• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convex Solutions of an Iterative Functional Equation in Banach Spaces

    2014-02-03 06:35:59GONGXiaobingLIULei
    關(guān)鍵詞:劉新張偉進(jìn)展

    GONG Xiaobing, LIU Lei

    (1. College of Mathematics and Information Science, Neijiang Normal College, Neijiang 641100, Sichuan; 2. School of Mathematics and Information Science, Shangqiu Normal College, Shangqiu 476000, Henan)

    LetSbe a nonempty subset of a Banach space andC(S,S) consist of all continuous functionsf:S→S. Theith iteratefioff∈C(S,S) is defined byfi(x)=f(fi-1(x)) andf0(x)=xfor allx∈Srecursively.A functional equation having iteration as its main operation is called an iterative functional equation. As indicated in the books[1-2]and the surveys[3-4], the polynomial-like iterative equation

    (1)

    whereF:S→Sis a given function,λns (n=1,2,…,m) are real constants, is one of important forms of functional equation since the problem of iterative roots and the problem of invariant curves can be reduced to the kind of equations. ForS?R, while some works (e.g. [5-11]) are contributed to the case of linearF, there are given many results to the case of nonlinearF, for example, [12-13] form=2, [14] for generalm, [15-16] for smoothness, [17] for analyticity. Some efforts were also devoted to equation (1) in high-dimensional spaces such as in [18-19], radially monotonic solutions were discussed in high-dimensional Euclidean spaces by properties of orthogonal group in [19] and the existence of convex solutions was proved by introducing a partial order in Banach space in [18]. One of generalizations for equation (1) is the following equation

    (2)

    which was investigated in [20-23]. More concretely, in [20], the existence of solutions for functional equation

    P(f)°f=F

    was proved, then using this result, the existence of Lipschitzian solutions for equation (2) was investigated on a compact interval ofRand a compact convex subset ofRN,N>1. Later, the results in [20] were partially generalized to an arbitrary closed (not necessarily convex) subset of a Banach space and the existence of solutions for iterative functional equations

    was proved in [23], whereAnare bounded linear operators on the Banach space. In 2009, as a continuation of [20], the existence and uniqueness of Lipschitz solutions of the equation (2) were investigated with a general boundary restriction on a compact convex subsets ofRN,N>1 in [22]. By constructing another operator, the existence of differentiable solution for equation (2) was proved on a compact convex subsets ofRN,N>1 in [21].

    In this paper we study convexity of solutions for equation (2) in Banach spaces. Using the idea of [18], we first discuss increasing (decreasing) solutions for this equation. Then we investigate increasing convex (concave) solutions.

    1 Preliminaries

    As in [18], in order to discuss convexity of solutions in Banach spaces, we need to introduce a partial order. For convenience, we use the conventions of [18]. As in [28], a nonempty subsetKof a real vector spaceXis called a cone ifx∈Kimplies thatax∈Kfor alla>0. A nonempty and nontrivial (≠{θ}, whereθdenotes the zero element ofX) subsetK?Xis called an order cone inXifKis a convex cone and satisfiesK∩(-K)={θ}. Having chosen such an order coneKinX, we can define a partial orderx≤KyinX, simply called theK-order, ify-x∈K. A real vector spaceXequipped with aK-order is called an ordered vector space, abbreviated by OVS and denoted by (X,K). A real Banach space (X,‖·‖) associated with aK-order is called an ordered real Banach space, abbreviated by OBS and denoted by (X,K,‖·‖), ifKis closed.

    One can define increasing (decreasing) operators and convex (concave) operators as in [29] in an ordered real vector space (X,K). An operatorf:D?X→Xis said to be increasing (resp. decreasing) in the sense of theK-order ifx≤Kyimpliesf(x)≤Kf(y) (resp.f(x)≥Kf(y)). An operatorf:D→X, whereD?Xis a convex subset, is said to be convex (resp. concave) in the sense of theK-order iff(λx+(1-λ)y)≤Kλf(x)+(1-λ)f(y) (resp.f(λx+(1-λ)y)≥Kλf(x)+(1-λ)f(y)) for allλ∈[0,1] and for every pair of distinct comparable pointsx,y∈D(i.e., eitherx≤Kyorx≥ky).

    C+(Ω,m,M):={f∈C(Ω,X):f(Ω)?Ω,

    m(y-x)≤Kf(y)-f(x)≤KM(y-x) ifx≤Ky,

    and ‖f(y)-f(x)‖≤M‖y-x‖

    ifxandyare not comparable},

    C-(Ω,m,M):={f∈C(Ω,X):f(Ω)?Ω,

    m(y-x)≤Kf(x)-f(y)≤KM(y-x) ifx≤Ky,

    and ‖f(y)-f(x)‖≤M‖y-x‖

    ifxandyare not comparable},

    fis convex onΩinK-order},

    fis concave onΩinK-order}.

    As shown in [28-29], an order coneKin an ordered real Banach space (X,‖·‖) is said to be normal if there exists a constantN>0 such that ‖x‖≤N‖y‖ ifθ≤Kx≤KyinX. The smallest constantN, denoted byN(K), is called the normal constant ofK. In order to prove our main results, we list the following lemmas.

    Lemma1.1[18]Let (X,K,‖·‖) be an ordered real Banach space. Then compositionf°gis convex (resp. concave) if bothfandgare convex (resp. concave) and increasing. In particular, for increasing convex (resp. concave) operatorf, the iteratefkis also convex (resp. concave).

    ?k=1,2,….

    Lemma1.3[18]Let (X,K,‖·‖) be an ordered real Banach space and letf∈C-(Ω,m,M), where 0≤m≤M<+∞. Then

    -M2n-1(y-x)≤Kf2n-1(y)-f2n-1(x)≤K

    -m2n-1(y-x),n=1,2,…,

    (3)

    m2n(y-x)≤Kf2n(y)-f2n(x)≤K

    M2n(y-x),n=1,2,…,

    (4)

    for allx≤KyinΩ.

    2 Increasing and decreasing solutions

    In order to study convexity of solutions, we first investigate the existence of increasing and decreasing solutions of equation (2) in the ordered real Banach space (X,K,‖·‖) such thatKis normal andN(K)≤1. Consider equation (2) with the following hypotheses:

    (H1)λ1>0,λn≤0,n=2,3,…,k,…,

    (5)

    for a constantM∈(0,+∞), then equation (2) has a solutionf∈C+(Ω,0,M).

    ProofUnder the hypotheses (H1) and (H2), we can rewrite equation (2) as

    where

    (6)

    Define a mappingLonC+(Ω,0,M) by

    (7)

    We first prove thatLis well defined and is a continuous function onΩ. Compactness ofΩimplies thatΩis a bounded set. Hence, by definition ofC+(Ω,0,M) andf∈C+(Ω,0,M) we have

    ?x∈Ω.

    Thus

    ?x∈Ω.

    Next we claim thatLis a self-mapping onC+(Ω,0,M). By (6), for allx∈Ω,

    conv{F(x),f2(x),f3(x),…}?Ω

    becauseΩis a compact convex set. SoLf(Ω)?Ω. Further, whenx,y∈Ωare not comparable, i.e.,x-y?Kandy-x?K, by the definition ofC+(Ω,0,M) we have

    ‖Lf(x)-Lf(y)‖=

    ‖Lf(x)-Lf(y)‖≤M‖x-y‖

    (8)

    because of inequality (5). Whenx,y∈Ωare comparable, suppose thatx≤Ky. Since

    n=2,…,k,…

    is convergent. Hence, by the definition ofC+(Ω,0,M),

    θ≤KLf(y)-Lf(x)=

    θ≤KLf(y)-Lf(x)≤KM(y-x)

    (9)

    because of the inequality (5). Thus, (8) and (9) together imply thatLis a self-mapping onC+(Ω,0,M).

    ‖Lf-Lg‖C(Ω,X)=

    SoLis continuous. SinceC+(Ω,0,M) is a compact convex subset, by Schauder’s fixed point theorem we see thatLhas a fixed pointf∈C+(Ω,0,M). Thusfis an increasing solution of the equation. The proof is completed.

    The existence of decreasing solutions is given as following.

    By Lemma 1.3, the proof is similar to Theorem 2.1, we omit it here.

    3 Convex and concave solutions

    Based on the last section we can discuss the convexity of continuous solutions for equation (2) in the ordered real Banach space (X,K,‖·‖) with a normal coneKsuch thatN(K)≤1.

    (10)

    Lf(tx+(1-t)y)≤KtLf(x)+(1-t)Lf(y),

    ?t∈[0,1],

    (11)

    for every pair of distinct comparable pointsx,y∈Ω. In fact, eachfn,n=2,…,k,… is convex in the sense ofK-order becausefis increasing and convex by Lemma 1.1. Furthermore,

    are convergent onΩand

    for alln≥ 1. Hence,

    tLf(x)+(1-t)Lf(y),

    Similarly, we can prove the existence of concave solutions.

    (12)

    Example3.1Consider the equation

    ?(x1,x2)∈Ω,

    (13)

    where

    Clearly, equation (13) is of the form (2), where

    for |M|<3 and

    We consider another example in the infinite-dimensional setting.

    Example3.2LetX=C([0,1],R) equipped with the norm ‖x‖=supt∈[0,1]|x(t)| forx∈X. Let

    Ω:={x∈C([0, 1], [0, 1]):

    |x(t1)-x(t2)|≤|t1-t2|,t1,t2∈[0,1]},

    a subset ofX. Then, the equation

    ?x∈Ω,

    (14)

    is an iterative equation of the form (2) in the infinite-dimensional setting, whereλ1=13/12,λn=-1/4nandF(x):=sinx. Note that

    for |M|<4 and

    We end our paper with some remarks on not discussing the uniqueness and stability of convex solutions in the sense ofK-order for equation (2) because we do not know whether the mapping defined as (7) is contraction mapping and on not considering the same form mapping P(f) as in [20] because of difficulties in discussing inverse of the function in infinite-dimensional spaces.

    [1] Kuczma M, Choczewski B, Ger R. Iterative functional equations[C]//Encyclopedia Math Appl. Cambridge:Cambridge University Press,1990,32.

    [2] Targonski G. Topics in Iteration Theory[M]. G?ttingen:Vandenhoeck & Ruprecht,1981.

    [3] Baron K, Jarczyk W. Recent results on functional equations in a single variable, perspectives and open problems[J]. Aequationes Math,2001,61:1-48.

    [4] 張景中,楊路,張偉年. 關(guān)于函數(shù)方程的若干進(jìn)展[J]. 數(shù)學(xué)進(jìn)展,1995,24(5):385-405.

    [5] Dhombres J G. Itération linéaire d'ordre deux[J]. Publ Math Debrecen,1977,24:177-187.

    [6] Jarczyk W. On an equation of linear iteration[J]. Aequationes Math,1996,51:303-310.

    [7] Matkowski J, Zhang W. On linear dependence of iterates[J]. J Appl Anal,2000,6:149-157.

    [8] Mukherjea A, Ratti J S. On a functional equation involving iterates of a bijection on the unit interval[J]. Nonlinear Anal,1983,7:899-908.

    [9] Mukherjea A, Ratti J S. On a functional equation involving iterates of a bijection on the unit interval II[J]. Nonlinear Anal,1998,31:459-464.

    [10] Tabor J, Tabor J. On a linear iterative equation[J]. Results Math,1995,27:412-421.

    [11] Yang D, Zhang W. Characteristic solutions of polynomial-like iterative equations[J]. Aequationes Math,2004,67:80-105.

    [12] Malenica M. On the solutions of the functional equationφ(x)+φ2(x)=F(x)[J]. Mat Vesnik,1982,6:301-305.

    [13] 趙立人. 關(guān)于函數(shù)方程λ1f(x)+λ2f2(x)=F(x)的存在唯一性定理[J]. 中國科學(xué)技術(shù)大學(xué)學(xué)報,1983,32(S1):21-27.

    [15] 麥結(jié)華,劉新和. 一類迭代函數(shù)方程的Cm解的存在性、唯一性和穩(wěn)定性[J]. 中國科學(xué),2000,30(2):129-144.

    [18] Gong X, Zhang W. Convex solutions of the polynomial-like iterative equation in Banach spaces[J]. Publ Math Debrecen,2013,82:341-358.

    [19] Zhang W. Solutions of equivariance for a polynomial-like iterative equation[J]. Proc Roy Soc Edin,2000,A130:1153-1163.

    [20] Kulczycki M, Tabor J. Iterative functional equations in the class of Lipschitz functions[J]. Aequationes Math,2002,64:24-33.

    [21] Li X, Deng S. Differentiability for the high dimensional polynomial-like iterative equation[J]. Acta Math Sci,2005,25:130-136.

    [22] Song W, Yang G, Lei F. On series-like iterative equation with a general boundary restriction[J]. Fixed Point Theory:Theory and Applications,2009,2009:892691.

    [23] Tabor J, Zoldak M. Iterative equations in Banach spaces[J]. J Math Anal Appl,2004,299:651-662.

    [24] Kuczma M, Smajdor A. Fractional iteration in the class of convex functions[J]. Bull Acad Pol Sci:Sci Math Astron Phys,1968,16:717-720.

    [25] Trif T. Convex solutions to polynomial-like iterative equations on open intervals[J]. Aequationes Math,2010,79:315-325.

    [26] Xu B, Zhang W. Decreasing solutions and convex solutions of the polynomial-like iterative equation[J]. J Math Anal Appl,2007,329:483-497.

    [27] Zhang W, Nikodem K, Xu B. Convex solutions of polynomial-like iterative equations[J]. J Math Anal Appl,2006,315:29-40.

    [28] Zeidler E. Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems[M]. Wadsack P R. New York:Springer-Verlag,1986.

    [29] Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Rev,1976,18:620-709.

    猜你喜歡
    劉新張偉進(jìn)展
    基于CSPI的云南省1961—2016年六大流域季節(jié)干旱差異分析
    Micro-SPECT/CT應(yīng)用進(jìn)展
    Pure annihilation decays of and in the PQCD approach
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    數(shù)學(xué)潛能知識月月賽
    繼父背上的“漫畫少女”:我這輩子就粘死你了
    寄生胎的診治進(jìn)展
    我國土壤污染防治進(jìn)展
    河南科技(2014年22期)2014-02-27 14:18:22
    av黄色大香蕉| 免费看美女性在线毛片视频| 亚洲精华国产精华精| 亚洲精华国产精华精| 国产精品伦人一区二区| 少妇的逼水好多| 搡老熟女国产l中国老女人| 欧美日韩综合久久久久久 | 99热网站在线观看| 夜夜爽天天搞| 中文字幕免费在线视频6| 欧美日本视频| 大型黄色视频在线免费观看| 舔av片在线| 久久九九热精品免费| 国产久久久一区二区三区| 欧美绝顶高潮抽搐喷水| 美女大奶头视频| 国产精品精品国产色婷婷| 亚洲国产色片| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 91久久精品国产一区二区三区| 99在线视频只有这里精品首页| 亚洲国产精品久久男人天堂| 国产老妇女一区| 少妇被粗大猛烈的视频| 久久久久久久精品吃奶| 日本在线视频免费播放| 欧美激情国产日韩精品一区| 永久网站在线| 男女那种视频在线观看| 久久久国产成人精品二区| 啦啦啦啦在线视频资源| 免费观看的影片在线观看| 国产精品美女特级片免费视频播放器| 精品日产1卡2卡| 黄色丝袜av网址大全| 国产精品永久免费网站| 国产亚洲欧美98| 日本黄色片子视频| 欧美国产日韩亚洲一区| 九九爱精品视频在线观看| 欧美成人a在线观看| 国国产精品蜜臀av免费| 欧美性猛交╳xxx乱大交人| 亚洲精品影视一区二区三区av| 一本久久中文字幕| 99精品久久久久人妻精品| 亚洲七黄色美女视频| 欧美成人性av电影在线观看| 狠狠狠狠99中文字幕| 日本欧美国产在线视频| 国产真实乱freesex| 在线看三级毛片| 九九爱精品视频在线观看| 亚洲色图av天堂| 日韩精品有码人妻一区| 亚洲va在线va天堂va国产| 国产av一区在线观看免费| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 成人鲁丝片一二三区免费| 中文资源天堂在线| 国产一区二区在线观看日韩| 国产成人影院久久av| 又爽又黄a免费视频| 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 久99久视频精品免费| 欧美潮喷喷水| 午夜福利18| 日日干狠狠操夜夜爽| 女的被弄到高潮叫床怎么办 | 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 免费人成在线观看视频色| 悠悠久久av| 国产黄a三级三级三级人| 成人av在线播放网站| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| av.在线天堂| 欧美精品国产亚洲| x7x7x7水蜜桃| 老司机深夜福利视频在线观看| 午夜影院日韩av| 亚洲av一区综合| 午夜福利成人在线免费观看| 欧美区成人在线视频| 色吧在线观看| 真人一进一出gif抽搐免费| 啦啦啦韩国在线观看视频| 午夜福利高清视频| 国产一区二区激情短视频| 在线免费观看不下载黄p国产 | 精品免费久久久久久久清纯| 观看免费一级毛片| 97碰自拍视频| 日本a在线网址| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 黄色女人牲交| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 无遮挡黄片免费观看| 69人妻影院| 亚洲美女搞黄在线观看 | 久久精品国产清高在天天线| 国产精品一区www在线观看 | 高清毛片免费观看视频网站| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| 一个人观看的视频www高清免费观看| 九九爱精品视频在线观看| 在线天堂最新版资源| 国产男人的电影天堂91| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 久久精品国产自在天天线| www.www免费av| 亚洲人成网站高清观看| 国产精品98久久久久久宅男小说| 成人毛片a级毛片在线播放| 99热这里只有精品一区| 成人av在线播放网站| 日日摸夜夜添夜夜添小说| 国产在线男女| 在线天堂最新版资源| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 日本 欧美在线| 亚洲第一电影网av| 黄色配什么色好看| av在线观看视频网站免费| 乱人视频在线观看| 国产精华一区二区三区| 亚洲不卡免费看| 国产精品亚洲美女久久久| 老熟妇仑乱视频hdxx| 黄色女人牲交| 69人妻影院| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 久久精品综合一区二区三区| 精品人妻熟女av久视频| 亚洲人成网站高清观看| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 国产一区二区在线观看日韩| 日韩强制内射视频| 春色校园在线视频观看| 国产单亲对白刺激| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 男人舔奶头视频| 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx在线观看| 日韩 亚洲 欧美在线| 国产av一区在线观看免费| 免费在线观看影片大全网站| 欧美zozozo另类| 国产高清三级在线| 国产精品久久久久久亚洲av鲁大| 国模一区二区三区四区视频| 日韩欧美在线乱码| 美女黄网站色视频| 一级黄片播放器| 黄色配什么色好看| 午夜福利欧美成人| 美女cb高潮喷水在线观看| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9| 嫁个100分男人电影在线观看| 18+在线观看网站| 热99在线观看视频| 99精品久久久久人妻精品| 不卡视频在线观看欧美| 精品久久久久久久久av| 最新在线观看一区二区三区| 色5月婷婷丁香| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 国产成人影院久久av| 国产综合懂色| .国产精品久久| 男女做爰动态图高潮gif福利片| 久久久久久久精品吃奶| 国产亚洲欧美98| 久久人妻av系列| 国产精品98久久久久久宅男小说| 精品久久久久久久久亚洲 | 国产在视频线在精品| 亚洲经典国产精华液单| 一a级毛片在线观看| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 亚洲狠狠婷婷综合久久图片| 国产麻豆成人av免费视频| 99久久精品一区二区三区| av在线观看视频网站免费| 在线观看午夜福利视频| 免费av观看视频| 精品一区二区免费观看| 国产v大片淫在线免费观看| 日本-黄色视频高清免费观看| 俄罗斯特黄特色一大片| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 国产淫片久久久久久久久| 亚洲国产精品合色在线| 乱人视频在线观看| 九色国产91popny在线| av中文乱码字幕在线| 成人无遮挡网站| 91在线观看av| 国产精品三级大全| 九色国产91popny在线| 无遮挡黄片免费观看| 国内精品宾馆在线| 国产黄片美女视频| 深爱激情五月婷婷| 日日夜夜操网爽| 国内揄拍国产精品人妻在线| 日本黄色片子视频| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| av在线老鸭窝| 日本 av在线| 99热6这里只有精品| 免费av不卡在线播放| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 欧美高清成人免费视频www| 91久久精品电影网| 亚洲综合色惰| 亚洲七黄色美女视频| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 日本黄色片子视频| 男人舔奶头视频| 久久久久九九精品影院| 国产精品1区2区在线观看.| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 精品久久久久久,| 一本一本综合久久| 亚洲成人免费电影在线观看| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 国产不卡一卡二| 久久精品国产亚洲网站| 日韩人妻高清精品专区| av女优亚洲男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 淫秽高清视频在线观看| 国产高清三级在线| 久久精品国产清高在天天线| 内地一区二区视频在线| 精品久久久久久,| 在线免费十八禁| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 不卡一级毛片| 99久久精品国产国产毛片| 久久久久国产精品人妻aⅴ院| a级毛片免费高清观看在线播放| 久久久久精品国产欧美久久久| 亚洲美女黄片视频| 人妻少妇偷人精品九色| 熟女电影av网| 日韩高清综合在线| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 麻豆一二三区av精品| 久久久久久伊人网av| 极品教师在线视频| 深夜a级毛片| 国产成人av教育| 日本-黄色视频高清免费观看| 免费搜索国产男女视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品| 日日夜夜操网爽| 国产精品国产三级国产av玫瑰| 91麻豆av在线| 一级a爱片免费观看的视频| 中文字幕精品亚洲无线码一区| 国产熟女欧美一区二区| 欧美成人a在线观看| 特级一级黄色大片| 一个人免费在线观看电影| 国产在线男女| 久久久久久大精品| 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| 亚洲avbb在线观看| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 日本 av在线| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6 | 国产三级在线视频| 亚洲成a人片在线一区二区| 在线观看av片永久免费下载| bbb黄色大片| 国产一级毛片七仙女欲春2| 美女xxoo啪啪120秒动态图| 国产在线精品亚洲第一网站| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜添av毛片 | 久久午夜福利片| 99精品在免费线老司机午夜| 日韩一本色道免费dvd| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添小说| 国产美女午夜福利| 亚洲性久久影院| 日韩欧美一区二区三区在线观看| 真人一进一出gif抽搐免费| 又黄又爽又免费观看的视频| or卡值多少钱| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 久久久久国产精品人妻aⅴ院| 亚州av有码| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 91久久精品国产一区二区成人| 国产成人a区在线观看| 婷婷色综合大香蕉| 人妻少妇偷人精品九色| 九九在线视频观看精品| 嫩草影院精品99| 一进一出抽搐动态| 成人国产综合亚洲| 少妇人妻一区二区三区视频| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 日韩欧美三级三区| 99精品久久久久人妻精品| 看免费成人av毛片| www日本黄色视频网| 午夜精品久久久久久毛片777| 欧美激情久久久久久爽电影| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 国产精品亚洲一级av第二区| 听说在线观看完整版免费高清| 老师上课跳d突然被开到最大视频| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| 精品久久久久久久久亚洲 | 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 日韩欧美免费精品| 窝窝影院91人妻| 成人国产麻豆网| 简卡轻食公司| 一级黄色大片毛片| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 精品免费久久久久久久清纯| 窝窝影院91人妻| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 久久香蕉精品热| 免费观看人在逋| 久久久精品大字幕| 色噜噜av男人的天堂激情| 国产成人av教育| 日本黄色视频三级网站网址| 日本a在线网址| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| av视频在线观看入口| 赤兔流量卡办理| 久久这里只有精品中国| 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久成人| 在线观看av片永久免费下载| 欧美性猛交╳xxx乱大交人| 亚洲第一电影网av| 国产三级在线视频| 国产真实乱freesex| 女同久久另类99精品国产91| 国产av在哪里看| 日本精品一区二区三区蜜桃| 国产精品伦人一区二区| 无遮挡黄片免费观看| 久久久久久久精品吃奶| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 在线观看av片永久免费下载| 一本一本综合久久| 久久香蕉精品热| 亚洲av成人av| 91精品国产九色| 1000部很黄的大片| 一夜夜www| 色5月婷婷丁香| 国产成人福利小说| 淫妇啪啪啪对白视频| 亚洲一级一片aⅴ在线观看| 欧美日韩亚洲国产一区二区在线观看| av国产免费在线观看| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 男人的好看免费观看在线视频| 国产精品一区二区三区四区免费观看 | 少妇人妻精品综合一区二区 | 18禁裸乳无遮挡免费网站照片| 亚洲av成人精品一区久久| 亚洲美女黄片视频| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久久久久久久| 亚洲av日韩精品久久久久久密| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 久久6这里有精品| 国产成人一区二区在线| 九九热线精品视视频播放| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 午夜福利成人在线免费观看| 欧美日本亚洲视频在线播放| 三级毛片av免费| 色在线成人网| 麻豆国产97在线/欧美| 在线国产一区二区在线| 成人午夜高清在线视频| 久久香蕉精品热| 亚洲欧美日韩高清专用| 国产精品福利在线免费观看| 欧美国产日韩亚洲一区| 精品久久久久久久久av| 免费看光身美女| 99riav亚洲国产免费| 精品一区二区三区人妻视频| xxxwww97欧美| 国产高清激情床上av| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 亚洲av五月六月丁香网| 精品一区二区三区视频在线| 国产精品无大码| 久久久久精品国产欧美久久久| АⅤ资源中文在线天堂| 99久久精品热视频| 又爽又黄无遮挡网站| 国产精品无大码| 在线播放国产精品三级| 亚洲av.av天堂| 日本在线视频免费播放| 日日撸夜夜添| 看黄色毛片网站| 一夜夜www| 在线天堂最新版资源| 热99re8久久精品国产| 18禁黄网站禁片免费观看直播| 老师上课跳d突然被开到最大视频| 国产精品日韩av在线免费观看| 伊人久久精品亚洲午夜| 性插视频无遮挡在线免费观看| 国产精品一区二区性色av| 色视频www国产| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| 成人特级av手机在线观看| 婷婷亚洲欧美| 国产淫片久久久久久久久| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件 | 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 亚洲精品国产成人久久av| 老熟妇乱子伦视频在线观看| 国产真实乱freesex| 一级a爱片免费观看的视频| 男女那种视频在线观看| 免费大片18禁| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 在线免费观看的www视频| 看黄色毛片网站| 性插视频无遮挡在线免费观看| 欧美一区二区精品小视频在线| 特大巨黑吊av在线直播| 日本精品一区二区三区蜜桃| 内射极品少妇av片p| 国产精华一区二区三区| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 亚洲中文字幕日韩| 国产69精品久久久久777片| 国产私拍福利视频在线观看| 韩国av一区二区三区四区| 久久午夜福利片| 亚洲精品亚洲一区二区| 国产精品永久免费网站| 欧美一区二区国产精品久久精品| 婷婷精品国产亚洲av| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 免费人成在线观看视频色| 69人妻影院| 亚洲成人久久性| 一卡2卡三卡四卡精品乱码亚洲| 精品午夜福利在线看| 免费人成在线观看视频色| 亚洲av日韩精品久久久久久密| 中文资源天堂在线| 亚洲专区国产一区二区| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片 | 久久久色成人| 欧美日韩黄片免| 久9热在线精品视频| 国产乱人视频| 美女高潮的动态| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 亚洲av免费在线观看| 国产精品电影一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 国产乱人伦免费视频| 99久久精品国产国产毛片| 久久热精品热| 久久精品国产亚洲网站| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av天美| 亚洲一级一片aⅴ在线观看| 99热精品在线国产| 成人特级av手机在线观看| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 一区二区三区激情视频| 国产成人aa在线观看| av在线观看视频网站免费| 亚洲av电影不卡..在线观看| 香蕉av资源在线| 精品国内亚洲2022精品成人| 成年女人永久免费观看视频| 欧美最新免费一区二区三区| 成人av在线播放网站| 国产精品福利在线免费观看| 精品日产1卡2卡| 国产精品不卡视频一区二区| 免费高清视频大片| 窝窝影院91人妻| 国产精品女同一区二区软件 | a级毛片a级免费在线| 久久久久久久久久成人| 成人午夜高清在线视频| 精品福利观看| 男人的好看免费观看在线视频| 欧美一区二区精品小视频在线| 成年免费大片在线观看| 国产一区二区在线观看日韩| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| 人人妻人人看人人澡| 日韩av在线大香蕉| 国产老妇女一区| 国产成人av教育| 18禁黄网站禁片免费观看直播| 尤物成人国产欧美一区二区三区| 国产成人福利小说| 国产伦一二天堂av在线观看| 毛片一级片免费看久久久久 | 亚洲无线在线观看| 不卡视频在线观看欧美| 嫁个100分男人电影在线观看| 99久久久亚洲精品蜜臀av| 国产视频内射| 色综合亚洲欧美另类图片| 日韩一区二区视频免费看| 亚洲七黄色美女视频|