張育瑆,黃 云,王育紅
·綜 述·
VAP-1:重癥失血性休克治療的下一個靶點
張育瑆,黃 云,王育紅
重癥休克通常指經(jīng)輸血、補液、血管活性藥物、強心藥物等傳統(tǒng)治療手段治療后仍難以逆轉(zhuǎn)的休克。休克進入“不可逆”階段的主要特征是持續(xù)性低灌注以及頑固性低血壓,它們分別由白細(xì)胞阻塞及血管平滑肌反應(yīng)性降低引起。血管黏附蛋白-1是一種在哺乳動物體內(nèi)廣泛存在的多功能蛋白,其既是一種黏附分子,又是一種酶。其能在炎癥條件下調(diào)節(jié)白細(xì)胞黏附至血管內(nèi)皮,作為胞外酶可將伯胺類物質(zhì)轉(zhuǎn)化為相應(yīng)的醛類并產(chǎn)生H2O2與NH3。鑒于休克進入“不可逆”階段的兩個因素:毛細(xì)血管無復(fù)流現(xiàn)象及血管反應(yīng)性降低與血管黏附蛋白-1蛋白的功能均有聯(lián)系,故認(rèn)為血管黏附蛋白-1在重癥休克病理過程中可能具有重要意義,對其進一步研究可能為救治重癥休克提供一種新的治療手段。
重癥難治性休克;血管黏附蛋白-1;氨基脲敏感性胺氧化酶
據(jù)美國National vital statistics report統(tǒng)計,2003-2007每年因意外創(chuàng)傷導(dǎo)致死亡占總死亡總數(shù)5%左右,在死亡因素中排名第5,而意外創(chuàng)傷合并大出血導(dǎo)致低血容量性休克是該因素中導(dǎo)致死亡的主要原因[1-5]。
失血性休克(hemorrhagic shock)是指各種原因引起的急性血液或血漿大量丟失導(dǎo)致的有效循環(huán)血量與心輸出量減少、組織灌注不足、細(xì)胞代謝紊亂及功能受損的病理生理過程?,F(xiàn)代醫(yī)學(xué)對失血性休克的發(fā)病及轉(zhuǎn)歸機制進行了深入研究,目前各種藥物和治療理念的提高使休克救治得到了長足的進步,然而對于一些失血量大、救治較晚的嚴(yán)重失血性休克,即使采取各種抗休克治療措施,仍有極高的死亡率[6],臨床上通常這類經(jīng)輸血、補液、血管活性藥物、強心藥物等傳統(tǒng)治療手段后仍難以逆轉(zhuǎn)的休克稱為不可逆休克或重癥休克(irreversible shock)[7]。
輸血、補液、強心等傳統(tǒng)治療方法的主要觀測指標(biāo)是大循環(huán)血壓,然而大循環(huán)血壓的回升并不意味著微循環(huán)灌流同樣恢復(fù)。在一些實驗中觀察到經(jīng)傳統(tǒng)抗休克治療后雖然動脈血壓有所提升,但關(guān)閉的毛細(xì)血管未能出現(xiàn)紅細(xì)胞流動和重新灌流的現(xiàn)象[8-9],說明微循環(huán)的流量在休克復(fù)蘇過程中可能會與大循環(huán)分離。
至于傳統(tǒng)的血管活性藥物(如去甲腎上腺素、酚妥拉明等),其作用受體確實在微循環(huán)的血管平滑肌上。然而在休克進展期微血管平滑肌細(xì)胞由于其所處內(nèi)環(huán)境毒性代謝產(chǎn)物的不斷積聚以及能量的耗盡[10],其對于活性藥物的敏感性會逐漸降低乃至完全失效,也就是所謂“低血管反應(yīng)性”發(fā)生[11]。
針對傳統(tǒng)休克治療方法的局限性,現(xiàn)有理論認(rèn)為休克進入“不可逆”階段的病理生理學(xué)基礎(chǔ)是微循環(huán)衰竭造成組織器官功能障礙乃至衰竭死亡。因此,微循環(huán)灌流的恢復(fù)與血管低反應(yīng)性狀態(tài)的改善是研究的重點。
2.1 毛細(xì)血管無復(fù)流現(xiàn)象 無復(fù)流現(xiàn)象(no flow)是指經(jīng)抗休克治療以后,關(guān)閉的毛細(xì)血管未能出現(xiàn)紅細(xì)胞流動和重新灌流現(xiàn)象。微循環(huán)的流量在休克復(fù)蘇過程中可能會與大循環(huán)分離,即在抗休克治療后血壓回升的同時,微循環(huán)流量并不平行恢復(fù)[8]。毛細(xì)血管持續(xù)性的低灌注并非因血管收縮引起管腔狹窄造成,而是由于微血管內(nèi)的大量白細(xì)胞激活并黏附管壁以至堵塞管腔。四氮唑藍(lán)試驗表明休克期間白細(xì)胞激活程度與實驗動物存活時間呈負(fù)相關(guān)[12];用顯微鏡計數(shù)發(fā)現(xiàn)失血性休克30 min后黏附于微靜脈壁上的白細(xì)胞數(shù)目為正常情況下的16~20倍,黏附細(xì)胞的增加導(dǎo)致微血管阻力上升,傳導(dǎo)率下降[13];伴隨著持續(xù)性血液喪失及低血壓,流通的毛細(xì)血管會逐漸被伸長、變形的白細(xì)胞所阻塞,微血管內(nèi)皮細(xì)胞也會向腔內(nèi)突出導(dǎo)致管腔更為狹窄,最終引起毛細(xì)血管無灌流現(xiàn)象。與持續(xù)性的低血壓相比,輸血、補液提升大循環(huán)血壓后毛細(xì)血管的白細(xì)胞嵌塞會更為明顯[14]。使用黏附蛋白單抗(細(xì)胞黏附分子、抗炎素-1等)、自由基清除劑(超氧化物歧化酶、別嘌呤醇等)、細(xì)胞因子單抗(腫瘤壞死因子-α、白介素-1等),均只能一過性地減少微靜脈中的白細(xì)胞黏附效應(yīng),不能到達(dá)和作用于已經(jīng)嵌塞停滯的毛細(xì)血管,從而未能恢復(fù)毛細(xì)血管血流和提高休克動物存活率[15-16]。
2.2 低血管反應(yīng)性發(fā)生 重癥休克患者經(jīng)過輸血、補液、升壓藥物等傳統(tǒng)抗休克治療以后,血壓仍難以回升,稱為頑固性低血壓(refractory hypotension),血管反應(yīng)性顯著下降,是造成頑固性低血壓的主要原因[11]。造成血管反應(yīng)性下降的因素是多方面的,包括代謝產(chǎn)物積累、能量耗竭、腎上腺素能受體敏感性降低及一氧化氮(nitric oxide,NO)、內(nèi)皮素等細(xì)胞因子的釋放等[10,17-19]。
組織學(xué)層面這些導(dǎo)致血管反應(yīng)性下降的最終途徑都與小動脈平滑肌細(xì)胞(arteriolar smooth muscle cells,,ASMCs)的收縮功能降低相關(guān),目前關(guān)于ASMCs重癥休克期間收縮功能的研究主要集中在離子通路方面。血管收縮依賴于平滑肌細(xì)胞內(nèi)Ca2+,而K+通道在膜電位調(diào)解中起主導(dǎo)作用,有實驗表明重癥休克期間ASMCs的靜息電位可由失血前的(-36.7±6.3)mV提升到休克2 h后的(-51.0± 9.1)mV[20],ASMCs超極化不單可由NO引起,ONOO-(NO+O2-)通過大電導(dǎo)鈣激活鉀通道的自發(fā)性瞬時外向電流也會引起ASMCs超極化的發(fā)生[21-22],細(xì)胞膜超級化會抑制電位操縱通道的開放從而導(dǎo)致細(xì)胞內(nèi)Ca2+濃度降低[20,23-24]。同時重癥休克期間激活去甲腎上腺素受體的閾濃度較對照組提高了15倍,NE功能下降也會導(dǎo)致性胞內(nèi)Ca2+濃度降低[25]。另外K+通道也可直接參與調(diào)節(jié)血管壁的收縮功能,重癥休克狀態(tài)下三磷酸腺苷(adenosine triphosphate,ATP)敏感性K+通道的開放概率是對照組的12.5倍,K+-ATP通道的大量激活導(dǎo)致胞內(nèi)酸中毒并引起血管低反應(yīng)性的發(fā)生[24,26]。
2.3 重癥休克的“靶向治療” 傳統(tǒng)抗休克治療效果欠佳,“不可逆”休克之所以不可逆轉(zhuǎn)在于以往的治療體系并非完備,在休克病程尤其是微循環(huán)灌流機制中仍存在許多尚未發(fā)現(xiàn)的病理生理過程及相關(guān)調(diào)控節(jié)點[7]?,F(xiàn)代科技尤其是分子生物學(xué)的進步使得研究人員可以通過對基因的了解來探究重癥休克的更深層次的背景,使得抗休克治療有了新的干預(yù)目標(biāo)和療效評價的參照物[27],為逆轉(zhuǎn)“不可逆休克”提供了可能。
一般意義的“靶向治療”僅針對惡性腫瘤,其定義是在細(xì)胞分子水平上針對已明確的致癌位點(腫瘤細(xì)胞內(nèi)部的某個蛋白分子或基因片段)來設(shè)計相應(yīng)的治療藥物,藥物進入腫瘤細(xì)胞內(nèi)會特異地選擇致癌位點相結(jié)合并發(fā)生作用,使腫瘤細(xì)胞特異性死亡,而不會波及腫瘤周圍的正常組織細(xì)胞。然而近期國內(nèi)外文獻中某些慢性疾?。ㄈ?型糖尿病、類風(fēng)濕性關(guān)節(jié)炎等)也出現(xiàn)了“靶向治療”的提法[28-29]。
現(xiàn)有成熟的抗腫瘤靶向治療藥物大多是是針對某個“異常表達(dá)蛋白”的單克隆抗體,如針對表皮生長因子受體的西妥昔單抗,針對人類表皮生長因子受體-2的群司珠單抗,針對血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的貝伐單抗,針對CD20的利妥昔單抗等[30-33]。另外,由于VEGF被認(rèn)為與2型糖尿病視網(wǎng)膜病變相關(guān),貝伐單抗又被認(rèn)為是針對糖尿病視網(wǎng)膜病的靶向治療[28],針對B淋巴刺激因子的BR3-Fc等藥物也被稱為抗內(nèi)風(fēng)濕性關(guān)節(jié)炎的靶向治療[29]。因此只要是針對某個基因或蛋白異常表達(dá)的治療方法可稱廣義上的“靶向治療”。
休克雖然是急性病程,然而在其發(fā)生發(fā)展的各階段某些基因及對應(yīng)蛋白的表達(dá)量也會發(fā)生變化,每個蛋白都會有相應(yīng)的功能,這些功能在休克過程中的改變是否影響休克的預(yù)后?針對這些蛋白的“靶向治療”能否為重癥休克的治療開拓新的思路?
Xiaojun[34]前期開展了針對“失血性休克基因”的芯片篩查工作,通過對相關(guān)背景基因的篩查,發(fā)現(xiàn)若干基因值得進一步研究,其中就包括編碼血管黏附蛋白-1(vascular adhesion protein-1,VAP-1)、含銅胺氧化酶3基因。
VAP-1由定位于人17號染色體(17q21)的AOC3基因編碼,該基因全長6 941 bp,有4個外顯子,其mRNA全長4 040 bp,編碼序列全長2 292 bp。VAP-1為由763個氨基酸組成的含銅胺氧化酶(相對分子質(zhì)量74 622×103)[35],因此又稱為氨基脲敏感型胺氧化酶(Semicarbazide-sensitive amine oxidase,SSAO)。該蛋白既可以像其他含銅胺氧化酶那樣以溶質(zhì)的形式存在于血漿中,也可以膜結(jié)合形式存在于內(nèi)皮細(xì)胞、脂肪細(xì)胞及平滑肌細(xì)胞的表面[36]。
VAP-1是一種具有雙重功能的蛋白,一方面作為內(nèi)皮細(xì)胞黏附因子可誘導(dǎo)白細(xì)胞黏附至血管內(nèi)皮;另一方面作為胺氧化酶可催化芳香族和脂肪族的伯胺類物質(zhì)轉(zhuǎn)化成相應(yīng)的醛類,并產(chǎn)生H2O2和NH3。VAP-1的的這種特性使其在白細(xì)胞滲出、細(xì)胞間黏附級聯(lián)反應(yīng)、血糖調(diào)節(jié)以及血管損害等方面都具有重要意義。
3.1 VAP-1的細(xì)胞黏附作用 Salmi等[37]于1992年首先在淋巴組織中觀察到淋巴細(xì)胞依賴VAP-1附著于富含內(nèi)皮細(xì)胞的小靜脈管壁的現(xiàn)象,后又發(fā)現(xiàn)該蛋白同樣參與粒性白細(xì)胞的黏附作用[38]。炎癥反應(yīng)是促使血漿可溶型血管黏附蛋白-1濃度增加的主要因素[39]。VAP-1又可通過核轉(zhuǎn)錄因子-κB,磷脂酰肌醇-3激酶及絲裂原活化蛋白激酶等信號通路促進黏附分子E-選擇素(E-selectin)、細(xì)胞間黏附分子-1、血管細(xì)胞黏附分子-1的表達(dá)上調(diào)及趨化因子CXCL8的分泌[40]。
因此,VAP-1同時具有酶依賴性及非酶依賴性的雙重黏附功能[41],一方面內(nèi)皮細(xì)胞表面的VAP-1可與白細(xì)胞表面的相應(yīng)受體結(jié)合,介導(dǎo)白細(xì)胞在血管內(nèi)皮表面緩慢滾動并最終被內(nèi)皮細(xì)胞栓鎖[38,42];另一方面通過促進經(jīng)典黏附因子的表達(dá)(如E-selectin,ICAM-1)在滲出級聯(lián)反應(yīng)中發(fā)揮重要作用[40]。
在臨床研究中,VAP-1過量的表達(dá)使得白細(xì)胞不恰當(dāng)?shù)倪w徙也會造成靶器官炎癥的病理損傷,因此VAP-1被認(rèn)為與多種炎癥性疾病相關(guān),包括自身免疫性疾病如多發(fā)性硬化癥、類風(fēng)濕性關(guān)節(jié)炎,酒精性及膽汁淤積性肝硬化,動脈粥樣硬化、缺血再灌注損傷及阿爾茨海默病等[43]。
3.2 VAP-1的SSAO酶活性 VAP-1通過氧化脫氨基作用可將體內(nèi)芳香族及脂肪族的伯胺類物質(zhì)轉(zhuǎn)化成相應(yīng)的醛類并釋放H2O2和NH3[44]:R-CH2-NH2+H2O+O2→R-CHO+H2O2+NH3,此催化過程分兩步,在還原反應(yīng)過程中,R-CHO生成之前,R-CH2-NH2與VAP-1表面的多巴醌以共價鍵短暫結(jié)合(即酶與底物的結(jié)合);隨后的部分氧化過程中VAP-1將被再次氧化并釋放H2O2和NH3[45]。丙烯胺、甲胺與氨基丙酮3種體內(nèi)代謝過程中產(chǎn)生的可溶性胺類物質(zhì)是VAP-1的內(nèi)源性底物,三者經(jīng)過VAP-1催化的氧化脫氨基作用分別形成毒性產(chǎn)物丙烯醛、甲醛與氨基丙醛,這些高度活性的醛類物質(zhì)能夠啟動蛋白質(zhì)交聯(lián)作用,加劇蛋白質(zhì)糖化并導(dǎo)致血管內(nèi)皮損傷[46]。芐胺是常用且有效的非內(nèi)源性VAP-1底物,隨后發(fā)現(xiàn)的非內(nèi)源性底物也大多為芐胺的衍生產(chǎn)物,如芳香烷胺類[47-48],其中4-苯基氨基丁胺被認(rèn)為是最有效的人類SSAO酶底物,其催化效率是芐胺的2倍[48]。
SSAO酶催化產(chǎn)物如甲醛、丙酮醛、H2O2均為潛在的毒性物質(zhì)。
甲醛與丙酮醛對血管內(nèi)皮細(xì)胞有直接的侵蝕作用,并可通過漸進性糖基化破壞血管壁內(nèi)蛋白質(zhì)的交聯(lián)作用,過量的醛類物質(zhì)生成可促進血管內(nèi)皮細(xì)胞及平滑肌細(xì)胞的損傷及血管壁蝕斑的形成[49-50]。另外甲醛還可誘導(dǎo)平滑肌細(xì)胞的凋亡[51]。
H2O2被認(rèn)為是與NO作用類似的血管內(nèi)皮舒張因子,可作為內(nèi)皮依賴性超級化因子通過誘導(dǎo)血管緊張素Ⅱ及醛固酮的激活調(diào)節(jié)微循環(huán)的血管張力[52-53],通過TRPM2鈣離子通道介導(dǎo)血管內(nèi)皮損傷[54],還可通過氧化應(yīng)激增強氧化糖基化作用及促進低密度脂蛋白氧化從而破壞血管內(nèi)皮系統(tǒng),導(dǎo)致動脈管壁的僵化,并損害其調(diào)節(jié)血壓的能力[46,49,55-56]。
通過文獻復(fù)習(xí),發(fā)現(xiàn)導(dǎo)致休克進入“不可逆”階段的兩個因素:毛細(xì)血管無復(fù)流現(xiàn)象及血管反應(yīng)性降低與VAP-1蛋白的功能均有聯(lián)系。VAP-1促白細(xì)胞與微血管內(nèi)皮細(xì)胞黏附作用可能會加劇白細(xì)胞對微循環(huán)的阻塞;SSAO酶單胺氧化產(chǎn)物H2O2及醛類物質(zhì)均對血管內(nèi)皮細(xì)胞及平滑肌細(xì)胞具有直接或間接地破壞作用,從而導(dǎo)致微血管反應(yīng)性的進一步下降。
因此,認(rèn)為VAP-1在重癥休克病理過程中可能具有重要意義,有必要進行研究闡明,以期為臨床救治重癥休克提供一種新的治療手段。
[1]Heron MP,Smith BL.Deaths:leading causes for 2003[J]. Natl Vital Stat Rep,2007,55(10):1-92.
[2]Heron M.Deaths:leading causes for 2004[J].Natl Vital Stat Rep,2007,56(5):1-95.
[3]Heron M,Tejada-Vera B.Deaths:leading causes for 2005[J].Natl Vital Stat Rep,2009,58(8):1-97.
[4]Heron M,Hoyert DL,Murphy SL,et al.Deaths:final data for 2006[J].Natl Vital Stat Rep,2009,57(14):1-134.
[5]Heron M.Deaths:leading causes for 2007[J].Natl Vital Stat Rep,2011,59(8):1-95.
[6]Lillehei RC,Longerbeam JK,Bloch JH,et al.The nature of irreversible shock:experimental and clinical observations[J].Ann Surg,1964,160:682-710.
[7]Healey MA,Samphire J,Hoyt DB,et al.Irreversible shock is not irreversible:a new model of massive hemorrhage and resuscitation[J].JTrauma,2001,50(5):826-834.
[8]Zhao KS.The role of leukocytes in the pathogenesis of micro circulatory disorders during shock[J].Zhonghua Yi Xue Za Zhi,1986,66(12):722-725,774.
[9]Likhovetskaia ZM,Prigozhina TA,Gorbunova NA.Hemorheologic disorders in shock of diverse etiology][J].Biull Eksp Biol Med,1988,106(10):426-428.
[10]Henrich HA,B?umer F,Silber RE.Phase-related vascular reactivity in hemorrhagic shock[J].Prog Clin Biol Res,1989,308:143-149.
[11]Squadrito F,Guarini S,Altavilla D,et al.Adrenocorticotropin reverses vascular dysfunction and protects against splanchnic artery occlusion shock[J].Br J Pharmacol,1999,128(3):816-822.
[12]Barroso-Aranda J,Schmid-Sch?nbein GW.Transformation of neutrophils as indicator of irreversibility in hemorrhagic shock[J].Am JPhysiol,1989,257(3 Pt 2):H846-H852.
[13]Jiang Y,Liu AH,Zhao KS.Studies on the flow and distribution of leukocytes in mesentery micro circulation of rats[J].World JGastroenterol,1999,5(3):231-234.
[14]Zhao KS,Huang X,Liu J,etal.New approach to treatment of shock--restitution of vasoreactivity[J].Shock,2002,18(2):189-192.
[15]Rhee P,Morris J,Durham R,et al.Recombinant humanized monoclonal antibody against CD18(rhuMAb CD18)in traumatic hemorrhagic shock:results of a phaseⅡclinical trial.Traumatic Shock Group[J].J Trauma,2000,49(4):611-619.
[16]Harlan JM,Winn RK.Leukocyte-endothelial interactions:clinical trials of anti-adhesion therapy[J].Crit Care Med,2002,30(5 Suppl):S214-S219.
[17]Liu LM,Ward JA,Dubick MA.Hemorrhage-induced vascular hyporeactivity to norepinephrine in select vasculatures of rats and the roles ofnitric oxide and endothelin[J].Shock,2003,19(3):208-214.
[18]Macarthur H,Couri DM,Wilken GH,et al.Modulation of serum cytokine levels by a novel superoxide dismutasemimetic,M40401,in an Escherichia coli model of septic shock:correlation with preserved circulating catecholamines[J].Crit Care Med,2003,31(1):237-245.
[19]Takakura K,Xiaohong W,Takeuchi K,et al.Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock[J].Anesthesiology,2003,98(4):928-934.
[20]Zhao Q,Zhao KS.Inhibition of L-type calcium channels in arteriolar smooth muscle cells is involved in the pathogenesis of vascular hypo reactivity in severe shock[J].Shock,2007,28(6):717-721.
[21]Presley T,Vedam K,Velayutham M,et al.Activation of Hsp90-eNOSand increased NO generation attenuate respiration of hypoxia-treated endothelial cells[J].Am JPhysiol Cell Physiol,2008,295(5):C1281-C1291.
[22]Clapp LH,Orie NN.Stoking up BKCa channels in hemorrhagic shock:which channel subunit is really fueling the fire?[J].Circ Res,2007,101(5):436-438.
[23]Santana LF,Navedo MF,Amberg GC,etal.Calcium sparklets in arterial smooth muscle[J].Clin Exp Pharmacol Physiol,2008,35(9):1121-1126.
[24]Collin S,Sennoun N,Dron AG,et al.Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide inexperimental septic shock[J]. Intensive Care Med,2011,37(5):861-869.
[25]Jhanji S,Stirling S,Patel N,et al.The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients withseptic shock[J].Crit Care Med,2009,37(6):1961-1966.
[26]Wu CC,Chen SJ,Garland CJ.NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in ratmesenteric resistance arteries[J].Br J Pharmacol,2004,142(3):479-484.
[27]Young PP,Cotton BA,Goodnough LT.Massive transfusion protocols for patients with substantial hemorrhage[J]. Transfus Med Rev,2011,25(4):293-303.
[28]Takamura Y,Kubo E,Akagi Y.Analysis of the effectof intravitreal bevacizumab injection on diabetic macular edema after cataract surgery[J].Ophthalmology,2009,116(6):1151-1157.
[29]La DT,Collins CE,Yang HT,et al.B lymphocyte stimulator expression in patients with rheumatoid arthritis treated with tumour necrosis factor alphaantagonists:differential effects between good and poor clinical responders[J].Ann Rheum Dis,2008,67(8):1132-1138.
[30]Baselga J.The EGFR as a target for anticancer therapy--focus on cetuximab[J].Eur JCancer,2001,37 Suppl 4:S16-S22.
[31]WongWM.Drug update:trastuzumab:anti-HER2 antibody for treatment of metastatic breast cancer[J].Cancer Pract,1999,7(1):48-50.
[32]Chen HX,Gore-Langton RE,Cheson BD.Clinical trials referral resource:current clinical trials of the anti-VEGF monoclonal antibody bevacizumab[J].Oncology(Williston Park),2001,15(8):1017,1020,1023-1026.
[33]Anderson DR,Grillo-López A,Varns C,et al.Targeted anti-cancer therapy using rituximab,a chimaeric anti-CD20 antibody(IDEC-C2B8)in the treatment ofnon-Hodgkin′s B-cell lymphoma[J].Biochem Soc Trans,1997,25(2):705-708.
[34]Xiaojun Y,Cheng Q,Yuxing Z,et al.Microarray analysis of differentially expressed background genes in rats following hemorrhagic shock[J].Mol Biol Rep,2012,39(2):2045-2053.
[35]Ochiai Y,Itoh K,Sakurai E,et al.Molecular cloning and characterization of rat semicarbazide-sensitive amine oxidase[J].Biol Pharm Bull,2005,28(3):413-418.
[36]Schwelberger HG.The origin of mammalian plasma amine oxidases[J].JNeural Transm,2007,114(6):757-762.
[37]SalmiM,Jalkanen S.A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans[J].Science,1992,257(5075):1407-1409.
[38]Tohka S,Laukkanen M,Jalkanen S,et al.Vascular adhesion protein 1(VAP-1)functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo[J].FASEB J,2001,15(2):373-382.
[39]Jaakkola K,Nikula T,Holopainen R,et al.In vivo detection of vascular adhesion protein-1 in experimental inflammation[J].Am JPathol,2000,157(2):463-471.
[40]Jalkanen S,KarikoskiM,Mercier N,et al.The oxidase activity of vascular adhesion protein-1(VAP-1)induces endothelial E-and P-selectins and leukocytebinding[J]. Blood,2007,110(6):1864-1870.
[41]Airenne TT,Nymalm Y,Kidron H,et al.Crystal structure of the human vascular adhesion protein-1:unique structural features with functionalimplications[J].Protein Sci,2005,14(8):1964-1974.
[42]Stolen CM,Marttila-Ichihara F,Koskinen K,et al.Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo[J].Immunity,2005,22(1):105-115.
[43]Luster AD,Alon R,von Andrian UH.Immune cellmigration in inflammation:present and future therapeutic targets[J].Nat Immunol,2005,6(12):1182-1190.
[44]Lyles GA.Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases:biochemical,pharmacologicaland toxicological aspects[J].Int JBiochem Cell Biol,1996,28(3):259-274.
[45]Mure M,Mills SA,Klinman JP.Catalyticmechanism of the topa quinone containing copper amine oxidases[J].Biochemistry,2002,41(30):9269-9278.
[46]Yu PH,Wright S,F(xiàn)an EH,et al.Physiological and pathological implications of semicarbazide-sensitive amine oxidase[J].Biochim Biophys Acta,2003,1647(1/2):193-199.
[47]Marti L,Abella A,De La Cruz X,etal.Exploring the binding mode of semicarbazide-sensitive amine oxidase/VAP-1:identification of novel substrates with insulin-like activity[J].JMed Chem,2004,47(20):4865-4874.
[48]Yraola F,García-Vicente S,F(xiàn)ernandez-Recio J,et al.New efficient substrates for semicarbazide-sensitive amine oxidase/VAP-1 enzyme:analysis by SARs and computational docking[J].JMed Chem,2006,49(21):6197-6208.
[49]Yu PH.Deamination of methylamine and angiopathy;toxicity of formaldehyde,oxidative stress and relevance to proteinglycoxidation in diabetes[J].JNeural Transm Suppl,1998,52:201-216.
[50]Gubisne-Haberle D,Hill W,Kazachkov M,et al.Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitiveamine oxidase-mediated deamination of methylamine[J].J Pharmacol Exp Ther,2004,310(3):1125-1132.
[51]Hernandez M,SoléM,Boada M,et al.Soluble semicarbazide sensitive amine oxidase(SSAO)catalysis induces apoptosis in vascular smoothmusclecells[J].Biochim Biophys Acta,2006,1763(2):164-173.
[52]Shimokawa H.Hydrogen peroxide as an endotheliumderived hyperpolarizing factor[J].Pflugers Arch,2010,459(6):915-922.
[53]Queisser N,F(xiàn)azeli G,Schupp N.Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensinⅡand aldosterone action[J].Biol Chem,2010,391(11):1265-1279.
[54]Hecquet CM,Malik AB.Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury[J].Thromb Haemost,2009,101(4):619-625.
[55]G?ktürk C,Nilsson J,Nordquist J,et al.Overexpression of semicarbazide-sensitive amine oxidase in smooth muscle cells leads to an abnormal structure of the aortic elastic laminas[J].Am JPathol,2003,163(5):1921-1928.
[56]Gokturk C,Sugimoto H,Blomgren B,et al.Macrovascular changes in mice overexpressing human semicarbazide-sensitive amine oxidase in smooth musclecells[J].Am JHypertens,2007,20(7):743-750.
VAP-1:the next target of anti-irreversible shock therapy
ZHANG Yuxing,HUANG Yun,WANG Yuhong
(Department of General Surgery,Navy General Hospital,Beijing 100048,China)
Irreversible shock(IS)is the final stage of shock,which is a life threatening situation for the traditional therapeutic measures(blood transfusion,fluid replacement,vasoactive agents,cardiac stimulant,etc)being ineffective.Low perfusion caused by leukocyte adhesion and refractory hypotension caused by low vasoreactivity is principal hemorheologic events of irreversible shock.Vascular adhesion protein-1(VAP-1)is amulti-functional protein widely present in mammals.VAP-1 is an adhesion,and also an enzyme.It can regulate leukocyte-endothelial binding under inflammation.As an ectoenzyme it converts primary amines into their corresponding aldehydes,while generating H2O2and NH3.Considering the correlation between hemorheologic events of irreversible shock and the function of VAP-1,we hypothesize that VAP-1 plays an important role in the mechanism of irreversible shock and VAP-1 may be the next target of anti-irreversible shock therapy.
Irreversible shock;Vascular adhesion protein-1(VAP-1);Semicarbazide sensitive amine oxidase(SSAO)
R605.971
A
2095-3097(2014)01-0049-05
10.3969/j.issn.2095-3097.2014.01.012
2013-12-22 本文編輯:張在文)
國家自然科學(xué)基金青年項目(81101419)
100048北京,海軍總醫(yī)院普外科(張育瑆,黃 云,王育紅)
王育紅,E-mail:shock.smmu@gmail.com