• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    應(yīng)用Bernstein多項(xiàng)式求解一類分?jǐn)?shù)階微分方程

    2014-02-05 05:11:32李寶鳳
    關(guān)鍵詞:科學(xué)系級(jí)數(shù)唐山

    李寶鳳

    (唐山師范學(xué)院 數(shù)學(xué)與信息科學(xué)系,河北 唐山 063000)

    數(shù)學(xué)與應(yīng)用數(shù)學(xué)研究

    應(yīng)用Bernstein多項(xiàng)式求解一類分?jǐn)?shù)階微分方程

    李寶鳳

    (唐山師范學(xué)院 數(shù)學(xué)與信息科學(xué)系,河北 唐山 063000)

    給出了基于Bernstein多項(xiàng)式求解分?jǐn)?shù)階微分方程的配置方法。首先,在Bernstein級(jí)數(shù)的截?cái)嗍街杏胻α(0<α<1)代替t得到分?jǐn)?shù)階Bernstein級(jí)數(shù)截?cái)嗍剑捎肅aputo分?jǐn)?shù)階導(dǎo)數(shù)構(gòu)建分?jǐn)?shù)階Bernstein級(jí)數(shù)截?cái)嗍降木仃囆问?。其次,把方程中的每一?xiàng)用分?jǐn)?shù)階Bernstein級(jí)數(shù)截?cái)嗍睫D(zhuǎn)換成矩陣形式,選取配置點(diǎn),得到相應(yīng)于非線性代數(shù)方程的基本矩陣方程。最后得到由條件矩陣形式和基本矩陣方程構(gòu)成的新方程組,其解給出了截?cái)囗?xiàng)為N的近似解,同時(shí)給出了基于殘余函數(shù)的誤差分析。舉例說(shuō)明了這種方法的有效性和可行性。

    分?jǐn)?shù)階微分方程;分?jǐn)?shù)階導(dǎo)數(shù);Caputo分?jǐn)?shù)階導(dǎo)數(shù);配置方法;Bernstein多項(xiàng)式

    1 Introduction

    Fractional differential equations are generalized from integer order ones, which are obtained by replacing integer order derivatives with fractional ones. In the last few decades fractional calculus and fractional differential equations have found applications in several differential disciplines. Moreover, a large class of dynamical systems appearing throughout the field of engineering and applied mathematics are described by differential equations of fractional order[1,2]. The fractional differential equations have been solved by means of the numerical and analytical methods such as the Adomian’s decomposition method[3,4], the He’s variational iteration method[5], the Taylor polynomials method[6,7], the Jacobi operational matrix method[8], the homotopyperturbation method[9], the homotopy analysis method[10], the interpolation functions[11], the operational matrix method based on the Legendre polynomials[12], the second kind Chebyshev wavelet method[13], the Bessel collocation method[14]and the Tau method[15].

    Recently, the operational matrices of fractional order integration for the SCW[16], Haar wavelet[17], Legendre wavelet[18-19]and Chebyshev wavelet[20]have been developed to solve the fractional differential equations. In this paper, by using good properties of Bernstein polynomials, we shall consider the following initial value problem

    WhereLis a linear operator,Nis a nonlinear operator andβDis the Caputo fractional derivative of orderβ.

    2 Basic definitions

    In this section, we first give some basic definitions and some properties of fractional calculus in[21-26].

    Definition 1A real function y(t), t>0, is said to be in the spaceCu, u∈Rif there exists a real number p>u, such that y(t )=tpy1(t ), where y1(t )∈C[0,∞). Clearly, Cu?Cv, if v<u.

    Definition 2A function y(t), t>0, is said to be in the spaceif y(n)∈,n∈N.

    Definition 3The Riemann-Liouville fractional integral operator of order α≥0 of a functiony,y∈Cu, u≥-1 is defined as

    The properties of the operator can be found in [21] and [22]; we mention only the following.

    For y∈Cu, u≥-1, α, β≥0, and γ>-1,

    The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena using fractional differential equations. Therefore, we will introduce a modified fractional differential operatorproposed by Caputo on the theory of viscoelasticity[23].

    Definition 4The fractional derivative of y(t ) in the Caputo sense is defined as

    We note that the approximate solutions will be found by using the Caputo fractional derivative and its properties in this study.

    3 Bernstein polynomials and their some properties

    The Bernstein basis polynomials of degree n[27,28]are defined by

    By using the binomial expansion of (1-t)n-k, it can be written as

    Also, the Bernstein basis polynomials of degree n in [0, R] are given by the formula[27]

    By using the binomial expansion of (R-t)n-k, we have the formula

    The Bernstein basis polynomials given by Eq. (5) can be written in the matrix form[29-31]

    4 Description of the method

    By developing the Bernstein polynomial approximation[29-31]with the help of the matrix operations, the collocation method and the Caputo fractional derivative, we obtain an approxi- mate solution of the problem (1)-(2) in the form

    Here, 0<α<1; ak,k=0,1,2,…,Nare the unknown Bernstein coefficients; Nare any positive integers and

    are obtained by putting tαas t in Bernstein polynomials[27]defined by

    and clearly, it becomes

    We convert the desired solution (6) to the matrix form

    By using the matrix form (7), the collocation points and the Caputo fractional derivative (3), we construct the matrix forms for each term of Eq. (1) and the conditions (2). Hence, we transform the problem into a matrix equation which is a system of nonlinear algebraic equations. This system corresponds to a system of the (N+1) nonlinear algebraic equations with unknown coefficients ak,k=0,1,2,…,N. Finally, the approximate solution will be obtained by solving this system.

    5 Solution of the problem (1)

    To obtain an approximate solution in the form of Eq. (6), we suppose β=kα,0<α≤1,k∈N+, then Eq. (1) is changed into

    Firstly, let us write the matrix form (7) as

    where

    By using the Caputo fractional derivative (3), we write theα-th order fractional derivative of Tα(t) as

    where

    The kα-th order fractional derivative of Tα( t) is given by the recurrence relation

    From (9) and (10), the matrix form of kα-th order fractional derivative of yN,α(t ) is written as

    By substituting the collocation points defined by

    into Eq. (9), we obtain the system of matrix equations as

    In compact form, the above system is written as follows where

    Now, we put the collocation points into Eq. (11) and thus we have the system of matrix equations as below

    and the compact form of this system is

    Similarly, by substituting the collocation points intoand by using Eq. (13), we obtain

    where

    We substitute the relation (6) in Eq. (8) and thus we have

    Now, let us put the collocation points into the above equation as below

    where

    and L is a linear operator matrix of the matrix, N is a nonlinear operator matrix of the matrix.

    We place the relations (13)-(14) into Eq. (15) and then we have the fundamental matrix equation

    To obtain the matrix form of the mixed conditions (2), let us take t=0 in Eq. (11). Then, the matrix form of the conditions (2) becomes

    To obtain the approximate solution of the problem (1) under the conditions (2), we replace the rows of the augmented matrix of Eq. (16) by the row matrices of the augmented matrix of Eq. (17). As a result, the coefficients are determined by solving this system. Hence, by substituting the determined coefficients into Eq. (6), we obtain the Bernstein polynomial solution. Error analysis of the method is established by Theorem 1.

    Theorem 1Let yN,α(t ) and y(t) be the Bernstein series solution and the exact solution of the equation (1), respectively. If∈C( a, b], k=0,1,2,…,n +1, then

    Proof.Since∈C( a, b], k=0,1,2,…,n +1, By generalized fractional Taylor expansion,

    6 Illustrative Example

    Here we present an example to illustrative the method, which was performed all numerical computations by a computer program written in Matlab. We consider the following initial value problem in the case of the inhomogeneous Bagley-Torvik equation[32]

    where g( t)=1+t subject to the following initial value states y(0)=1,y'(0)=1and β=1.5. The exact solution of this problem is y( t)=1+t. If let β=kα, 0<α≤1, then k=3,α=0.5.

    In this problem, α=0.5. We take N=4 in the form

    The collocation point points from (12) are computed as

    From Eq. (16), the fundamental matrix equation of the problem is written as

    where

    From Eq. (17), we compute the augmented matrix form of the initial condition as

    New augmented matrix based on the condition is found. Hence, by solving this system, the coefficients matrix are obtained as

    The determined coefficients are substituted into Eq. (19) and thus we have

    In Tables1, the numerical solutions of our method are compared with the solutions of the exact solution

    Table 1 Absolute error of the numerical results with the exact solution forN=4

    7 Conclusion

    The aim of this paper is to develop an effective and accurate method for solving fractional differential equations, including linear and nonlinear equations. An example is given to demonstrate the powerfulness of the proposed method. Moreover, the method in this paper can also be used for fractional integral- differential equations and other type of equations.

    [1] R L Bagley, R A Calico. Fractional order state equations for the control of viscoelastically damped structures[J]. J Guid Control and Dyn, 1991, 14(2): 304-311.

    [2] Y A Rossikhin, M V Shitikova. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems[J]. Acta Mech, 1997, 120(1-4): 109-125.

    [3] V D Gejji, H Jafari. Solving a multi-order fractional differential equation[J]. Appl Math Comput, 2007, 189(1): 541-548.

    [4] S S Ray, K S Chaudhuri, R K Bera. Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decom- position method[J]. Appl Math Comput, 2006, 182(1): 544-552.

    [5] Z Odibat, S Momani. Application of variational iteration method to nonlinear differential equations of fractional order[J]. Int J Nonlinear Sci Numer Simul, 2006, 1(7): 271-279.

    [6] Y Keskin, O Karao?lu, S Servi, G Oturan?. The approximate solution of high-order linear fractionaldifferential equations with variable coefficients in terms of generalized Taylor polynomials[J]. Mathematical and Computational Applications, 2011, 16(3): 617-629.

    [7] Y ?enesiz, Y Keskin, A Kurnaz. The solution of the Bagley-Torvik equation with the generalized Taylor collocation method[J] J Frank Inst, 2010, 347(2): 452-466

    [8] E H Doha, A H Bhrawy, S S Ezz-Eldien. A new Jacobi operational matrix: An application for solving fractional differential equations[J] Appl Math Model, 2012, 36(10): 4931-4943

    [9] N H Sweilam, M M Khader, R F Al-Bar. Numerical studies for a multi-order fractional differential equation [J]. Phys Lett A, 2007, 371(1-2): 26-33.

    [10] I Hashim, O Abdulaziz, S Momani. Homotopy analysis method for fractional IVPs[J]. Commun Nonlinear Sci Numer Simul, 2009, 14(3): 674-684.

    [11] P Kumar, O P Agrawal. An approximate method for numerical solution of fractional differential equations[J]. Signal Processing, 2006, 86(10): 2602-2610.

    [12] A Saadatmandi, M Dehghan. A new operational matrix for solving fractional-order differential equations[J]. Comput Math Appl, 2010, 59(3): 1326-1336.

    [13] Y Wang, Q Fan. The second kind Chebyshev wavelet method for solving fractional differentail equations[J]. Appl Math Comput, 2012,218 (17): 8592-8601.

    [14] ? Yüzba??. Numerical solution of the Bagley-Torvik equation by the Bessel collocation method[J]. Math Meth Appl Sci, 2012, 36(3):300-312.

    [15] S K Vanani, A Aminataei. Tau approximate solution of fractional partial differential equations[J]. Comput Math Appl, 2011, 62(3): 1075-1083.

    [16] Y X Wang and Q B Fan. The second kind Chebyshev wavelet method for solving fractional differential equations[J]. Appl Math Comput, 2012, 218(17): 8592-8601.

    [17] Y L Li and W W Zhao. Haar wavelet operational matrix of fractional order, integration and its applications in solving the fractional order dierential equations[J]. Appl Math Comput, 2010, 216(8): 2276-2285.

    [18] M Rehman, R A Khan. The Legendre wavelet method for solving fractional differential equations[J]. Commun Nonlinear Sci Num Sim, 2011, 16 (11): 4163-4173.

    [19] H Jafari, S A Youse, M A Firoozjaee, S Momanic, C M Khalique. Application of Legendre wavelets for solving fractional differential equations[J]. Comp Appl Math 2011, 62(3):1038-1045.

    [20] Y L Li. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Commun Nonlinear Sci Num Sim, 2010, 15(9): 2284-2292.

    [21] K S Miller, B Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: Wiley, 1993.

    [22] K B Oldham, J Spanier. The Fractional Calculus[M]. Academic Press, New York, 1974.

    [23] M Caputo. Linear models of dissipation whose Q is almost frequency independent part II[J]. J Roy Aust Soc, 1967, 13(5): 529-539.

    [24] K Diethelm, N J Ford, A D Freed, Yu Luchko. Algorithms for the fractional calculus: A selection of numerical methods[J]. Comput Math Appl Mech Eng, 2005, 194 (6): 743-773.

    [25] I Podlubny. Fractional Differential Equations[M]. New York: Academic Press, 1999.

    [26] S Momani, Z Odibat. Numerical approach to differential equations of fractional order[J]. J Comput Appl Math, 2007, 207(1): 96-110.

    [27] M I Bhatti, P Bracken. Solutions of differential equations in a Bernstein polynomial basis[J]. J Comput Appl Math, 2007, 205(1): 272-280.

    [28] E W Cheney. Introduction to Approximation Theory(2nded.)[M]. Providence, RI: Chelsea Publishers, 1982.

    [29] O R I??k, Z Güney, M Sezer. Bernstein series solutions of pantograph equations using polynomial interpolation[J]. J Diff Equ Appl, 2012, 18(3): 357-374.

    [30] O R I??k, M Sezer, Z Güney. A rational approximation based on Bernstein polynomials for high order initial and boundary values problems[J]. Appl Math Comput, 2011, 217(22): 9438-9450.

    [31] O R I??k, M Sezer, Z Güney. Bernstein series solution of a class of linear integro-differential equations with weakly singular kernel[J]. Appl Math Comput, 2011 217(16): 7009-7020.

    [32] A Saadatmandi and M Dehghan. A new operational matrix for solving fractional-order differential equations [J]. Comput Math Appl, 2010, 59(3): 1326-1336.

    (責(zé)任編輯、校對(duì):趙光峰)

    The Numerical Solutions of a Class of Fractional Differential Equations by Means of the Bernstein Polynomials

    LI Bao-feng
    (Department of Mathematics and Information Science, Tangshan Teachers College, Tangshan 063000, China)

    A collocation method based on the Bernstein polynomials is presented for a class of fractional differential equations. By replacing t withαt(0<α<1) in the truncated Bernstein series, the truncated fractional Bernstein series is obtained and then it is transformed into the matrix form. By using Caputo fractional derivative, the matrix forms of the fractional derivatives are constructed for the truncated fractional Bernstein series. We convert each term of the problem to the matrix form by means of the truncated fractional Bernstein series. By using the collocation points, we have the basic matrix equation which corresponds to a system of nonlinear algebraic equations. Lastly, a new system of nonlinear algebraic equations is obtained by using the matrix forms of the conditions and the basic matrix equation. The solution of this system gives the approximate solution for the truncated limited N. An error analysis technique based on residual function is developed and applied to an example to demonstrate the validity and applicability of the proposed method.

    Fractional differential equations; fractional derivative; Caputo fractional derivative; collocation method; Bernstein polynomials

    O175.6

    A

    1009-9115(2014)02-0001-06

    10.3969/j.issn.1009-9115.2014.02.001

    唐山師范學(xué)院團(tuán)隊(duì)支撐重點(diǎn)項(xiàng)目(2014D09)

    2013-06-03

    李寶鳳(1971-),女,河北唐山人,碩士,副教授,研究方向?yàn)橛?jì)算數(shù)學(xué)。

    猜你喜歡
    科學(xué)系級(jí)數(shù)唐山
    中國(guó)農(nóng)業(yè)發(fā)展銀行唐山分行
    致力草學(xué),推進(jìn)草業(yè),共創(chuàng)輝煌
    ——慶祝湖南農(nóng)業(yè)大學(xué)草業(yè)科學(xué)系建系20 周年
    作物研究(2021年2期)2021-04-26 09:34:40
    唐山香酥饹馇圈
    Dirichlet級(jí)數(shù)及其Dirichlet-Hadamard乘積的增長(zhǎng)性
    樂(lè)在其中 研我自由——記清華大學(xué)數(shù)學(xué)科學(xué)系助理教授宗正宇
    王大根
    幾個(gè)常數(shù)項(xiàng)級(jí)數(shù)的和
    把唐山打造成為國(guó)家級(jí)節(jié)能環(huán)保產(chǎn)業(yè)基地
    p級(jí)數(shù)求和的兩種方法
    Dirichlet級(jí)數(shù)的Dirichlet-Hadamard乘積
    熟妇人妻不卡中文字幕| 哪个播放器可以免费观看大片| 国产极品天堂在线| 日韩中文字幕视频在线看片| 一本大道久久a久久精品| 久久久久久久大尺度免费视频| 一级爰片在线观看| 男女免费视频国产| 国产亚洲欧美精品永久| 国内精品宾馆在线| 十八禁高潮呻吟视频| 国产一区二区激情短视频 | 亚洲第一区二区三区不卡| 最新的欧美精品一区二区| 久久久久视频综合| 热99国产精品久久久久久7| 亚洲少妇的诱惑av| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利视频精品| av线在线观看网站| 九草在线视频观看| 国产成人91sexporn| 91在线精品国自产拍蜜月| 欧美精品亚洲一区二区| 日韩电影二区| 男的添女的下面高潮视频| 亚洲精品色激情综合| 美国免费a级毛片| 国产在线一区二区三区精| 亚洲中文av在线| 国产精品成人在线| 91在线精品国自产拍蜜月| 99热全是精品| 日韩在线高清观看一区二区三区| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 免费大片黄手机在线观看| 香蕉国产在线看| 久久热在线av| 久久久久久久国产电影| 老司机影院毛片| 国产麻豆69| 久久韩国三级中文字幕| 99久久人妻综合| 看十八女毛片水多多多| 美女国产视频在线观看| 99久国产av精品国产电影| 乱人伦中国视频| 免费av不卡在线播放| 少妇人妻 视频| 男男h啪啪无遮挡| 熟妇人妻不卡中文字幕| 亚洲欧美精品自产自拍| 成人国语在线视频| 成年人午夜在线观看视频| 亚洲欧美色中文字幕在线| 欧美日韩一区二区视频在线观看视频在线| 免费人妻精品一区二区三区视频| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 纵有疾风起免费观看全集完整版| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| tube8黄色片| 日本免费在线观看一区| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 日韩av不卡免费在线播放| 日本wwww免费看| 91精品伊人久久大香线蕉| 成年av动漫网址| 国产在线免费精品| 日韩三级伦理在线观看| 国产 精品1| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区| 在线观看www视频免费| 国产又色又爽无遮挡免| 美女主播在线视频| 精品少妇内射三级| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 久久久久久人妻| 波野结衣二区三区在线| av免费在线看不卡| 老司机影院成人| 极品少妇高潮喷水抽搐| 日韩人妻精品一区2区三区| www.熟女人妻精品国产 | 国产黄频视频在线观看| 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 亚洲精品美女久久久久99蜜臀 | 香蕉精品网在线| 黄色配什么色好看| 中文字幕人妻熟女乱码| 99久久精品国产国产毛片| 中文字幕制服av| 国产成人精品在线电影| 国产精品免费大片| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 下体分泌物呈黄色| 九草在线视频观看| 七月丁香在线播放| 秋霞在线观看毛片| 岛国毛片在线播放| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 日韩精品免费视频一区二区三区 | 99久久综合免费| 免费黄网站久久成人精品| 国产一区二区三区综合在线观看 | 国产一区有黄有色的免费视频| 永久网站在线| 国产精品一区二区在线不卡| 国产乱人偷精品视频| av有码第一页| 一边亲一边摸免费视频| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 欧美bdsm另类| 婷婷色综合www| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 99久国产av精品国产电影| 日本欧美视频一区| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到 | 日本午夜av视频| 在线观看免费高清a一片| 国产色爽女视频免费观看| 全区人妻精品视频| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 国产精品三级大全| 香蕉精品网在线| 久热这里只有精品99| 大香蕉久久成人网| 亚洲精品国产av成人精品| 午夜视频国产福利| 两性夫妻黄色片 | 丁香六月天网| 22中文网久久字幕| 国产综合精华液| 精品人妻一区二区三区麻豆| 国产精品国产三级专区第一集| 久久午夜综合久久蜜桃| 久久久久久久亚洲中文字幕| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 久久精品久久久久久久性| 国产高清不卡午夜福利| 国产精品人妻久久久影院| av不卡在线播放| 在线观看免费视频网站a站| 日本av免费视频播放| 精品国产国语对白av| 国产无遮挡羞羞视频在线观看| 人妻一区二区av| 日本vs欧美在线观看视频| 曰老女人黄片| 国产av精品麻豆| 欧美另类一区| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 各种免费的搞黄视频| 久久人人爽人人片av| 国产伦理片在线播放av一区| 一级毛片 在线播放| 九色亚洲精品在线播放| 欧美最新免费一区二区三区| 国产视频首页在线观看| av在线老鸭窝| 亚洲精品视频女| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 国产 一区精品| 亚洲高清免费不卡视频| 日韩精品免费视频一区二区三区 | 毛片一级片免费看久久久久| 一个人免费看片子| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 日本免费在线观看一区| 亚洲精品av麻豆狂野| 日韩视频在线欧美| 视频区图区小说| 丝袜脚勾引网站| 欧美激情国产日韩精品一区| www.色视频.com| 成年人午夜在线观看视频| 欧美日本中文国产一区发布| 欧美国产精品一级二级三级| 99久久人妻综合| 亚洲av国产av综合av卡| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 色5月婷婷丁香| av片东京热男人的天堂| 亚洲av综合色区一区| 日本-黄色视频高清免费观看| √禁漫天堂资源中文www| 晚上一个人看的免费电影| 精品熟女少妇av免费看| xxxhd国产人妻xxx| 国产精品人妻久久久久久| 不卡视频在线观看欧美| 日日撸夜夜添| 国产精品久久久久久精品古装| 插逼视频在线观看| 免费大片18禁| 国产午夜精品一二区理论片| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜| 国产精品三级大全| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 性高湖久久久久久久久免费观看| 久久午夜综合久久蜜桃| 亚洲丝袜综合中文字幕| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 色94色欧美一区二区| 中国国产av一级| 久久精品国产鲁丝片午夜精品| a级毛片在线看网站| av国产久精品久网站免费入址| 国产淫语在线视频| 亚洲精品色激情综合| 天天躁夜夜躁狠狠躁躁| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 免费大片18禁| 久久这里有精品视频免费| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 国产极品天堂在线| 少妇 在线观看| 中文字幕人妻丝袜制服| 99久久综合免费| 亚洲成av片中文字幕在线观看 | 国产精品女同一区二区软件| 欧美97在线视频| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 日韩中文字幕视频在线看片| 老女人水多毛片| 中文欧美无线码| 男人爽女人下面视频在线观看| 国产在线免费精品| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 欧美成人午夜免费资源| 久久久久精品久久久久真实原创| 啦啦啦啦在线视频资源| 欧美精品人与动牲交sv欧美| www日本在线高清视频| 久久国产精品大桥未久av| 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 精品一区在线观看国产| av视频免费观看在线观看| 国产精品国产三级国产av玫瑰| 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 青春草国产在线视频| 久久99一区二区三区| 成人无遮挡网站| 国产在线视频一区二区| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 日韩av免费高清视频| 国产亚洲精品第一综合不卡 | 亚洲精品中文字幕在线视频| 中文欧美无线码| 99热6这里只有精品| 精品福利永久在线观看| 欧美人与性动交α欧美软件 | 女性被躁到高潮视频| 国产精品一区二区在线观看99| 成人漫画全彩无遮挡| 成人综合一区亚洲| 成人国语在线视频| 又黄又爽又刺激的免费视频.| 婷婷色综合大香蕉| 国产精品一二三区在线看| 日本黄大片高清| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 丝袜美足系列| 成人亚洲欧美一区二区av| 欧美日韩视频高清一区二区三区二| 久久狼人影院| 久久久国产一区二区| 亚洲国产毛片av蜜桃av| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 久久久久久伊人网av| 亚洲精品456在线播放app| a级毛片在线看网站| 美女国产高潮福利片在线看| 天天操日日干夜夜撸| 女性被躁到高潮视频| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 日本av手机在线免费观看| 国产毛片在线视频| xxxhd国产人妻xxx| 精品酒店卫生间| 天美传媒精品一区二区| 亚洲成av片中文字幕在线观看 | 美女福利国产在线| 国产男女超爽视频在线观看| 咕卡用的链子| av.在线天堂| av国产久精品久网站免费入址| 欧美日本中文国产一区发布| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 9色porny在线观看| 深夜精品福利| av国产精品久久久久影院| 91精品三级在线观看| 在线观看美女被高潮喷水网站| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 久久久国产一区二区| 美女中出高潮动态图| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产a三级三级三级| 99香蕉大伊视频| 婷婷成人精品国产| 欧美bdsm另类| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 日韩精品有码人妻一区| 天天躁夜夜躁狠狠躁躁| 桃花免费在线播放| 亚洲三级黄色毛片| 久久久国产一区二区| 成年女人在线观看亚洲视频| 男女高潮啪啪啪动态图| 日韩成人伦理影院| 免费大片18禁| 精品酒店卫生间| 国产精品久久久久久av不卡| 国产成人精品在线电影| 高清欧美精品videossex| 大话2 男鬼变身卡| 久久精品夜色国产| 日韩一本色道免费dvd| 9热在线视频观看99| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说| 18在线观看网站| 久久99热6这里只有精品| 亚洲av国产av综合av卡| 美女视频免费永久观看网站| 日本wwww免费看| 91成人精品电影| 亚洲国产欧美在线一区| 午夜视频国产福利| 国产精品一区二区在线不卡| 国内精品宾馆在线| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品电影小说| 满18在线观看网站| 97精品久久久久久久久久精品| 伊人亚洲综合成人网| 久久久久网色| 国产黄色免费在线视频| 香蕉精品网在线| 一区二区av电影网| 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 18+在线观看网站| 制服人妻中文乱码| 日本黄色日本黄色录像| 午夜老司机福利剧场| 人体艺术视频欧美日本| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 精品久久蜜臀av无| 国产午夜精品一二区理论片| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 亚洲av中文av极速乱| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| av在线app专区| 中文精品一卡2卡3卡4更新| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看 | 久久99一区二区三区| 在线免费观看不下载黄p国产| 亚洲精品视频女| 国产一级毛片在线| 色吧在线观看| 日韩一区二区视频免费看| 一级毛片电影观看| 久久久久国产网址| 丝袜美足系列| 欧美精品一区二区大全| 国产精品一二三区在线看| 午夜av观看不卡| 日韩制服丝袜自拍偷拍| 黑人高潮一二区| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 国产在线免费精品| 国内精品宾馆在线| 男女边摸边吃奶| 国产成人欧美| 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 久久人人爽人人爽人人片va| 日韩电影二区| 久久久久久久精品精品| 亚洲成人av在线免费| 日韩免费高清中文字幕av| 国产精品 国内视频| 欧美丝袜亚洲另类| 久久精品国产自在天天线| 伊人久久国产一区二区| 性色avwww在线观看| 国产免费福利视频在线观看| 国产精品一二三区在线看| 亚洲一区二区三区欧美精品| 美女视频免费永久观看网站| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 天堂8中文在线网| 午夜激情久久久久久久| 亚洲,欧美精品.| 毛片一级片免费看久久久久| 中文字幕人妻丝袜制服| 少妇熟女欧美另类| 免费观看a级毛片全部| av在线app专区| 夫妻午夜视频| 国产成人一区二区在线| 91精品伊人久久大香线蕉| 欧美xxⅹ黑人| 国产69精品久久久久777片| 国产一区二区在线观看日韩| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看| 秋霞伦理黄片| 亚洲色图综合在线观看| 寂寞人妻少妇视频99o| 最近的中文字幕免费完整| 免费人妻精品一区二区三区视频| 中文字幕制服av| 国产一区亚洲一区在线观看| av视频免费观看在线观看| 国产av国产精品国产| 男女免费视频国产| 丝袜在线中文字幕| 亚洲av福利一区| 99国产精品免费福利视频| 精品久久久精品久久久| 蜜臀久久99精品久久宅男| 久久久久久久大尺度免费视频| 桃花免费在线播放| 中国美白少妇内射xxxbb| 久久国产亚洲av麻豆专区| 男女下面插进去视频免费观看 | 亚洲国产av影院在线观看| 久久精品aⅴ一区二区三区四区 | 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 纯流量卡能插随身wifi吗| 啦啦啦在线观看免费高清www| 欧美激情 高清一区二区三区| 91精品伊人久久大香线蕉| av网站免费在线观看视频| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 99re6热这里在线精品视频| 一本大道久久a久久精品| av播播在线观看一区| 精品人妻一区二区三区麻豆| 国产日韩一区二区三区精品不卡| 90打野战视频偷拍视频| 一级黄片播放器| 日韩精品有码人妻一区| 男女无遮挡免费网站观看| 91在线精品国自产拍蜜月| 日本免费在线观看一区| 亚洲精品中文字幕在线视频| 欧美精品国产亚洲| 亚洲在久久综合| 老司机影院成人| 国产一区二区三区av在线| 免费少妇av软件| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载| 欧美亚洲日本最大视频资源| 五月玫瑰六月丁香| 亚洲国产日韩一区二区| 国产精品一区www在线观看| 美女主播在线视频| 午夜福利乱码中文字幕| 王馨瑶露胸无遮挡在线观看| 国产黄色免费在线视频| 日本91视频免费播放| 成人漫画全彩无遮挡| 大陆偷拍与自拍| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 国产一区二区三区综合在线观看 | av播播在线观看一区| 亚洲欧美色中文字幕在线| 91在线精品国自产拍蜜月| 国产成人精品久久久久久| 久久精品久久久久久久性| xxx大片免费视频| 黄色配什么色好看| 成年人午夜在线观看视频| 国产国语露脸激情在线看| 考比视频在线观看| 一本久久精品| 欧美人与性动交α欧美精品济南到 | 午夜精品国产一区二区电影| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| 亚洲av男天堂| 人妻一区二区av| 老司机影院成人| 中文字幕人妻熟女乱码| 少妇被粗大的猛进出69影院 | 国产探花极品一区二区| 一本大道久久a久久精品| 美女主播在线视频| 午夜免费男女啪啪视频观看| 高清欧美精品videossex| 中文字幕人妻熟女乱码| 久久久欧美国产精品| av卡一久久| 午夜日本视频在线| 亚洲少妇的诱惑av| 日本av手机在线免费观看| 精品人妻偷拍中文字幕| 狠狠精品人妻久久久久久综合| 欧美精品国产亚洲| 九草在线视频观看| 国产日韩欧美视频二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产网址| 黄色视频在线播放观看不卡| 亚洲国产av影院在线观看| 亚洲,欧美,日韩| www日本在线高清视频| 一区二区av电影网| 亚洲,欧美,日韩| 五月天丁香电影| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 欧美日韩国产mv在线观看视频| 超色免费av| 美女中出高潮动态图| 日韩欧美精品免费久久| 国产欧美另类精品又又久久亚洲欧美|