• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The potential of stem cell-based therapy for retinal repair

    2014-01-22 16:46:01HonghuaYu,LinCheng,Kin-SangCho

    The potential of stem cell-based therapy for retinal repair

    Like injured neurons in the brain or spinal cord, neurons in the retina are incapable to regenerate following injury and ultimately would lead to irreversible neuronal loss and vision impairment. Over decades, extensive effort has been made to develop strategies to protect retinal neurons from death; however, the outcome is limited (Pettmann and Henderson, 1998; Bahr, 2000; Lagali and Picketts, 2011). Replacing the degenerated retinal neurons by newly generated and functional neurons would be an ideal scenario. The rapid development of stem cell biology has recently demonstrated that stem cells could be a potential source of cells for cell replacement therapy because these cells have the self-renewal capacity and could be differentiated into many cell types. This review will discuss the therapeutic potential of stem cell-based therapy to retinal degenerative diseases.

    Introduction

    Retinal degeneration has been known to be caused by genetic mutation (Sullivan and Daiger, 1996; Sohocki et al., 2001; Lee and Flannery, 2007), trauma (Chang et al., 1995; Sebag and Sadun, 1996) or infection (John et al., 1987; Miller et al., 2004; Robman et al., 2005) that will lead to irreversible neuronal loss and even blindness. Other than these factors, environmental in fl uences such as ultraviolet radiation (Taylor et al., 1992) and oxidative stress (Venza et al., 2012) could also bring forth retinal degeneration. Retinal ganglion cells and photoreceptors are the two major retinal cell types subjected to degeneration in retinal diseases. Age-related macular degeneration, cone dystrophy and retinitis pigmentosa are the common photoreceptor degenerative diseases that are the major leading cause of blindness worldwide (Hageman et al., 1995; Sohocki et al., 2001; Congdon et al., 2003; Huang et al., 2011). Glaucoma, optic neuritis and post-traumatic optic injury are the common retinal diseases leading to degeneration of retinal ganglion cells (RGCs) and their axons (Quigley et al., 1989; Quigley et al., 1995; Kerrigan-Baumrind et al., 2000). To achieve the goal of stem cell-based therapy, the survival and integration of transplanted cells are critical. To evaluate the potential of stem cell therapy for neurodegenerative disease in central nervous system, retina may be a good choice to be considered because it is an easily accessible organ. In addition, the cornea clarity makes possible for longitudinal imaging the transplanted cells and measuring the retinal function by non-invasive approaches. In contrast to the complex retinal structure, analyzing the integration and functional connection of transplanted cells to the host cells in the spinal cord could be simpler. In this regard, spinal cord may be more feasible in terms of simplicity of the cellular system.

    In the clinic, non-invasive tools monitoring retinal changes and retinal activity such as optical coherence tomography and electroretinography, have been well established and commonly used. Accumulating studies showed that some success of stem cell-based therapy for replacing retinal pigment epithelium (RPE) (Idelson et al., 2009; Lu et al., 2009) or photoreceptors (Kicic et al., 2003; MacLaren and Pearson, 2007; Lamba et al., 2009; Wang et al., 2010) in animal models of retinal degeneration that prompt the design of early clinical trials (A service of the U.S. National Institutes of Health; Martell et al., 2010; Trounson et al., 2011; Schwartz et al., 2012). To replace the degenerated retinal cells, delivering cells via subretinal injection is a straight forward and logical approach. In this review, the potential of stem cell-based therapy using embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and retinal progenitor cells on photoreceptor degeneration diseases will be described.

    Potential use of stem or progenitor cells in the treatment of retinal degenerative diseases

    Embryonic stem cells (ESCs)

    ESCs are pluripotent cells that are derived from the undifferentiated mass of cells in blastocyst at pre-implantation stage. The ESCs have self-renewal ability and could be differentiated into all cell derivatives from ectoderm, mesoderm and endoderm. Thus ESCs could generate any cell types that could be used for cell replacement therapy. Human embryonic stem cells (hESCs) can be obtained from 5-day-old blastocyst stage from extra in vitro fertilized eggs called surplus in vitro-producing embryos, that were originally generated for in vitro fertilization purpose (Thomson et al., 1998). In 1998, successful isolation and generation of hESCs line was first accomplished by James Thompson. Following that, the next question is how to differentiate these cells into speci fi c cell type for therapeutic purpose. Signi fi cant progress has recently been made to uncover the developmental stimuli that drive pluripotent stem cells to differentiate into various neurons including retinal neurons (Jin and Takahashi, 2012) and retinal pigment epithelium (RPE) in vitro (Lamba et al., 2009; Amirpour et al., 2012). With these information and techniques, hESCs could be a promising source of cells for replacement therapy in patients with retinal degenerative diseases (Rowland et al., 2012).

    Nevertheless, cautions should be taken that the hES cell lines and the hESCs derived cells should be fully characterized for the safety purpose. It has been reporties that individual ES cell line may has different abilities or properties of differentiation (Osafune et al., 2008). In addition, accumulating evidence showed that chromosomal errors such as aneuploidy (Hassold and Hunt, 2001; Munne et al., 2002) and mitochondrion DNA defects (Keefe et al., 1995) were found in ES cell lines. It may be because most ES cell lines were derived from surplus in vitro-producing embryos of infertile patients. Maintaining ES cell lines in vitro may affect stability. Extended culture of ES cell lines may lead to karyotype instability (Amit et al., 2000; Amit et al., 2003; Draper et al., 2004a). For example, chromosomal abnormality were revealed in three independent ES cell lines that showed gain of chromosome 17q and presence of isochromosome 12p (Draper et al., 2004b). Overall, the selection and maintaining of ES cell lines could play a very critical role to the health and differentiation property to speci fi c cell type for therapeutic purpose.

    The safety and tolerability study from the fi rst clinical study of subretinal transplantation of hESCs-derived retinal pigment epithelium (hESCs-RPE) into patients with advanced stage Stargardt’s macular dystrophy and dry age-related macular degeneration (AMD) was reported in 2012 (Schwartz et al., 2012). The hESCs line used in this trial was produced with Good Manufacturing Practice and the derived RPE cells were thoroughly examined in vitro. The hESCs-RPE cells were characterized to have normal karyotype, free of pathogens and contaminating ESCs or pluripotent cells. Brie fl y, the cells were injected into the submacular space following a vitrectomy procedure. The clinical observation showed the transplanted cells survived for at least four weeks. No sign of ocular tumor or teratoma formation and clinically signi fi cant in fl ammation were observed. Improved visual performance was even observed in these patients. The best-corrected visual acuity was improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the patient with Stargardt’s macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28). It suggested that the hESCs derived RPE cells might be safe to patients, and may even improve their vision. Now, the multicenter Phase I/II clinical trial is ongoing and more results are eagerly awaited (A service of the U.S. National Institutes of Health).

    To mimic the natural structure of RPE cell layer, hESCs-RPE cells were shown to grow into monolayer on a thin sheet of polymer (Carr et al., 2013). This approach aims to overcome the disorga-nized fashion in which RPE cells adhere to Bruch’s membrane when injected as a cell suspension. The polymer is also designed to act as a replacement for the aged and thickened Bruch’s membrane usually occur in macular degeneration diseases, and thus provides an anchor for the RPE cells as well as aiding in cell delivery. It was shown in animal studies that polarized monolayers of hESCs-RPE could have better survival than cell suspensions following transplantation. No teratoma or any ectopic tissue formation was detected in the implanted rats. It suggests that animal studies may provide insights of the safety outcome before transplanting the hESCs-RPE cells to patients (Diniz et al., 2013). A clinical trial of transplanting hESCs-RPE along with polymer to AMD patients is currently on going (Carr et al., 2013; Ramsden et al., 2013).

    iPSCs

    Use of hESCs in animal models or patients may raise ethical and religious concern because it requires destroy human embryos. Recently, a new type of pluripotent cells was generated by reprogramming somatic cells, called iPSCs. Like hESCs, hiPSCs also have self-renewal capacity and are able to differentiate into any cell types including retinal neurons (Koch et al., 2009). Reprogramming somatic cells to iPSCs could generate patient speci fi c iPSCs; thus, no immune rejection is anticipated. In addition, generation of iPSCs does not involve embryos.

    In 2006, a milestone study by Yamanaka’s group in Japan, iPSCs were first generated by introducing four stem cell factors (Oct3/4, Sox2, c-Myc and Klf4) into mouse somatic cells by retrovirus (Takahashi and Yamanaka, 2006). One year later, two independent groups of Yamanaka (Takahashi and Yamanaka, 2006; Takahashi et al., 2007) and Thomson (Yu et al., 2007) successfully generated human iPSCs by introducing similar kind of stem cell factors into human fi broblast. Generally, the rate of iPSCs production is low (< 1%). There is also a risk of tumor formation because during reprogramming, the stem cell factors will integrate into the genome of somatic cells via retroviral system (Selvaraj et al., 2014). In addition, comparing mouse iPSCs generated from various origins, Miura et al. (2009) showed that iPSCs derived from tail-tip fi broblasts showed residual pluripotent cells after 3 weeks of in vitro differentiation and later form teratoma following transplantation of the differentiated cells into immune-deficient mouse. It suggests that the properties and safety of human iPSCs from various origins should also be carefully examined.

    To improve the rate and safety of iPSCs production, other alternative approaches have been recently developed using small molecule (Jung et al., 2014) and non-viral methods (Kaji et al., 2009; Lieu et al., 2013; Phang et al., 2013). In general, plasmid-induced iPSCs generation has about 1,000 fold less ef fi cient than the viral approach (Okita and Yamanaka, 2011). Recently, it was reported that the dosage of speci fi c reprogramming factor could affect the induction of iPSCs. Papapetrou et al. (2009) showed increased 3 fold expression of OCT3/4 in human fi broblast could enhance the iPSCs generation by 2 fold. Interestingly, excess addition of OCT3/4 would have opposite effect. On the other hand, overexpressing other reprogramming factors such as Nanog, c-Myc and Klf4 could inhibit the induction of iPSCs (Mitsui et al., 2003). It suggests that the balance on the expression of reprogramming factors is important for induction of iPSCs.

    Although iPSCs appear as a promising source of cells for therapeutic use, it still needs to be further characterized with regard to some critical issues including the cellular effect of reactivation of intrinsic pluripotency and possible alterations in target cells, before moving forward for clinical use. In particular, iPSCs appear to have a greater propensity for genomic instability than ESCs and with a higher rate of point mutations (Gore et al., 2011). A global epigenetic study showed higher DNA methylation was detected in iPSCs than its origin (Deng et al., 2009; Doi et al., 2009). The abnormal methylation pattern (hypo- or hyper-methylation) may affect the differentiation property of iPSCs. Other than genomic instability and epigenetic changes, parental source of iPSCs could also affect the differentiation property. For example, iPSCs generated from peripheral blood cells could differentiate into hematopoietic lineage with high efficiency but differentiate into neurons with low ef fi ciency (Kim et al., 2010). It suggests that iPSCs may retain some memories from their parental source. Since the process of reprogramming affects only the nuclear genome, leaving the mitochondria unaltered, the extent to which an aged or altered mitochondrial genome will in fl uence the properties of iPSCs and their derivatives that remains to be evaluated (Koch et al., 2009).

    Nevertheless, accumulating studies in animal models suggested that use of iPSCs is a feasible approach to treat neurodegenerative diseases. The fi rst clinical trial of transplanting sheets of RPE cells derived from hiPSCs to age-related macular degeneration patient has recently been approved and will be led by Masayo Takahashi at Riken Institute (Song et al., 2013). The study is planned for 2014 (http:// www.riken.jp/en/pr/press/2013/20130730_1/). It is an important step; at least, to investigate if it is safe to use iPSCs-derived RPE cells in patients.

    Retinal progenitor cells (RPCs)

    RPCs are stem-like cells found in immature retina including human. RPCs are comprised of an immature cell population that is responsible for the generation of all retinal cell types during development (Reh, 2006) and also retinal supporter cells such as Müller cells in vitro (Chow et al., 1998; Tropepe et al., 2000). Note RPCs are not a single cell type but rather a variety of cells at different stages along with incompletely characterized differentiation pathways (Mayer et al., 2005). Similar to neural stem cells, RPCs have the self-renewal ability in vitro but with a restricted ability of differentiation into retinal neurons (Das et al., 2005). It suggests that successful isolation and expansion of RPCs could be a potential source of cells to treat retinal degenerative diseases.

    Animal studies showed that following subretinal transplantation, the RPCs could migrate and integrate into mouse (Pearson et al., 2012; Barber et al., 2013) and swine retina (Wang et al., 2014) to certain extent. The age of donor cells in mouse may play a role in the effi cacy of survival and integration of transplanted cells in the host retina (Kinouchi et al., 2003; West et al., 2012). Instead of transplanting cell suspension, transplanting cells with a scaffold, may improve the survival and differentiation of transplanted cells (Tomita et al., 2005; Hynes and Lavik, 2010). Recently, packaging RPCs with scaffold or biodegradable polymer was demonstrated to promote integration (Yao et al., 2011) and differentiation of RPCs to photoreceptors in vivo. It suggests that transplantation of RPCs via an appropriate scaffold may improve the outcome of transplantation. Recently, an early clinical study of transplanting human PRCs into retinitis pigmentosa patients led by Henry Klassen, is anticipated to begin in late 2014 (www.cirm.ca.goc). We are looking forward to the outcome of the study.

    Conclusions and future perspectives

    Overall, the results of transplanting progenitor cells or cells derived from stem cells into retina of animal models and patients undergoing photoreceptor degeneration are encouraging. These results highlight the potential of stem cell-based therapy. Nevertheless, there are still challenges to overcome. Before evaluating any beneficial effects of stem cell-based therapy in patients, we still need substantial data from long term survival studies to show the safety of the transplanted cells. The cells derived from ESCs or iPSCs should be thoroughly characterized without contaminants such as animal derivatives and residual pluripotent cells that could potentially harm the patients. In addition, enhancing the integration and survival of transplanted cells are also critical. It may be improved by packaging cells with appropriate scaffold such as synthetic polymer, for transplantation.

    Other retinal degenerative diseases targeting at retinal ganglion cells (RGCs) will be the next goal of stem cell-based therapy. Recently, iPSCs dervied retinal ganglion cells were shown to be generated (Parameswaran et al., 2010; Alshamekh et al., 2012). To achieve asuccessful transplantation of stem cells-derived RGCs to patients undergoing degeneration of RGCs such as glaucoma, the stem cells-derived RGCs need to have a capacity to form precise connections to speci fi c neurons in host retinal neurons and are also able to extend long axons along the visual pathway and ultimately, establish precise functional connection to visual targets and finally, lead to vision restoration. It is an extremely challenging task to be achieved in the future.

    With regard to the rapid development of stem cell biology, it is anticipated to develop a revolutionized approach for the treatment of retinal degenerative diseases and probably, other neurodegenerative diseases in central nervous system.

    Honghua Yu1,4, Lin Cheng2,3,4, Kin-Sang Cho4

    1 Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong Province, China

    2 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    3 Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, China

    4 Schepens Eye Research Institute, Massachusetts Eye and Ear

    In fi rmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA, USA

    Honghua Yu and Lin Cheng contributed equally to this work.

    A service of the U.S. National Institutes of Health Safety and Tolerability of Sub-retinal Transplantation of hESC Derived RPE (MA09-hRPE) Cells in Patients With Advanced Dry Age Related Macular Degeneration (Dry AMD). In.

    Alshamekh S, Hertz J, Derosa B, Uddin S, Patel R, Salero E, Dykxhoorn D, Goldberg J (2012) Generating human retinal ganglion cells from human induced pluripotent cells in feeder and feeder-free conditions. Acta Ophthalmologica doi: 101111/j1755-376820124476x.

    Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, Dehghani A, Razmju H, Nasr-Esfahani MH, Baharvand H (2012) Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 21:42-53.

    Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271-278.

    Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, Itskovitz-Eldor J (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68:2150-2156.

    Bahr M (2000) Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci 23:483-490.

    Barber AC, Hippert C, Duran Y, West EL, Bainbridge JW, Warre-Cornish K, Luhmann UF, Lakowski J, Sowden JC, Ali RR, Pearson RA (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110:354-359.

    Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ (2013) Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 36:385-395.

    Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113:880-886.

    Chow L, Levine EM, Reh TA (1998) The nuclear receptor transcription factor, retinoid-related orphan receptor beta, regulates retinal progenitor proliferation. Mech Dev 77:149-164.

    Congdon NG, Friedman DS, Lietman T (2003) Important causes of visual impairment in the world today. JAMA 290:2057-2060.

    Das AV, Edakkot S, Thoreson WB, James J, Bhattacharya S, Ahmad I (2005) Membrane properties of retinal stem cells/progenitors. Prog Retin Eye Res 24:663-681.

    Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K (2009) Targeted bisul fi te sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27:353-360.

    Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54:5087-5096.

    Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP (2009) Differential methylation of tissue- and cancer-speci fi c CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fi broblasts. Nat Genet 41:1350-1353.

    Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW (2004a) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325-336.

    Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004b) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53-54.

    Gore A et al. (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63-67.

    Hageman GS, Gehrs K, Johnson LV, Anderson D (1995) Age-Related Macular Degeneration (AMD). In: Webvision: The Organization of the Retina and Visual System (Kolb H, Fernandez E, Nelson R, eds). Salt Lake City (UT).

    Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280-291.

    Huang Y, Enzmann V, Ildstad ST (2011) Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev 7:434-445.

    Hynes SR, Lavik EB (2010) A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 248:763-778.

    Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzra fi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396-408.

    Jin ZB, Takahashi M (2012) Generation of retinal cells from pluripotent stem cells. Prog Brain Res 201:171-181.

    John T, Barsky HJ, Donnelly JJ, Rockey JH (1987) Retinal pigment epitheliopathy and neuroretinal degeneration in ascarid-infected eyes. Invest Ophthalmol Vis Sci 28:1583-1598.

    Jung DW, Kim WH, Williams DR (2014) Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol 9:80-95.

    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771-775.

    Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S (1995) Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 64:577-583.

    Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual fi eld tests in the same persons. Invest Ophthalmol Vis Sci 41:741-748.

    Kicic A, Shen WY, Wilson AS, Constable IJ, Robertson T, Rakoczy PE (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23:7742-7749.

    Kim K et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285-290.

    Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, Pekny M, Chen DF (2003) Robust neural integration from retinal transplants in mice de fi cient in GFAP and vimentin. Nat Neurosci 6:863-868.

    Koch P, Kokaia Z, Lindvall O, Brustle O (2009) Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol 8:819-829.

    Lagali PS, Picketts DJ (2011) Matters of life and death: the role of chromatin remodeling proteins in retinal neuron survival. J Ocul Biol Dis Infor 4:111-120.

    Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-de fi cient mice. Cell Stem Cell 4:73-79.

    Lee ES, Flannery JG (2007) Transport of truncated rhodopsin and its effects on rod function and degeneration. Invest Ophthalmol Vis Sci 48:2868-2876.

    Lieu PT, Fontes A, Vemuri MC, Macarthur CC (2013) Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus. Methods Mol Biol 997:45-56.

    Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126-2135.

    MacLaren RE, Pearson RA (2007) Stem cell therapy and the retina. Eye (Lond) 21:1352-1359.

    Martell K, Trounson A, Baum E (2010) Stem cell therapies in clinical trials: workshop on best practices and the need for harmonization. Cell Stem Cell 7:451-454.

    Mayer EJ, Carter DA, Ren Y, Hughes EH, Rice CM, Halfpenny CA, Scolding NJ, Dick AD (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol 89:102-106.

    Miller DM, Espinosa-Heidmann DG, Legra J, Dubovy SR, Suner IJ, Sedmak DD, Dix RD, Cousins SW (2004) The association of prior cytomegalovirus infection with neovascular age-related macular degeneration. Am J Ophthalmol 138:323-328.

    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642.

    Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743-745.

    Munne S, Sandalinas M, Escudero T, Marquez C, Cohen J (2002) Chromosome mosaicism in cleavage-stage human embryos: evidence of a maternal age effect. Reprod Biomed Online 4:223-232.

    Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366:2198-2207.

    Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313-315.

    Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, Tabar V, Mo Q, Studer L, Sadelain M (2009) Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for ef fi cient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 106:12759-12764.

    Parameswaran S, Balasubramanian S, Babai N, Qiu F, Eudy JD, Thoreson WB, Ahmad I (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28:695-703.

    Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, Luhmann UF, Benucci A, Sung CH, Bainbridge JW, Carandini M, Yau KW, Sowden JC, Ali RR (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99-103.

    Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633-647.

    Phang RZ, Tay FC, Goh SL, Lau CH, Zhu H, Tan WK, Liang Q, Chen C, Du S, Li Z, Tay JC, Wu C, Zeng J, Fan W, Toh HC, Wang S (2013) Zinc fi nger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Stem Cells Transl Med 2:935-945.

    Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453-464.

    Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774-786.

    Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576-2585.

    Reh TA (2006) Neurobiology: right timing for retina repair. Nature 444:156-157.

    Robman L, Mahdi O, McCarty C, Dimitrov P, Tikellis G, McNeil J, Byrne G, Taylor H, Guymer R (2005) Exposure to Chlamydia pneumoniae infection and progression of age-related macular degeneration. Am J Epidemiol 161:1013-1019.

    Rowland TJ, Buchholz DE, Clegg DO (2012) Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 227:457-466.

    Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713-720.

    Sebag J, Sadun AA (1996) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 114:1158-1159.

    Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, Shokuhfar T, Zhao Y, Blough E (2014) Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomedicine 9:1379-1391.

    Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, Birch DG, Mintz-Hittner H, Ruiz RS, Lewis RA, Saperstein DA, Sullivan LS (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17:42-51.

    Song P, Inagaki Y, Sugawara Y, Kokudo N (2013) Perspectives on human clinical trials of therapies using iPS cells in Japan: reaching the forefront of stem-cell therapies. Biosci Trends 7:157-158.

    Sullivan LS, Daiger SP (1996) Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today 2:380-386.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fi broblast cultures by de fi ned factors. Cell 126:663-676.

    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fi broblast cultures. Nat Protoc 2:3081-3089.

    Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, Bressler NM (1992) The long-term effects of visible light on the eye. Arch Ophthalmol 110:99-104.

    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147.

    Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ (2005) Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23:1579-1588.

    Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032-2036.

    Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med 9:52.

    Venza I, Visalli M, Oteri R, Teti D, Venza M (2012) Combined effects of cigarette smoking and alcohol consumption on antioxidant/oxidant balance in age-related macular degeneration. Aging Clin Exp Res 24:530-536.

    Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 5:e9200.

    Wang W, Zhou L, Lee SJ, Liu Y, Fernandez de Castro J, Emery D, Vukmanic E, Kaplan HJ, Dean DC (2014) Swine cone and rod precursors arise sequentially and display sequential and transient integration and differentiation potential following transplantation. Invest Ophthalmol Vis Sci 55:301-309.

    West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR (2012) De fi ning the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30:1424-1435.

    Yao J, Tucker BA, Zhang X, Checa-Casalengua P, Herrero-Vanrell R, Young MJ (2011) Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials 32:1041-1050.

    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920.

    Kin-Sang Cho, Ph.D., Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of

    10.4103/1673-5374.135311 http://www.nrronline.org/

    Ophthalmology, Harvard Medical School, 20 Staniford St., MA 02114, USA, Kinsang_Cho@meei.harvard.edu.

    Con fl icts of interest: None declared.

    Accepted: 2014-05-20

    Yu HH, Cheng L, Cho KS. The potential of stem cell-based therapy for retinal repair. Neural Regen. Res. 2014;9(11):1100-1103.

    久久性视频一级片| 美女扒开内裤让男人捅视频| 亚洲人成77777在线视频| 国产伦人伦偷精品视频| 欧美黑人精品巨大| 日韩,欧美,国产一区二区三区| 十八禁网站网址无遮挡| 久久影院123| 制服诱惑二区| 免费人妻精品一区二区三区视频| 伦理电影大哥的女人| 国产精品二区激情视频| 欧美老熟妇乱子伦牲交| 欧美人与善性xxx| 久久久欧美国产精品| 黄色视频不卡| 在线天堂最新版资源| 国产极品粉嫩免费观看在线| 在线 av 中文字幕| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 欧美变态另类bdsm刘玥| 精品福利永久在线观看| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 国产淫语在线视频| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 大片免费播放器 马上看| 免费黄网站久久成人精品| 精品人妻熟女毛片av久久网站| 超色免费av| 日本猛色少妇xxxxx猛交久久| 亚洲婷婷狠狠爱综合网| 日日啪夜夜爽| 国产免费福利视频在线观看| 波多野结衣一区麻豆| 天美传媒精品一区二区| www.自偷自拍.com| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 亚洲精品在线美女| 亚洲国产精品999| 十八禁人妻一区二区| 伦理电影免费视频| 啦啦啦啦在线视频资源| 看十八女毛片水多多多| 少妇人妻 视频| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| xxx大片免费视频| 国产在视频线精品| 国产色婷婷99| 国产精品国产三级专区第一集| 国产人伦9x9x在线观看| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| netflix在线观看网站| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 又大又黄又爽视频免费| 免费在线观看视频国产中文字幕亚洲 | av国产精品久久久久影院| 在线观看www视频免费| 久久av网站| 91aial.com中文字幕在线观看| 在线观看国产h片| 国产日韩欧美视频二区| 亚洲欧美成人精品一区二区| 久久精品亚洲av国产电影网| 中文字幕av电影在线播放| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡| 欧美日韩福利视频一区二区| 久久韩国三级中文字幕| 午夜影院在线不卡| 国产女主播在线喷水免费视频网站| 狂野欧美激情性xxxx| 老司机亚洲免费影院| 一级爰片在线观看| av在线观看视频网站免费| 搡老乐熟女国产| 国产乱来视频区| 国产伦理片在线播放av一区| 美女主播在线视频| 午夜福利影视在线免费观看| 欧美黑人精品巨大| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 人妻 亚洲 视频| 又大又爽又粗| 卡戴珊不雅视频在线播放| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| 亚洲情色 制服丝袜| 亚洲av综合色区一区| www.av在线官网国产| 精品国产一区二区久久| 亚洲精品日本国产第一区| 久久精品aⅴ一区二区三区四区| 日韩人妻精品一区2区三区| 久久久久人妻精品一区果冻| 国产爽快片一区二区三区| 免费高清在线观看日韩| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 日韩熟女老妇一区二区性免费视频| 日韩一卡2卡3卡4卡2021年| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 午夜日本视频在线| 丝袜美足系列| 亚洲第一av免费看| 91aial.com中文字幕在线观看| 亚洲,一卡二卡三卡| 狠狠精品人妻久久久久久综合| 国产成人精品在线电影| 少妇的丰满在线观看| 欧美日韩av久久| 国产不卡av网站在线观看| 中文欧美无线码| 国产av国产精品国产| 久久精品国产a三级三级三级| 免费观看人在逋| www.精华液| 久久久精品区二区三区| 叶爱在线成人免费视频播放| 欧美另类一区| 丝瓜视频免费看黄片| 精品免费久久久久久久清纯 | 亚洲欧美激情在线| 久久鲁丝午夜福利片| 看非洲黑人一级黄片| 亚洲综合精品二区| 久久av网站| 亚洲美女视频黄频| 久久久久国产精品人妻一区二区| 十八禁网站网址无遮挡| 中文精品一卡2卡3卡4更新| 午夜激情av网站| 深夜精品福利| 久久久精品国产亚洲av高清涩受| 老司机深夜福利视频在线观看 | 在线观看一区二区三区激情| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 91精品国产国语对白视频| 精品亚洲成国产av| 久久免费观看电影| 国产99久久九九免费精品| 亚洲伊人色综图| 成人毛片60女人毛片免费| 成人影院久久| 女人高潮潮喷娇喘18禁视频| 婷婷色麻豆天堂久久| 高清不卡的av网站| avwww免费| 超色免费av| 丁香六月欧美| 久久婷婷青草| 国产成人91sexporn| 下体分泌物呈黄色| av有码第一页| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 成年美女黄网站色视频大全免费| 看免费av毛片| 精品亚洲乱码少妇综合久久| 18在线观看网站| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 国产一区二区在线观看av| 亚洲一区中文字幕在线| 国产免费现黄频在线看| 久久影院123| 97在线人人人人妻| 一区在线观看完整版| 我要看黄色一级片免费的| 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9 | 国产野战对白在线观看| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| 日本av免费视频播放| 欧美乱码精品一区二区三区| 国产在线视频一区二区| 日本猛色少妇xxxxx猛交久久| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 亚洲,一卡二卡三卡| 精品一区二区三卡| 婷婷色综合大香蕉| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网 | 亚洲第一区二区三区不卡| 久久午夜综合久久蜜桃| 青春草视频在线免费观看| 日本午夜av视频| www日本在线高清视频| 亚洲国产精品999| 色吧在线观看| 久久久久久久国产电影| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 亚洲精品一二三| 99热网站在线观看| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 日韩一区二区视频免费看| 亚洲av成人精品一二三区| a 毛片基地| 成人免费观看视频高清| 天堂8中文在线网| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码 | 日韩制服丝袜自拍偷拍| 日韩一本色道免费dvd| 丝袜美足系列| 啦啦啦 在线观看视频| 熟女少妇亚洲综合色aaa.| 18禁动态无遮挡网站| 电影成人av| 99九九在线精品视频| 尾随美女入室| 多毛熟女@视频| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 丝袜脚勾引网站| 色94色欧美一区二区| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 人妻 亚洲 视频| 免费高清在线观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 免费高清在线观看视频在线观看| 色综合欧美亚洲国产小说| 毛片一级片免费看久久久久| 精品亚洲乱码少妇综合久久| 51午夜福利影视在线观看| 日本猛色少妇xxxxx猛交久久| 在线免费观看不下载黄p国产| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 又黄又粗又硬又大视频| 国产一卡二卡三卡精品 | 啦啦啦在线观看免费高清www| 侵犯人妻中文字幕一二三四区| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 人妻人人澡人人爽人人| 午夜影院在线不卡| 国产一区二区三区综合在线观看| 国产成人精品久久久久久| 美女主播在线视频| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| bbb黄色大片| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 天天躁夜夜躁狠狠久久av| 久久久久国产一级毛片高清牌| 丰满少妇做爰视频| 麻豆乱淫一区二区| 少妇精品久久久久久久| 亚洲成人av在线免费| 日韩av免费高清视频| 麻豆精品久久久久久蜜桃| 女人久久www免费人成看片| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 又黄又粗又硬又大视频| 老司机深夜福利视频在线观看 | 久久久国产欧美日韩av| 欧美xxⅹ黑人| av天堂久久9| av国产精品久久久久影院| 亚洲情色 制服丝袜| 搡老乐熟女国产| 国产亚洲最大av| 久久久国产一区二区| 操美女的视频在线观看| 精品国产一区二区久久| 日韩不卡一区二区三区视频在线| 国产成人精品福利久久| 久久久久精品人妻al黑| 日韩视频在线欧美| av在线老鸭窝| 国产一区有黄有色的免费视频| videos熟女内射| 亚洲av在线观看美女高潮| 男人舔女人的私密视频| 18禁观看日本| www.自偷自拍.com| 亚洲国产精品国产精品| 丝瓜视频免费看黄片| 韩国精品一区二区三区| 亚洲美女搞黄在线观看| 亚洲专区中文字幕在线 | 男的添女的下面高潮视频| 久久精品国产亚洲av高清一级| 国产伦人伦偷精品视频| 精品免费久久久久久久清纯 | 一本—道久久a久久精品蜜桃钙片| 少妇人妻久久综合中文| 别揉我奶头~嗯~啊~动态视频 | 王馨瑶露胸无遮挡在线观看| 99久久综合免费| av电影中文网址| av不卡在线播放| a级毛片黄视频| 水蜜桃什么品种好| 97精品久久久久久久久久精品| 亚洲精品第二区| 在线观看www视频免费| 悠悠久久av| 亚洲av在线观看美女高潮| 男女午夜视频在线观看| 精品亚洲成国产av| 欧美在线黄色| 久久精品aⅴ一区二区三区四区| 欧美变态另类bdsm刘玥| 欧美激情 高清一区二区三区| 欧美黄色片欧美黄色片| 久久鲁丝午夜福利片| 老司机影院毛片| 亚洲国产精品一区二区三区在线| 天天操日日干夜夜撸| 亚洲精品视频女| 成人黄色视频免费在线看| 久久久久精品久久久久真实原创| 精品久久久久久电影网| 女人精品久久久久毛片| 亚洲综合色网址| 丰满乱子伦码专区| 久久综合国产亚洲精品| 少妇猛男粗大的猛烈进出视频| 一级毛片我不卡| 水蜜桃什么品种好| 久久久久久免费高清国产稀缺| 三上悠亚av全集在线观看| 国产无遮挡羞羞视频在线观看| 国产爽快片一区二区三区| 一个人免费看片子| 赤兔流量卡办理| 亚洲精品美女久久av网站| 久久女婷五月综合色啪小说| 欧美日韩亚洲综合一区二区三区_| 香蕉丝袜av| 亚洲精品日韩在线中文字幕| 一区在线观看完整版| 亚洲免费av在线视频| 亚洲欧洲日产国产| 啦啦啦在线免费观看视频4| 婷婷色综合www| 秋霞在线观看毛片| 三上悠亚av全集在线观看| 亚洲第一av免费看| 深夜精品福利| av.在线天堂| 日韩大码丰满熟妇| 亚洲av成人精品一二三区| 免费久久久久久久精品成人欧美视频| 久久久久久久久免费视频了| 天天躁日日躁夜夜躁夜夜| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 国产精品麻豆人妻色哟哟久久| 午夜福利乱码中文字幕| 国产在线免费精品| 交换朋友夫妻互换小说| 制服诱惑二区| av又黄又爽大尺度在线免费看| av国产精品久久久久影院| 又黄又粗又硬又大视频| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精| 99精国产麻豆久久婷婷| 18在线观看网站| 色播在线永久视频| 国产精品二区激情视频| 亚洲欧洲日产国产| 亚洲精品国产区一区二| 19禁男女啪啪无遮挡网站| 成人国产麻豆网| 亚洲国产欧美网| 久久久国产欧美日韩av| 成人毛片60女人毛片免费| 我的亚洲天堂| 如何舔出高潮| 亚洲第一青青草原| 成人毛片60女人毛片免费| 久久精品久久久久久噜噜老黄| 伦理电影免费视频| 亚洲四区av| 老熟女久久久| 人妻一区二区av| av网站免费在线观看视频| 少妇人妻 视频| 亚洲情色 制服丝袜| 国产片特级美女逼逼视频| 黑人巨大精品欧美一区二区蜜桃| 蜜桃在线观看..| 黄频高清免费视频| 国产极品粉嫩免费观看在线| 两个人看的免费小视频| 国产日韩欧美亚洲二区| 99精品久久久久人妻精品| 老司机深夜福利视频在线观看 | 一边亲一边摸免费视频| 免费黄色在线免费观看| 亚洲,欧美,日韩| 欧美日韩福利视频一区二区| 黄色视频在线播放观看不卡| 在线观看人妻少妇| 亚洲人成77777在线视频| av福利片在线| 国产成人av激情在线播放| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 久久国产精品大桥未久av| 看非洲黑人一级黄片| 亚洲情色 制服丝袜| 久久久久国产精品人妻一区二区| 国产又爽黄色视频| 一级毛片黄色毛片免费观看视频| 操出白浆在线播放| 人人妻人人添人人爽欧美一区卜| 一级a爱视频在线免费观看| 男女无遮挡免费网站观看| 狠狠婷婷综合久久久久久88av| 亚洲av成人精品一二三区| 久久97久久精品| 老汉色∧v一级毛片| 熟女av电影| 丝袜人妻中文字幕| 精品一区在线观看国产| 亚洲欧美中文字幕日韩二区| 免费少妇av软件| 天堂中文最新版在线下载| 国产97色在线日韩免费| 日本vs欧美在线观看视频| 两个人看的免费小视频| 麻豆乱淫一区二区| 另类亚洲欧美激情| 日韩人妻精品一区2区三区| 亚洲精品国产一区二区精华液| 国产在视频线精品| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 国精品久久久久久国模美| 国产色婷婷99| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 欧美日韩av久久| av视频免费观看在线观看| 男女边摸边吃奶| 成人影院久久| 久久精品久久久久久久性| 亚洲男人天堂网一区| 国产黄频视频在线观看| 观看美女的网站| 国产一级毛片在线| 国产成人精品福利久久| bbb黄色大片| 日韩欧美精品免费久久| 无遮挡黄片免费观看| 免费观看人在逋| 日韩av免费高清视频| 777久久人妻少妇嫩草av网站| 人妻 亚洲 视频| 亚洲人成电影观看| 日韩成人av中文字幕在线观看| 悠悠久久av| 欧美最新免费一区二区三区| 国产97色在线日韩免费| 五月天丁香电影| 亚洲人成网站在线观看播放| 超色免费av| 国产99久久九九免费精品| 日韩制服丝袜自拍偷拍| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 国产 一区精品| 热re99久久国产66热| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 岛国毛片在线播放| av片东京热男人的天堂| 亚洲国产精品成人久久小说| 国产一卡二卡三卡精品 | e午夜精品久久久久久久| 在线 av 中文字幕| 国产一卡二卡三卡精品 | 亚洲国产欧美在线一区| 一级a爱视频在线免费观看| 精品人妻熟女毛片av久久网站| 性少妇av在线| 日韩 亚洲 欧美在线| 男女床上黄色一级片免费看| 国产欧美日韩综合在线一区二区| 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 日本一区二区免费在线视频| 老司机亚洲免费影院| 尾随美女入室| 99热网站在线观看| 国产精品免费视频内射| 黄色视频不卡| 亚洲av福利一区| 亚洲三区欧美一区| 天天添夜夜摸| 欧美国产精品一级二级三级| 久久久久久久大尺度免费视频| 中文字幕另类日韩欧美亚洲嫩草| svipshipincom国产片| 国产爽快片一区二区三区| 国产成人精品久久二区二区91 | 国产成人a∨麻豆精品| 欧美在线黄色| 波多野结衣一区麻豆| 国产精品久久久久成人av| a级片在线免费高清观看视频| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 男女之事视频高清在线观看 | 午夜福利免费观看在线| svipshipincom国产片| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 午夜免费观看性视频| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 亚洲人成77777在线视频| av天堂久久9| 欧美精品高潮呻吟av久久| 波多野结衣一区麻豆| 国产精品久久久久久精品电影小说| www.av在线官网国产| 免费av中文字幕在线| 18禁国产床啪视频网站| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 99久久综合免费| 午夜福利在线免费观看网站| 国产av国产精品国产| 老汉色av国产亚洲站长工具| 国产精品一区二区在线不卡| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 日韩视频在线欧美| 国产精品免费大片| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频| 国产成人精品福利久久| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 一级毛片 在线播放| 久久久久久人妻| 国产精品成人在线| 亚洲欧美精品综合一区二区三区| 黄频高清免费视频| netflix在线观看网站| 欧美激情极品国产一区二区三区| av天堂久久9| 精品人妻在线不人妻| av又黄又爽大尺度在线免费看| 老熟女久久久| 看非洲黑人一级黄片| 久久精品久久久久久久性| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 香蕉丝袜av| 五月天丁香电影| 日韩大码丰满熟妇| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 欧美变态另类bdsm刘玥| 丰满迷人的少妇在线观看| 久久av网站|