For the Southwood and Geluk datasets,an affinity of 1 000 nmol/L is taken as the threshold,which is peptides with an associated pIC50larger than 0.36 are defined as binding peptides.The 10 benchmarks are through homology reduction,which ensures that no peptide in the benchmarks has a match in the training set with more than 7 identical amino acids over an alignment of 9 amino acids.Tab.1 shows a summary of the original and the homology-reduced benchmark datasets,respectively.

    1.1.3 IEDB HLA-DR restricted testing datasets A quantitative IEDB HLA-DR restricted peptide-binding data for each HLA-DR alleles partitioned into 5 datasets using the method described by Nielsen,etal[10].Each dataset and its corresponding partition are available online at http://www.cbs.dtu.dk/suppl/immunology/Net MHC-2.0.php.

    Tab.1 Description of HLA-DR4(B1*0401)testing datasets

    1.2 AOG algorithm

    1.2.1 Core nonamers filter There is a binding core in the binding peptides to MHCⅡmolecules,which is approximately 9 amino acids long.This binding core reveals some distinctions from randomness in the frequency of amino acids(i.e.,the background in the SWISS-PROT database[11]).And a statistically significant alignment is likely to grasp such distinctions[12].On the basis of this idea,the algorithm samples possibly ungapped alignment fromnpeptide sequences(nis the number of binding peptides in the training set).Because nearly all the binding peptides have a hydrophobic residue(F,I,L,M,V,W,Y)at P1 position[13],the sampling restricts to the ungapped nonamers that have a hydrophobic residue at P1 position.The size of the search space could be greatly reduced,e.g.,given a binding peptide′GNKLCALLYGDAEKP′,nonamers for selecting are ′LCALLYGDA′ and′LLYGDAEKP′,and the other candidates that do not have a hydrophobic residue at P1 are discarded.

    1.2.2 Sequence weights Closely related sequences carry similar information,and a large set of them make the raw amino acid frequencies calculation badly biased.Hobohm 1-like algorithm[14]is used for clustering the sequences and a sequence identity of 62%is used as the cluster threshold,e.g.,if sequence A has 6(≥9×62%)amino acids identical to the sequence B in their aligned positions,A and B are clustered,and are assigned a weight 1/2.If C has 6 amino acids identical to sequence A or B in their aligned positions,A,B and C are clustered and assigned a weight 1/3.

    1.2.3 Scoring matrix calculation Pseudofrequency method is used for estimating the frequency of amino acids for low counts[4].For an alignment,the pseudo-count frequency of amino acidiat positionjis

    Wheref′i′jis the observed frequency of amino acidi′at positionj.Pi′is the background frequency of amino acidi′in the SWISS-PROT database[11].qii′is calculated as

    WhereQi′is the observed frequency of amino acidi′in the alignment andλuis a random scale number(2 by default);Si′iis the observed probability of occurrence foriandi′amino pair from the Blosum62 substitution matrix[14].

    The effective amino acid frequency is

    Whereαis the number of clusters,βis the weight on the pseudo-count correction.A too great value ofβwould reduce the sensitivity of scoring prediction matrix.The score of the amino acidiin positionjis computed as log-odds ratios: Since different positions have different impact on the binding peptides and MHCⅡmolecule interaction,i.e.,anchor positions are more important than ordinary positions.The positiondetermined parameterμjis introduced;And the final 9×20 scoring matrixMis calculated as

    The score of a nonamer subpeptide is the sum of all the scores of amino acids in the nine positions.And the score of a peptide is the highest score of all nonamer subpeptides in the peptide sequence.

    1.2.4 AUC calculation The receiver operator characteristics(ROC)curve is a twodimensional curve;the false positive rate of the prediction is plotted on theXaxis and the true positive rate of the prediction is plotted on theYaxis over a continuous range of cut-off values from high to low.The AUC value is the area under the ROC curve;it reflects the ability of a model that can tell a randomly chosen positive instance from a randomly chosen negative one[15].In the study,ROC analysis is used for measurement of the ability of different models to identify the MHC classⅡepitopes.Homology reduced AUC is calculated on the Hobohm 1-like[14]homology-reduced training dataset.This implement ensures that there are not two peptides in the training set that have over nine identical continuous amino acids.

    1.2.5 AOG algorithm (i)raw alignment:a new starting point is chosen randomly in a peptide sequence.The random alignment is run for 5 000 times to reach a relatively high-AUC alignment.Since the alignment space has a very large number of local maxima with close to identical prediction accuracy,this procedure is repeated 100 times with different initial configurations.The probability of accepting a new alignment in the sampling is calculated as:

    WhereTis a scalar.(ii)Precise alignment:for the starting point of the binding peptide voted by a majority of the 100 alignments in(i),twice selecting probabilities of other starting points are used.The precise alignment is run for 100 000 times to reach the final optimal alignment.(iii)The two factors that influence the performance of the scoring matrices are the weightβin the effective amino acid frequency calculation and the position specific weightμj.A two-stage Monte Carlo method[16]is implemented,alternately shiftingμjin Eq.(4)andβin Eq.(3)to optimize these parameters.

    In(i),the scalarTimplicit in Eq.(5)is set to 0.001,that reduces the probability of accepting unfavorable alignment;In(ii),the scalarTis set from 0.1 to 0.001,that gradually reduces the probability of accepting unfavorable alignment;In(iii),the scalarTis set to 0.001,that reduces the probability of accepting unfavorable score matrices.The alteredTin(ii)makes the probabilityPunfixed and accordingly guarantees the alignment chain irreducible and aperiodic(and thus ergodic)[16].

    2 Results

    2.1 MHCⅡ(HLA-DR4(B1*0401))weight matrix extraction

    Using HLA-DR4(B1*0401)training data DR4-training,an AUC-guided iterative training process is employed to get the optimal alignment,parameters and the corresponding scoring matrix.The final scoring matrix for HLA-DR4(B1*0401)is shown in Fig.1.Each itemmijof the scoring matrixMrespectively corresponds to a kind of amino acidiin a sequence positionj,and the sum of these scores is the predicted binding affinity.Hence,the scoring matrixMcan be seen as the impact of each amino acid in sequence positions on the binding affinity.The height of the symbol of the amino acidiis proportional to the absolute value ofmij.The upside or upside-down symbol represents the positive or negative sign ofmijrespectively.The colors of amino acid symbols represent their physicochemical characteristics,i.e.,black,neutral and hydrophobic;blue,basic;green,neutral and polar;red,acidic.(due to print limit,here using different shades for demonstration)

    Fig.1 The weight coefficients of amino acids in HLA-DR4(B1*0401)peptides

    Each symbol column corresponds to a sequence position between P1 and P9.

    2.2 Results for the HLA-DR4(B1*0401)data

    The performance of the AOG method,Gibbs sampling method and TEPITOPE are compared on the HLA-DR4(B1*0401)benchmarks.The results of Gibbs sampler are calculated with the weight matrix offered by Nielsen;this weight matrix is trained with the positive samples of the DR4-training;the results of TEPITOPE are gained with the weight matrix from ProPred[6].The AUC value of each method on the 10 benchmarks is illustrated in Fig.2(a)and Fig.2(b).It is observed that AOG gives a better performance than the Gibbs sampler and TEPITOPE.The average AUC values on the original and homology reduced benchmarks are 0.771 and 0.713,respectively.The average AUC values are 0.744 and 0.673 for the Gibbs sampler and 0.702 and 0.667 for TEPITOPE.

    Fig.2 Prediction performance of various methods on the HLA-DR4(B1*0401)benchmarks

    2.3 Results for quantitative IEDB HLA-DR data

    The predictive performances of AOG and TEPITOPE on the quantitative IEDB benchmark datasets are estimated using five-fold crossvalidation.In each cross-validation,1/5 of the data are left out for evaluation and the remaining 4/5 are used for an alternating training.The predictive performances of AOG and TEPITOPE on the 11 HLA-DR allele benchmarks are shown in Tab.2.The predictive performances of AOG method and TEPITOPE are in terms of AUC values,using a binding affinity threshold of 500 nmol/L.The results of TEPITOPE are obtained with the use of the scoring matrix from ProPred[6].Since ProPred offers scoring matrices for only 11 alleles,the rest 3 alleles are not included in the table.It is clear that AOG method has a higher performance than TEPITOPE for most alleles(10/11).Only for one allele(DRB1*0404)does the TEPITOPE outperform AOG method.

    Tab.2 Predictive performances of AOG and TEPITOPE for the 11 HLA-DR alleles in the quantitative IEDB benchmark datasets

    3 Discussion

    As shown in Fig.1,the height of each amino acid symbol is proportional to its absolute score,which is the contribution of the amino acid in a sequence position to the MHC-peptide binding affinity,and the height of all amino acid symbols stacked on each position along P1-P9 is proportional to the sum of corresponding absolute scores for the 20 possible amino acids on the position,which is the contribution to the binding affinity.The positions in core region of the peptides have distinct specificities,i.e.,P1,P4,P6 and P9 positions have distinct influence on the HLAⅡ-peptide binding.

    For the purpose of interpreting the amino acid characteristics in HLAⅡ-peptide primary positions that are presented in Fig.1,the crystal structures of DRB1*0401(PDB id:1J8 H,1D5Z,1D6E,2SEB,1D5M,1D5X)are used to find amino acids that make nonbonding contact with the peptides(i.e.,two residues are defined to be nonbonding contact if the distance of two atoms of these residues is smaller than 0.4 nm)[17].Tab.3 lists the amino acids of α-chain andβ-chain of DRB1*0401 nonbonding contact with the peptides.

    Tab.3 The amino acids of the HLA-DR4(B1*0401)molecule nonbonding contact with the peptides

    Neutral amino acids are colored black,electropositive and basic amino acids are colored blue,and electronegative and acidic amino acids are colored red(due to print limit,here using different shades for demonstration).

    P1 position:Residues of the HLA DRB1*0401 molecule that make nonbonding contact with residues of peptides in P1 position are Ile7,Phe24,Ile31,Phe32,Trp43,Ala52,Ser53,Phe54 in theα-chain and Asn82,Val85,Gly86,Phe89 in theβ-chain(see Tab.3).It is found that,the P1 pocket is shaped by conserved aliphatic amino acids(Ileα7,Ileα31,Serα53, Alaα52,Valβ85,Glyβ86)and aromatic amino acids(Pheα24,Pheα32,Pheα54,Trpα43,Pheβ89)and represents a highly hydrophobic environment.Jardetzky′s single residue substitution experiment[13]demonstrates that the main determinant of binding is a large pocket that accommodates a hydrophobic or aromatic amino acid side chain near the N terminus of the peptide(the P1 position).From Fig.1,the following can be figured out:(i)The sum of absolute values in P1 position is significantly larger than that of any other position,indicating that P1 position has the highest influence on the binding affinity;(ii)Polar amino acids have negative scores in P1,which indicates that polar amino acids are unfavorable to the binding;Hydrophobic amino acids have positive scores in P1,which indicates that these hydrophobic amino acids are favorable to the binding;(i)and(ii)are in accordance with the Jardetzky′s conclusion[13].(iii)Stable amino acid residues F,W and Y have much higher scores than less stable amino acid residues I,L,M and V,which indicates that stable amino acid residues are more favorable to the binding;this result is in accordance with the Tobita′s conclusion[18]—Difference in stability of amino acids in P1 closely correlates with the binding affinity.

    P4 position:Residues of the HLA DRB1*0401 molecule that make nonbonding contact with residues of peptides in P4 position are Gln9,Asn62 in theα-chain and His13,Phe26,Asp28,Gln70,Lys71,Ala74,Tyr78 in theβchain(Tab.3).The electronegative and acidic amino acids Aspβ28 and electropositive and basic amino acids Hisβ13 and Lysβ71 endow the P4 pocket polar binding characteristics;Previous studies[19]on the HLA-peptide affinity have shown that the positively charged Lysβ71 can make direct contact with side-chain residues from the antigenic peptide;Lysβ71 makes this pocket tend to have a high affinity for negatively charged or uncharged polar amino acids,whereas disfavors positively charged amino acids(like Lys).This is an approval of the algorithm in P4 position:in Fig.1,negatively charged amino acids Asp and Glu have the highest positive scores,whereas electropositive and basic amino acids Lys,Arg and His have the lowest negative scores.From Fig.1,it is also found that bulky amino acids Phe and Trp also have relatively high positive score that may indicate that P4 pocket is a large sized one.

    P6 position:Residues of the HLA DRB1*0401 molecule that make nonbonding contact with residues of peptides in P6 position are Glu11,Asn62,Val65,Asp66,Asn69 in theαchain and Val11,His13 and Lys71 in theβ-chain(Tab.3).As indicated by the amino acid symbol height stacked in P6 position in Fig.1,P6 is a major anchor and inhibitory residue position.The electronegative and acidic amino acids Gluα11,Aspα66 and electropositive and basic amino acids Hisβ13 and Lysβ71 endow the P6 pocket a polar interface;The experimental results[20]have shown that this pocket favors the binding of medium sized(like Met,Leu and Ile)or polar amino acid residues.In the scoring matrix(Fig.1),the negatively charged amino acids Asp and polar amino acids Asn,Ser and Thr have positive scores,which may be beneficial to the binding affinity.

    P9 position:Residues of the HLA DRB1*0401 molecule that make nonbonding contact with residues of peptides in P9 position are Asn69,Ile72,Met73,Arg76 in theα-chain and Glu9,Tyr37,Asp57,Tyr60,Trp61 in theβchain(Tab.3).As indicated by the amino acid symbol height stacked in P9 position in Fig.1,P9 is a major anchor and inhibitory residue position.The P9 pocket is shaped by neutral amino acids Tyrβ37 and Tyrβ60 and electronegative and acidic amino acids Gluβ9 and Aspβ57[21].So the positively charged or polar residues are favored in the P9 pocket.In the scoring matrix(Fig.1),the positively charged amino acids His and polar amino acids Gly,Ser and Gln have positive scores.It is indicated that these amino acids may enter the inner cavity wall of P9 easily.As an unexpected result,the hydrophobic amino acid Ala has the highest score in the P9 position,which indicates that P9 pocket is a small sized pocket.

    4 Conclusion

    A method,AUC Optimized Gibbs(AOG)is developed for prediction of peptide binding to MHCⅡmolecules.Tests on 10 HLA-DR4(B1*0401)benchmarks and quantitative IEDB HLA-DR benchmark show that AOG is a better predictive method for MHC classⅡepitopes than Gibbs sampling method and TEPITOPE.The positions in core region of the HLA-DR4(B1*0401)peptides have distinct specificities,i.e.,P1,P4,P6 and P9 positions have distinct influence on the MHC-peptide binding.

    [1]Parker K C,Bednarek M A,Coligan J E.Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains[J].Journal of Immunology,1994,152(1):163-175.

    [2]Doytchinova I A,Blythe M J,F(xiàn)lower D R.Additive method for the prediction of proteinpeptide binding affinity.Application to the MHC class I molecule HLA-A*0201[J].Journal of Proteome Research,2002,1(3):263-272.

    [3]Peters B,Sette A.Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method[J].BMC Bioinformatics,2005,6:132.

    [4]Nielsen M,Lundegaard C,Worning P,etal.Improved prediction of MHC class I and classⅡepitopes using a novel Gibbs sampling approach[J].Bioinformatics,2004,20(9):1388-1397.

    [5]Nielsen M,Lundegaard C,Lund O.Prediction of MHC classⅡbinding affinity using SMM-align,a novel stabilization matrix alignment method[J].BMC Bioinformatics,2007,8:238.

    [6]Sturniolo T,Bono E,Ding J,etal.Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA classⅡmatrices[J].Nature Biotechnology,1999,17(6):555-561.

    [7]Rammensee H,Bachmann J,Emmerich N P,etal.SYFPEITHI:database for MHC ligands and peptide motifs[J].Immunogenetics,1999,50(3-4):213-219.

    [8]Bhasin M,Singh H,Raghava G P.MHCBN:a comprehensive database of MHC binding and nonbinding peptides[J].Bioinformatics,2003,19(5):665-666.

    [9]Murugan N,Dai Y.Prediction of MHC classⅡbinding peptides based on an iterative learning model[J].Immunome Research,2005,1:6.

    [10]Nielsen M,Lundegaard C,Blicher T,etal.Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence:Net MHCⅡpan[J].PLoS Computational Biology,2008,4(7):e1000107.

    [11]Bairoch A,Apweiler R.The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J].Nucleic Acids Research,2000,28(1):45-48.

    [12]Altschul S F,Madden T L,Schffer A A,etal.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J].Nucleic Acids Research,1997,25(17):3389-3402.

    [13]Jardetzky T S,Gorga J C,Busch R,etal.Peptide binding to HLA-DR1:a peptide with most residues substituted to alanine retains MHC binding[J].The EMBO Journal,1990,9(6):1797-1803.

    [14]Hobohm U,Scharf M,Schneider R,etal.Selection of representative protein datasets[J].Protein Science:a Publication of the Protein Society, 1992,1(3):409-417.

    [15]Swets J A.Measuring the accuracy of diagnostic systems[J].Science,1988,240(4857):1285-1293.

    [16]Robert C P,Casella G.Monte Carlo Statistical Methods[M].2nd ed.New York:Springer,2004:267-280.

    [17]Holzhütter H G,Kloetzel P M.A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates[J].Biophysical Journal,2000,79(3):1196-1205.

    [18]Tobita T,Oda M,Morii H,etal.A role for the P1 anchor residue in the thermal stability of MHC classⅡmolecule I-Ab[J].Immunology Letters,2003,85(1):47-52.

    [19]Hill J A,Southwood S,Sette A,etal.Cutting edge:the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC classⅡmolecule[J].Journal of Immunology,2003,171(2):538-541.

    [20]Zarour H M,Storkus W J,Brusic V,etal.NYESO-1 encodes DRB1*0401-restricted epitopes recognized by melanoma-reactive CD4+T cells[J].Cancer Research,2000,60(17):4946-4952.

    [21]Atanasova M,Dimitrov I,F(xiàn)lower D R,etal.MHC classⅡbinding prediction by molecular docking[J].Molecular Informatics,2011,30(4):368-375.

    一级毛片我不卡| 亚洲精品国产色婷婷电影| 爱豆传媒免费全集在线观看| 多毛熟女@视频| av在线播放精品| 大片免费播放器 马上看| 高清不卡的av网站| 日本av手机在线免费观看| 成人特级av手机在线观看| 9色porny在线观看| 91久久精品国产一区二区三区| 一区二区av电影网| 亚洲av欧美aⅴ国产| 黄色日韩在线| 在线精品无人区一区二区三| 欧美+日韩+精品| 黄色配什么色好看| 欧美区成人在线视频| 高清黄色对白视频在线免费看 | 99久久综合免费| 日本欧美国产在线视频| 久久久久国产精品人妻一区二区| 免费看日本二区| 中文字幕人妻熟人妻熟丝袜美| 大又大粗又爽又黄少妇毛片口| 伦精品一区二区三区| 国产精品.久久久| 高清黄色对白视频在线免费看 | 人妻系列 视频| 免费黄网站久久成人精品| 精品亚洲乱码少妇综合久久| 欧美+日韩+精品| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频 | 一区二区三区乱码不卡18| 丝袜在线中文字幕| 久久亚洲国产成人精品v| 22中文网久久字幕| 久久影院123| 亚洲欧美一区二区三区国产| 国产伦在线观看视频一区| 亚洲精品日韩在线中文字幕| 少妇裸体淫交视频免费看高清| 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 日韩强制内射视频| 一级av片app| 亚洲,欧美,日韩| 自拍偷自拍亚洲精品老妇| 丰满人妻一区二区三区视频av| 99久久综合免费| 99久久人妻综合| 亚洲经典国产精华液单| 中国三级夫妇交换| 欧美日韩av久久| 久久婷婷青草| 男女免费视频国产| 欧美日韩在线观看h| 亚洲欧洲国产日韩| 一本—道久久a久久精品蜜桃钙片| 日韩制服骚丝袜av| 亚洲av成人精品一二三区| 日韩不卡一区二区三区视频在线| 18禁裸乳无遮挡动漫免费视频| 国产成人免费观看mmmm| 在线观看www视频免费| 国产精品蜜桃在线观看| 国产爽快片一区二区三区| 日韩视频在线欧美| 国产成人一区二区在线| .国产精品久久| 国产免费一级a男人的天堂| 欧美高清成人免费视频www| 99国产精品免费福利视频| 老司机影院毛片| 国产高清不卡午夜福利| 色94色欧美一区二区| 日韩av免费高清视频| 日日撸夜夜添| 久久久久人妻精品一区果冻| 一二三四中文在线观看免费高清| 亚洲国产色片| 自线自在国产av| kizo精华| 欧美三级亚洲精品| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 欧美日韩av久久| 熟妇人妻不卡中文字幕| 久久亚洲国产成人精品v| 久久99一区二区三区| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 伦精品一区二区三区| 美女主播在线视频| 一级毛片我不卡| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 偷拍熟女少妇极品色| 免费看av在线观看网站| 亚洲av二区三区四区| 亚洲av.av天堂| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 日本av免费视频播放| 免费观看无遮挡的男女| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 嫩草影院新地址| 欧美成人午夜免费资源| 国产精品一区二区性色av| 97在线视频观看| 国产乱来视频区| 久久久久久久久久成人| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 国产成人freesex在线| 少妇被粗大猛烈的视频| 女性被躁到高潮视频| 国产在线男女| 最新中文字幕久久久久| 女性被躁到高潮视频| 人人妻人人看人人澡| 欧美精品人与动牲交sv欧美| 中文欧美无线码| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费 | 欧美激情极品国产一区二区三区 | 91精品国产国语对白视频| 啦啦啦视频在线资源免费观看| 国产 精品1| 丝瓜视频免费看黄片| 亚洲性久久影院| 欧美三级亚洲精品| 国产真实伦视频高清在线观看| 日本午夜av视频| 免费av中文字幕在线| 国产日韩一区二区三区精品不卡 | 日韩伦理黄色片| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三区在线 | 不卡视频在线观看欧美| 国产黄色免费在线视频| 亚洲内射少妇av| 亚洲欧美清纯卡通| 久久久久久久久久久丰满| 一个人看视频在线观看www免费| av网站免费在线观看视频| 五月玫瑰六月丁香| 日韩欧美精品免费久久| 久久久久久人妻| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 男人和女人高潮做爰伦理| 十八禁高潮呻吟视频 | 亚洲av电影在线观看一区二区三区| 国产精品熟女久久久久浪| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 国产亚洲最大av| 国产精品蜜桃在线观看| 久久久久久久久久久久大奶| 久久6这里有精品| 国产色爽女视频免费观看| 亚洲av国产av综合av卡| 大片免费播放器 马上看| 日韩精品免费视频一区二区三区 | 久久久久精品性色| 国产国拍精品亚洲av在线观看| 在线观看美女被高潮喷水网站| 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久| 亚洲经典国产精华液单| 亚洲精品日韩av片在线观看| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 黄色欧美视频在线观看| 国产有黄有色有爽视频| 亚洲综合色惰| 成人无遮挡网站| av线在线观看网站| 少妇高潮的动态图| 美女主播在线视频| 18+在线观看网站| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 69精品国产乱码久久久| 亚洲人与动物交配视频| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 国产成人a∨麻豆精品| 美女中出高潮动态图| 深夜a级毛片| videossex国产| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 国产伦在线观看视频一区| av免费在线看不卡| 国产视频内射| 欧美区成人在线视频| 我要看日韩黄色一级片| 熟妇人妻不卡中文字幕| 日韩人妻高清精品专区| 日韩免费高清中文字幕av| 赤兔流量卡办理| 观看av在线不卡| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 亚洲国产精品专区欧美| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 在线观看三级黄色| 午夜老司机福利剧场| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 午夜福利网站1000一区二区三区| 777米奇影视久久| 久久97久久精品| 97精品久久久久久久久久精品| 久久精品国产a三级三级三级| 午夜福利,免费看| av在线观看视频网站免费| 国产男女内射视频| 国产精品嫩草影院av在线观看| 欧美成人午夜免费资源| 日本欧美视频一区| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频 | 亚洲成色77777| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| 日本av免费视频播放| 免费大片18禁| 在线观看www视频免费| 欧美激情极品国产一区二区三区 | 日韩不卡一区二区三区视频在线| 亚洲成人一二三区av| 高清黄色对白视频在线免费看 | 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 青春草视频在线免费观看| 最黄视频免费看| 最近2019中文字幕mv第一页| 日本黄大片高清| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 熟妇人妻不卡中文字幕| 国产熟女午夜一区二区三区 | 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 日韩不卡一区二区三区视频在线| 欧美成人精品欧美一级黄| av网站免费在线观看视频| 成人无遮挡网站| 久久精品国产亚洲av涩爱| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 亚洲国产精品专区欧美| 自线自在国产av| av播播在线观看一区| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 欧美日韩在线观看h| 国产淫片久久久久久久久| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 五月玫瑰六月丁香| 国产一区有黄有色的免费视频| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 中文天堂在线官网| 视频中文字幕在线观看| 超碰97精品在线观看| av有码第一页| 日日撸夜夜添| 亚洲av免费高清在线观看| 久久国产精品男人的天堂亚洲 | 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 少妇人妻 视频| 国内精品宾馆在线| 97超碰精品成人国产| 日本av免费视频播放| 亚洲高清免费不卡视频| 一级爰片在线观看| 日韩欧美 国产精品| 在线观看国产h片| 内地一区二区视频在线| 国产精品一区二区性色av| 亚洲国产精品一区三区| 亚洲人成网站在线播| 永久网站在线| 搡老乐熟女国产| 九九爱精品视频在线观看| 男女免费视频国产| 一级二级三级毛片免费看| 精品亚洲乱码少妇综合久久| 边亲边吃奶的免费视频| 亚洲国产精品一区三区| 自线自在国产av| 国产免费福利视频在线观看| 国产精品免费大片| 国产精品一二三区在线看| 成年人免费黄色播放视频 | 嫩草影院入口| 在线观看一区二区三区激情| 边亲边吃奶的免费视频| 在线观看国产h片| 蜜桃久久精品国产亚洲av| 男女免费视频国产| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| 国产精品一区二区在线不卡| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 国产综合精华液| 丝袜喷水一区| 蜜臀久久99精品久久宅男| 曰老女人黄片| 日韩欧美 国产精品| 国产精品久久久久成人av| .国产精品久久| 日日摸夜夜添夜夜爱| 亚洲在久久综合| 亚洲国产精品一区三区| 午夜福利,免费看| 日韩强制内射视频| 欧美老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 午夜免费观看性视频| 又粗又硬又长又爽又黄的视频| 国产高清三级在线| 哪个播放器可以免费观看大片| 亚洲,一卡二卡三卡| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 日本欧美视频一区| 黄片无遮挡物在线观看| 搡老乐熟女国产| 十八禁高潮呻吟视频 | 国产视频首页在线观看| 三上悠亚av全集在线观看 | 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久精品久久久久真实原创| 国产片特级美女逼逼视频| 大香蕉久久网| 多毛熟女@视频| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片 | 欧美3d第一页| 永久网站在线| 久久99热这里只频精品6学生| 欧美一级a爱片免费观看看| 婷婷色综合大香蕉| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 免费少妇av软件| 国产极品粉嫩免费观看在线 | 国产精品久久久久成人av| 十八禁网站网址无遮挡 | 亚洲国产毛片av蜜桃av| 日日啪夜夜撸| 午夜91福利影院| 另类亚洲欧美激情| 精品久久久久久久久亚洲| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 有码 亚洲区| 如何舔出高潮| 男女边摸边吃奶| 亚洲综合精品二区| 国产一区二区三区综合在线观看 | 国产高清不卡午夜福利| 夫妻午夜视频| 久久久久久人妻| 亚洲精品亚洲一区二区| av国产久精品久网站免费入址| 午夜视频国产福利| 少妇人妻久久综合中文| a级毛色黄片| 大话2 男鬼变身卡| 高清不卡的av网站| 18+在线观看网站| 国产精品人妻久久久影院| 亚洲人成网站在线播| freevideosex欧美| 五月天丁香电影| 久久国产精品大桥未久av | 国产探花极品一区二区| 国产成人精品婷婷| 国产乱人偷精品视频| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 大码成人一级视频| 91成人精品电影| 亚洲怡红院男人天堂| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 久久久久精品性色| 精品国产露脸久久av麻豆| 嫩草影院入口| 三级国产精品欧美在线观看| 一级黄片播放器| 少妇人妻一区二区三区视频| 久久久久久久久久久丰满| 亚州av有码| 青春草视频在线免费观看| 日韩强制内射视频| 国产成人精品福利久久| 我要看黄色一级片免费的| 永久免费av网站大全| 国产中年淑女户外野战色| 亚洲熟女精品中文字幕| av在线app专区| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 午夜福利视频精品| 男女免费视频国产| 久久99热6这里只有精品| 日韩伦理黄色片| 丁香六月天网| 欧美国产精品一级二级三级 | 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载| 如何舔出高潮| 国产男女超爽视频在线观看| 午夜免费鲁丝| 欧美高清成人免费视频www| 国产一区亚洲一区在线观看| 亚洲精品乱码久久久v下载方式| 国产精品偷伦视频观看了| 免费黄色在线免费观看| 永久免费av网站大全| 久久国内精品自在自线图片| 亚洲经典国产精华液单| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 十八禁高潮呻吟视频 | 午夜精品国产一区二区电影| 国产黄频视频在线观看| 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 女性被躁到高潮视频| 国产免费福利视频在线观看| 成人无遮挡网站| 国产精品一区二区三区四区免费观看| av天堂久久9| av视频免费观看在线观看| 丰满乱子伦码专区| 日日啪夜夜爽| 日韩伦理黄色片| 国产乱来视频区| 亚洲精品视频女| 人妻少妇偷人精品九色| 一级毛片黄色毛片免费观看视频| 亚洲高清免费不卡视频| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 在线播放无遮挡| 丰满乱子伦码专区| 一级毛片aaaaaa免费看小| 自拍欧美九色日韩亚洲蝌蚪91 | 99热网站在线观看| 高清毛片免费看| 搡女人真爽免费视频火全软件| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 另类精品久久| 在线观看免费日韩欧美大片 | 99热这里只有是精品在线观看| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 久久免费观看电影| 亚洲精品456在线播放app| 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 国产美女午夜福利| 国内揄拍国产精品人妻在线| av专区在线播放| 一区二区三区四区激情视频| 制服丝袜香蕉在线| 男人狂女人下面高潮的视频| 亚洲精品乱久久久久久| 日日摸夜夜添夜夜添av毛片| 国语对白做爰xxxⅹ性视频网站| 男人舔奶头视频| 国产爽快片一区二区三区| 一边亲一边摸免费视频| 精品少妇黑人巨大在线播放| 国产极品粉嫩免费观看在线 | 欧美bdsm另类| 极品教师在线视频| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 日本wwww免费看| 日本91视频免费播放| 内地一区二区视频在线| 日本欧美视频一区| 欧美另类一区| 十八禁网站网址无遮挡 | av在线app专区| 久久久国产一区二区| 亚洲欧美成人精品一区二区| 桃花免费在线播放| 大又大粗又爽又黄少妇毛片口| 亚洲精品国产成人久久av| 91精品一卡2卡3卡4卡| 久久精品久久精品一区二区三区| 色94色欧美一区二区| 老司机亚洲免费影院| 永久免费av网站大全| 亚洲欧美日韩另类电影网站| 久久免费观看电影| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 欧美日韩亚洲高清精品| 国产极品粉嫩免费观看在线 | 在线观看www视频免费| 少妇人妻一区二区三区视频| 老熟女久久久| 女人精品久久久久毛片| 精品视频人人做人人爽| 青青草视频在线视频观看| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久成人av| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 亚洲美女黄色视频免费看| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 国产成人免费观看mmmm| 午夜视频国产福利| 国产亚洲最大av| 99re6热这里在线精品视频| 亚洲成人手机| 最近中文字幕2019免费版| 丝袜脚勾引网站| 亚洲精品,欧美精品| 香蕉精品网在线| 日日撸夜夜添| 午夜免费观看性视频| 日日爽夜夜爽网站| 久久国产精品大桥未久av | 男女免费视频国产| 秋霞在线观看毛片| 精品国产乱码久久久久久小说| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| a级一级毛片免费在线观看| 视频中文字幕在线观看| 精品国产一区二区三区久久久樱花| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 在现免费观看毛片| 日产精品乱码卡一卡2卡三| 久久精品国产a三级三级三级| 日本猛色少妇xxxxx猛交久久| 在线精品无人区一区二区三| 好男人视频免费观看在线| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 日韩大片免费观看网站| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 亚洲欧美日韩东京热| 亚洲成人手机| 在线看a的网站| 亚洲av免费高清在线观看| 国产极品天堂在线| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 成年av动漫网址| 国产欧美另类精品又又久久亚洲欧美| 亚洲丝袜综合中文字幕| 欧美性感艳星| 久久久国产精品麻豆| 热99国产精品久久久久久7| 国产极品天堂在线| 亚洲人成网站在线播| 国产精品人妻久久久影院| 中文资源天堂在线| 91精品伊人久久大香线蕉|